Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Tet-b (racemic 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane, C16H36N4) and trimesic acid (1,3,5-benzene­tri­carboxylic acid, C9H6O6) form a salt partially solvated by both water and methanol, i.e. 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-1,3,5-benzene­tri­carboxyl­ic acid-methanol-water (1/1/0.78/1.12), C16H38N42+·C9H4O62-·0.78CH4O·1.12H2O. The anions are linked by O-H...O hydrogen bonds [O...O 2.442 (4) and 2.458 (4) Å; O-H...O 170 and 171°] into zigzag chains; orientationally disordered cations are linked to the anion chains by means of N-H...O hydrogen bonds [major orientation: N...O 2.695 (3)-3.071 (4) Å, N-H...O 148-179°; minor orientation: N...O 2.75 (2)-3.34 (2) Å, N-H...O 147-170°] and link the chains into sheets. The solvent mol­ecules are all disordered, but appear to play no significant structural role apart from space filling.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019399/sk1438sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019399/sk1438Isup2.hkl
Contains datablock I

CCDC reference: 162580

Comment top

The meso form of the tetraaza macrocycle 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C16H36N4 (tet-a), forms a salt with the trigonally trisubstituted benzenecarboxylic acid 3,5-dihydroxybenzoic acid, (I), in which [(HO)2C6H3COO]- anions form hydrogen-bonded sheets which are linked by the [(tet-a)H2]2+ (C16H38N42+) dications into a continuous three-dimensional framework based on a pillared-layer architecture (Gregson et al., 2000). With the closely-related acid 5-hydroxyisophthalic acid, (II), both the meso (tet-a) and racemic (tet-b) forms of this tetraaza macrocycle form hydrated salts in which the overall supramolecular structure is two-dimensional, with chains built from anions and water molecules linked together by [(tet-b)H2]2+ dications (Burchell et al., 2000). Continuing this study, we have now investigated the behaviour of the racemic form tet-b with the symmetrically trisubstituted acid 1,3,5-benzenetricarboxylic acid [trimesic acid, C9H6O6, (III)]. The 1:1 adduct, i.e. (1), formed between tet-b and acid (III) proves to be the salt C16H38N42+·C9H4O62-, solvated by both water and methanol. The supramolecular structure consists of two-dimensional hydrogen-bonded sheets in which the solvent molecules play no significant part.

The cation (Fig. 1) is protonated at N14 and N111; the two additional H atoms, captured from the acid, are fully ordered and participate in intramolecular N—H···N hydrogen bonds. The cation in adduct (1) is orientationally disordered, with approximately one eighth of the cation sites containing an orientation in which the cation is rotated by ca 180° about a line through the mid-points of the vectors N11···N14 and N18···N111 (Fig. 2). The conformation of the cation, which is the same for both the major and the minor orientations, is that previously observed for [(tet-b)H2]2+ (Simonov et al., 1998; Burchell et al., 2000), with the four N atoms approaching a tetrahedral arrangement. Although the cation lies in a general position, the magnitudes and signs of the dihedral angles around the ring periphery (Table 1) indicate that the cation has close to C2 rotational symmetry (Figs. 1 and 2). In contrast, the cation [(tet-a)H2]2+ is generally centrosymmetric (Gregson et al., 2000), so that its four N atoms are strictly coplanar. Within the cation, there are clear difference in the C—N bond lengths involving protonated or unprotonated N atoms, respectively, with those involving protonated N atoms being significantly longer (Table 1). For the longer C—N bonds, there is in addition a clear dependence on the degree of substitution of the C atom involved; the N(H)—CH2 bonds have a mean length of 1.493 (6) Å, while the N(H)—CMe2 bonds have a mean length of 1.525 (6) Å.

In the C9H4O62- anion (Fig. 1), the remaining carboxylic acid H atom is disordered over two sites, adjacent to O22 and O23, with equal occupancy. The C—O bond lengths (Table 1) are fully consistent with these locations for this H atom. It was found from difference maps that the O22—H222 distance was normal at 0.85 Å, while the O23—H223 distance was longer at 1.10 Å.

The two-dimensional supramolecular structure of adduct (1) is most readily analysed and described using the sub-structure approach (Gregson et al., 2000). The anions form hydrogen-bonded chains, which are linked into sheets by the cations. Each anion is linked to two further anions by means of O—H···O hydrogen bonds: O22 at (x, y, z) acts as donor to O22 at (1 - x, 1 - y, -z), while O23 at (x, y, z) acts as donor to O23 at (2 - x, 1 - y, -z), and these hydrogen bonds generate zigzag chains parallel to the [100] direction (Fig. 3). Averaged over the entire structure, each close inter-anion O···O contact involves two half-H atoms, but at the local level, a given O···O contact can only involve a single H atom; if both H sites were occupied, the H atoms would be within covalent bonding distance. Hence, the carboxyl H_atom locations within each [100] chain must be correlated, but there is no correlation between adjacent chains.

Each cation takes part in four N—H···O hydrogen bonds; the hydrogen-bonding behaviour of the two orientations is similar (Table 2) and only that of the major orientation will be discussed. Both N11 and N18 act as donors, via H11A and H18A, respectively, to O21 within the asymmetric unit, and N14 acts as donor, via H14F, to O24 in the anion at (-1 + x, y, z); this anion is a component of the same [100] chain, running along the line (x, 1/2, 0) as the cation and anion at (x, y, z). N111, however, acts as donor, via H11C, to O26 in the anion at (1 - x, -y, -z), which is a component of the [100] chain along the line (x, -1/2, 0). In this manner, each cation links two adjacent [100] chains, producing a continuous sheet parallel to (001) (Fig. 3). Two such sheets pass through each unit cell, one in the domain -0.27 < z < 0.27, and the other in the domain 0.23 < z < 0.77. There are neither hydrogen bonds nor aromatic ππ stacking interactions between adjacent (001) sheets. The overall structure is thus reminiscent of those found in the salts of both tet-a and tet-b with 5-hydroxyisophthalic acid (Burchell et al., 2000), with anion chains linked into sheets by cation.

Although elemental analysis originally suggested that adduct (1) contained two molecules of methanol per ion-pair, the structure analysis reported here has shown that there are also present in the structure two partial methanol molecules and three partial water molecules. The major methanol component acts as a hydrogen-bond donor, and is pendent from the anion chain (Table 2). For the rest of the solvent molecules no H atoms at all could be located, presumably because of disorder and/or mobility of these components, so that no comment can be made upon any structural role they might have. It is possible that the solvent incorporation are largely adventitious, with the solvent molecules occupying what would otherwise be minor voids in the structure.

The structure reported here is characterized by several forms of disorder: firstly, there is the orientational disorder of the cations; secondly, there is the carboxylic acid H-atom disorder in the anions; and finally, there is the solvent disorder, involving both partial site occupancy and possible orientational disorder. These various forms of disorder allied with the poor crystal quality undoubtedly contribute to the somewhat high R value; nonetheless, the study presented here demonstrates that even apparently intractable systems will yield, given care and persistence.

Related literature top

For related literature, see: Burchell et al. (2000); Gregson et al. (2000); Hay et al. (1975); Simonov et al. (1998).

Experimental top

A sample of tet-b were prepared, as the monohydrate, according to the literature method of Hay et al. (1975). Equimolar quantities of tet-b and of the acid (III) were separately dissolved in methanol and set aside to crystallize, exposed to the laboratory atmosphere, producing solvated (1). Analysis: found C 57.9, H 9.1, N 10.0%; C27H50N4O8 [(1)·2MeOH] requires C 58.0, H 9.0, N 10.0%; C25.78H47.36N4O7.90 [(1)·0.78MeOH·1.16H2O] requires C 57.4, H 8.8, N 10.4%. Crystals just adequate for single-crystal X-ray diffraction were selected directly from the analytical sample.

Refinement top

Compound (1) is monoclinic and space group P21/n was uniquely determined from the systematic absences. The crystal quality was poor and several crystals were used during data collection: two complete data sets were collected at 150 K and that employed here was marginally the better: both sets had rather high merging R factors. It was apparent at an early stage of refinement that the cation was disordered over two sites but that the two orientations had essentially the same conformation; the site-occupation factors (s.o.f.'s) for the major and minor forms of the cations refined to 0.839 (3) and 0.161 (3), respectively. The minor component was refined isotropically, with a common isotropic displacement parameter for the N atoms, a second parameter for all the ring C atoms and a third for the methyl C atoms. In addition to the ionic components, two partial methanol molecules were located: one had an s.o.f. of 0.700 (7) and all its H atoms were located from difference maps; the other had an s.o.f. of 0.084 (4), but its H atoms could not be located. There were also three partial water molecules present: the O atoms for two of them, O61 and O62 were very close together and their s.o.f.'s [0.896 (6) and 0.104 (6)] were constrained to sum to unity, while the s.o.f. of the third, O71, refined to 0.116 (5). Despite extensive searches, no water H atoms could be found, even for O61. The carboxyl H atoms in the anion occupied two sites, with equal occupancy: H222 was located at a normal distance from O22 and was treated as riding with O—H = 0.85 Å, but the other, H223, was clearly more distant from O23 and was treated as riding with O—H = 1.10 Å. All other identified H atoms were treated as riding, with N—H = 0.92 Å and C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The major ionic components of adduct (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The major (N11, N14, N18 and N111) and minor (N31, N34, N38 and N311) orientations of the cation. C and N atoms are depicted as spheres of arbitrary radii, and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the crystal structure of (1) showing the anion chains parallel to [100] linked into (001) sheets by the cations. Atoms marked with an asterisk (*), hash (#), dollar ($) or at (@) sign are at the symmetry positions (1 - x, 1 - y, -z), (2 - x, 1 - y, -z), (-1 + x, y, z) and (1 - x, -y, -z), respectively.
Racemic 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane– 1,3,5-benzenetricarboxylic acid–methanol–water (1/1/0.78/1.12) top
Crystal data top
C16H38N4+·C9H4O6·0.78CH4O·1.12H2OF(000) = 1167
Mr = 539.80Dx = 1.206 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.8921 (9) ÅCell parameters from 33988 reflections
b = 15.3390 (6) Åθ = 2.6–25.0°
c = 14.0209 (8) ŵ = 0.09 mm1
β = 95.666 (2)°T = 150 K
V = 2973.1 (3) Å3Needle, colourless
Z = 40.30 × 0.12 × 0.12 mm
Data collection top
KappaCCD
diffractometer
5228 independent reflections
Radiation source: fine-focus sealed X-ray tube3154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scans with κ offsetsθmax = 25°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 016
Tmin = 0.974, Tmax = 0.989k = 018
33988 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0984P)2 + 2.1918P]
where P = (Fo2 + 2Fc2)/3
5228 reflections(Δ/σ)max = 0.004
427 parametersΔρmax = 0.34 e Å3
49 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H38N4+·C9H4O6·0.78CH4O·1.12H2OV = 2973.1 (3) Å3
Mr = 539.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.8921 (9) ŵ = 0.09 mm1
b = 15.3390 (6) ÅT = 150 K
c = 14.0209 (8) Å0.30 × 0.12 × 0.12 mm
β = 95.666 (2)°
Data collection top
KappaCCD
diffractometer
5228 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3154 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.989Rint = 0.051
33988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07749 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 0.99Δρmax = 0.34 e Å3
5228 reflectionsΔρmin = 0.21 e Å3
427 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G·C. & Holmes, K·C. (1966), Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.3034 (4)0.2973 (3)0.0939 (3)0.0280 (10)0.839 (3)
N140.2053 (6)0.2931 (4)0.0854 (4)0.0283 (10)0.839 (3)
N180.3818 (2)0.19378 (18)0.1071 (2)0.0268 (7)0.839 (3)
N1110.3386 (2)0.11235 (17)0.0844 (2)0.0242 (7)0.839 (3)
C120.2333 (3)0.3627 (3)0.0681 (3)0.0317 (11)0.839 (3)
C130.2387 (3)0.3740 (3)0.0385 (3)0.0320 (11)0.839 (3)
C150.2153 (4)0.2909 (3)0.1950 (4)0.0389 (13)0.839 (3)
C160.3222 (3)0.2829 (3)0.2336 (3)0.0422 (11)0.839 (3)
C170.3786 (3)0.2004 (3)0.2111 (3)0.0390 (10)0.839 (3)
C190.4285 (3)0.1143 (2)0.0748 (3)0.0289 (9)0.839 (3)
C1100.4362 (3)0.1173 (2)0.0308 (3)0.0263 (9)0.839 (3)
C1120.3305 (3)0.1226 (2)0.1927 (3)0.0287 (9)0.839 (3)
C1130.3700 (4)0.2118 (4)0.2206 (5)0.0357 (13)0.839 (3)
C1140.3150 (3)0.2927 (3)0.1961 (3)0.0368 (12)0.839 (3)
C1150.1728 (5)0.3751 (4)0.2318 (5)0.0619 (19)0.839 (3)
C1160.1570 (4)0.2122 (4)0.2226 (5)0.0600 (18)0.839 (3)
C1170.4798 (4)0.2040 (4)0.2679 (4)0.0704 (16)0.839 (3)
C1180.3877 (3)0.0496 (2)0.2352 (3)0.0414 (11)0.839 (3)
C1190.2229 (3)0.1125 (3)0.2251 (3)0.0442 (11)0.839 (3)
C1200.3662 (4)0.3733 (3)0.2319 (4)0.0525 (15)0.839 (3)
O210.49535 (17)0.33758 (14)0.0148 (2)0.0551 (8)
O220.57725 (17)0.46070 (14)0.0017 (2)0.0552 (8)
O230.92390 (16)0.45964 (13)0.0060 (2)0.0501 (7)
O241.00990 (17)0.33809 (14)0.0230 (2)0.0525 (8)
O250.82406 (19)0.05433 (15)0.0089 (2)0.0628 (9)
O260.67795 (18)0.05799 (14)0.0419 (2)0.0524 (8)
C210.6654 (2)0.32963 (18)0.0083 (2)0.0262 (8)
C220.7517 (2)0.37366 (18)0.0030 (2)0.0272 (7)
C230.8387 (2)0.32868 (18)0.0054 (2)0.0269 (7)
C240.8383 (2)0.23831 (18)0.0081 (2)0.0299 (8)
C250.7523 (2)0.19262 (19)0.0124 (2)0.0292 (8)
C260.6675 (2)0.2395 (2)0.0145 (2)0.0325 (8)
C270.5710 (2)0.3779 (2)0.0080 (3)0.0362 (9)
C280.9329 (2)0.3775 (2)0.0071 (3)0.0341 (8)
C290.7514 (3)0.0940 (2)0.0155 (3)0.0386 (9)
N310.1186 (14)0.1906 (12)0.1054 (11)0.057 (4)*0.161 (3)
N340.1624 (13)0.1102 (13)0.0848 (12)0.057 (4)*0.161 (3)
N380.201 (4)0.299 (3)0.099 (3)0.057 (4)*0.161 (3)
N3110.292 (3)0.291 (2)0.0828 (19)0.057 (4)*0.161 (3)
C320.0686 (19)0.1133 (15)0.0731 (15)0.055 (3)*0.161 (3)
C330.0633 (15)0.1176 (16)0.0332 (14)0.055 (3)*0.161 (3)
C350.1713 (14)0.1214 (12)0.1944 (13)0.055 (3)*0.161 (3)
C360.125 (2)0.2099 (14)0.215 (3)0.055 (3)*0.161 (3)
C370.189 (3)0.2900 (17)0.201 (3)0.055 (3)*0.161 (3)
C390.266 (2)0.366 (2)0.0683 (18)0.055 (3)*0.161 (3)
C3100.259 (3)0.374 (2)0.0388 (18)0.055 (3)*0.161 (3)
C3120.2852 (17)0.287 (2)0.192 (2)0.055 (3)*0.161 (3)
C3130.1799 (14)0.2765 (13)0.2321 (16)0.055 (3)*0.161 (3)
C3140.1246 (14)0.1962 (14)0.2094 (13)0.055 (3)*0.161 (3)
C3150.1145 (18)0.0456 (14)0.2365 (18)0.068 (4)*0.161 (3)
C3160.2816 (14)0.1089 (17)0.2261 (18)0.068 (4)*0.161 (3)
C3170.147 (3)0.369 (2)0.249 (3)0.068 (4)*0.161 (3)
C3180.327 (2)0.371 (2)0.230 (3)0.068 (4)*0.161 (3)
C3190.349 (3)0.210 (3)0.216 (4)0.068 (4)*0.161 (3)
C3200.0245 (15)0.2054 (18)0.2677 (17)0.068 (4)*0.161 (3)
O410.9674 (2)0.0962 (2)0.1109 (3)0.0442 (12)0.700 (7)
C420.9740 (4)0.0247 (3)0.1733 (4)0.0564 (18)0.700 (7)
O510.530 (2)0.0951 (15)0.1172 (18)0.040*0.084 (4)
C520.527 (3)0.021 (2)0.179 (3)0.040*0.084 (4)
O610.8520 (2)0.12430 (16)0.0022 (2)0.0486 (10)0.896 (6)
O620.927 (2)0.1209 (16)0.028 (2)0.048*0.104 (6)
O710.6442 (15)0.1252 (12)0.0073 (15)0.040*0.116 (5)
H11A0.36250.30960.06110.034*0.839 (3)
H14E0.23920.24660.06420.034*0.839 (3)
H14F0.14120.28460.06430.034*0.839 (3)
H18A0.41430.24150.08670.032*0.839 (3)
H11C0.30070.15470.06040.029*0.839 (3)
H11D0.31210.05930.07100.029*0.839 (3)
H2A0.16720.34420.09270.038*0.839 (3)
H2B0.24680.41910.09830.038*0.839 (3)
H3A0.30620.38710.06390.038*0.839 (3)
H3B0.19770.42380.05400.038*0.839 (3)
H6A0.32600.28870.30420.051*0.839 (3)
H6B0.35670.33340.20930.051*0.839 (3)
H70.34330.14850.23320.047*0.839 (3)
H9A0.39020.06260.09030.035*0.839 (3)
H9B0.49390.10860.10930.035*0.839 (3)
H10A0.46830.17210.04730.032*0.839 (3)
H10B0.47620.06790.04950.032*0.839 (3)
H13A0.43700.21720.18970.043*0.839 (3)
H13B0.37390.21170.29070.043*0.839 (3)
H140.24900.28970.23160.044*0.839 (3)
H51A0.10660.38270.20200.093*0.839 (3)
H51B0.21250.42470.21550.093*0.839 (3)
H51C0.17230.37170.30160.093*0.839 (3)
H52A0.15800.20940.29250.090*0.839 (3)
H52B0.18560.15880.19920.090*0.839 (3)
H52C0.09010.21770.19390.090*0.839 (3)
H71A0.51480.14990.25750.106*0.839 (3)
H71B0.47260.21060.33640.106*0.839 (3)
H71C0.51590.25370.24590.106*0.839 (3)
H12D0.37130.04740.30470.062*0.839 (3)
H12E0.37140.00620.20690.062*0.839 (3)
H12F0.45710.06070.22120.062*0.839 (3)
H12A0.18560.15220.18820.066*0.839 (3)
H12B0.20300.05230.21440.066*0.839 (3)
H12C0.21110.12640.29350.066*0.839 (3)
H14A0.32830.42560.22090.079*0.839 (3)
H14B0.37240.36720.30060.079*0.839 (3)
H14C0.43070.37850.19710.079*0.839 (3)
H2220.52160.48320.00380.083*0.50
H2230.99570.49050.00320.075*0.50
H220.75150.43540.00240.033*
H240.89740.20730.00710.036*
H260.60900.20890.02050.039*
H31A0.08730.23950.08630.069*0.161 (3)
H34A0.20110.15130.05990.069*0.161 (3)
H34B0.18680.05630.07140.069*0.161 (3)
H38A0.14050.30860.06730.069*0.161 (3)
H31C0.25530.24560.06210.069*0.161 (3)
H31D0.35480.28100.05940.069*0.161 (3)
H32A0.10390.06010.08920.066*0.161 (3)
H32B0.00250.11040.10640.066*0.161 (3)
H33A0.03360.17350.05000.066*0.161 (3)
H33B0.02220.06960.05320.066*0.161 (3)
H36A0.06450.21600.17250.066*0.161 (3)
H36B0.10830.20960.28190.066*0.161 (3)
H370.25450.27830.23540.066*0.161 (3)
H39A0.33330.35160.09270.066*0.161 (3)
H39B0.24950.42280.09620.066*0.161 (3)
H31E0.29930.42290.05710.066*0.161 (3)
H31F0.19080.38610.06370.066*0.161 (3)
H31G0.14390.32740.21060.066*0.161 (3)
H31H0.17780.28050.30270.066*0.161 (3)
H3140.15830.14340.23150.066*0.161 (3)
H31I0.14890.00940.22910.102*0.161 (3)
H31J0.04960.04190.20230.102*0.161 (3)
H31K0.10920.05640.30470.102*0.161 (3)
H31L0.30210.05130.20570.102*0.161 (3)
H31M0.29300.11350.29600.102*0.161 (3)
H31N0.31860.15400.19640.102*0.161 (3)
H31O0.19070.41890.24650.102*0.161 (3)
H31P0.13850.35540.31590.102*0.161 (3)
H31Q0.08380.38390.21490.102*0.161 (3)
H31R0.39520.37680.20570.102*0.161 (3)
H31S0.29090.42170.20950.102*0.161 (3)
H31T0.32150.36950.30060.102*0.161 (3)
H31U0.41550.22070.18920.102*0.161 (3)
H31V0.34620.20360.28540.102*0.161 (3)
H31W0.32470.15680.18770.102*0.161 (3)
H32C0.01650.15590.25390.102*0.161 (3)
H32D0.03270.20650.33630.102*0.161 (3)
H32E0.00620.25970.24980.102*0.161 (3)
H410.92430.08640.07430.066*0.700 (7)
H42A1.01960.03860.22020.085*0.700 (7)
H42B0.91020.01260.20690.085*0.700 (7)
H42C0.99690.02660.13620.085*0.700 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.030 (2)0.0212 (18)0.033 (2)0.0011 (15)0.0034 (16)0.0037 (14)
N140.024 (2)0.0273 (19)0.034 (3)0.0017 (15)0.0027 (18)0.0034 (16)
N180.0270 (18)0.0260 (16)0.0273 (19)0.0010 (13)0.0020 (13)0.0004 (12)
N1110.0191 (17)0.0146 (15)0.039 (2)0.0030 (12)0.0010 (14)0.0006 (12)
C120.031 (3)0.024 (2)0.040 (3)0.0032 (18)0.004 (2)0.0049 (18)
C130.027 (3)0.022 (2)0.047 (3)0.0003 (17)0.003 (2)0.0021 (19)
C150.041 (4)0.050 (3)0.027 (3)0.006 (2)0.008 (2)0.0010 (18)
C160.046 (3)0.051 (3)0.028 (2)0.009 (2)0.001 (2)0.0065 (19)
C170.041 (3)0.046 (2)0.030 (2)0.009 (2)0.0012 (19)0.0043 (18)
C190.026 (2)0.0195 (19)0.040 (2)0.0016 (15)0.0049 (17)0.0020 (16)
C1100.019 (2)0.022 (2)0.037 (2)0.0001 (15)0.0028 (17)0.0010 (15)
C1120.037 (2)0.023 (2)0.026 (2)0.0024 (16)0.0031 (17)0.0039 (15)
C1130.047 (3)0.030 (2)0.032 (2)0.002 (2)0.013 (2)0.0054 (17)
C1140.049 (3)0.026 (2)0.036 (3)0.000 (2)0.005 (2)0.0075 (17)
C1150.063 (5)0.083 (4)0.040 (4)0.025 (3)0.014 (3)0.013 (3)
C1160.059 (4)0.078 (4)0.045 (3)0.011 (3)0.013 (3)0.010 (2)
C1170.066 (4)0.090 (4)0.051 (3)0.031 (3)0.012 (3)0.015 (3)
C1180.053 (3)0.034 (2)0.039 (3)0.000 (2)0.013 (2)0.0022 (18)
C1190.050 (3)0.041 (2)0.039 (3)0.001 (2)0.004 (2)0.0048 (19)
C1200.078 (4)0.035 (2)0.047 (3)0.001 (3)0.021 (3)0.012 (2)
O210.0226 (14)0.0342 (14)0.109 (2)0.0042 (11)0.0118 (14)0.0078 (13)
O220.0205 (14)0.0245 (14)0.122 (2)0.0015 (10)0.0122 (15)0.0074 (13)
O230.0211 (14)0.0218 (13)0.108 (2)0.0025 (10)0.0074 (14)0.0085 (12)
O240.0238 (14)0.0293 (14)0.105 (2)0.0010 (11)0.0095 (13)0.0021 (13)
O250.0437 (18)0.0247 (14)0.124 (3)0.0006 (12)0.0283 (17)0.0064 (14)
O260.0401 (16)0.0224 (13)0.096 (2)0.0072 (11)0.0133 (14)0.0088 (12)
C210.0222 (18)0.0182 (16)0.038 (2)0.0008 (12)0.0018 (14)0.0003 (12)
C220.0265 (17)0.0186 (15)0.0371 (19)0.0011 (14)0.0055 (14)0.0021 (13)
C230.0222 (18)0.0215 (17)0.038 (2)0.0029 (13)0.0067 (14)0.0008 (13)
C240.0231 (19)0.0227 (17)0.045 (2)0.0011 (13)0.0087 (15)0.0016 (14)
C250.0288 (19)0.0207 (16)0.038 (2)0.0042 (14)0.0056 (15)0.0007 (13)
C260.0225 (19)0.0304 (19)0.046 (2)0.0059 (14)0.0086 (15)0.0000 (14)
C270.0209 (19)0.0271 (19)0.061 (2)0.0036 (14)0.0058 (16)0.0040 (15)
C280.0221 (19)0.0253 (19)0.056 (2)0.0002 (14)0.0112 (16)0.0045 (15)
C290.030 (2)0.0262 (18)0.060 (3)0.0035 (16)0.0075 (18)0.0018 (16)
O410.032 (2)0.037 (2)0.064 (3)0.0001 (15)0.0119 (17)0.0069 (17)
C420.049 (4)0.048 (3)0.075 (4)0.004 (3)0.019 (3)0.012 (3)
O610.044 (2)0.0392 (16)0.064 (2)0.0071 (13)0.0124 (16)0.0055 (13)
Geometric parameters (Å, º) top
N11—C121.467 (5)C23—C281.506 (4)
N11—C1141.460 (5)C24—C251.391 (4)
N11—H11A0.92C24—H240.95
N14—C131.499 (6)C25—C261.383 (4)
N14—C151.530 (6)C25—C291.513 (4)
N14—H14E0.92C26—H260.95
N14—H14F0.92N31—C321.468 (17)
N18—C171.467 (5)N31—C3141.471 (17)
N18—C191.473 (4)N31—H31A0.92
N18—H18A0.92N34—C331.495 (17)
N111—C1101.487 (4)N34—C351.539 (17)
N111—C1121.520 (5)N34—H34A0.92
N111—H11C0.92N34—H34B0.92
N111—H11D0.92N38—C371.47 (2)
C12—C131.499 (6)N38—C391.47 (2)
C12—H2A0.99N38—H38A0.92
C12—H2B0.99N311—C3101.50 (2)
C13—H3A0.99N311—C3121.524 (19)
C13—H3B0.99N311—H31C0.92
C15—C161.534 (7)N311—H31D0.92
C15—C1151.530 (6)C32—C331.500 (18)
C15—C1161.525 (6)C32—H32A0.99
C16—C171.537 (5)C32—H32B0.99
C16—H6A0.99C33—H33A0.99
C16—H6B0.99C33—H33B0.99
C17—C1171.547 (6)C35—C361.539 (18)
C17—H71.00C35—C3151.555 (17)
C19—C1101.496 (5)C35—C3161.564 (17)
C19—H9A0.99C36—C371.538 (19)
C19—H9B0.99C36—H36A0.99
C110—H10A0.99C36—H36B0.99
C110—H10B0.99C37—C3171.53 (2)
C112—C1131.539 (7)C37—H371.00
C112—C1181.528 (5)C39—C3101.501 (19)
C112—C1191.526 (5)C39—H39A0.99
C113—C1141.515 (6)C39—H39B0.99
C113—H13A0.99C310—H31E0.99
C113—H13B0.99C310—H31F0.99
C114—C1201.535 (6)C312—C3131.524 (19)
C114—H141.00C312—C3181.533 (19)
C115—H51A0.98C312—C3191.534 (19)
C115—H51B0.98C313—C3141.503 (17)
C115—H51C0.98C313—H31G0.99
C116—H52A0.98C313—H31H0.99
C116—H52B0.98C314—C3201.549 (18)
C116—H52C0.98C314—H3141.00
C117—H71A0.98C315—H31I0.98
C117—H71B0.98C315—H31J0.98
C117—H71C0.98C315—H31K0.98
C118—H12D0.98C316—H31L0.98
C118—H12E0.98C316—H31M0.98
C118—H12F0.98C316—H31N0.98
C119—H12A0.98C317—H31O0.98
C119—H12B0.98C317—H31P0.98
C119—H12C0.98C317—H31Q0.98
C120—H14A0.98C318—H31R0.98
C120—H14B0.98C318—H31S0.98
C120—H14C0.98C318—H31T0.98
O21—C271.231 (4)C319—H31U0.98
O22—C271.276 (4)C319—H31V0.98
O22—H2220.85C319—H31W0.98
O23—C281.278 (4)C320—H32C0.98
O23—H2231.10C320—H32D0.98
O24—C281.230 (4)C320—H32E0.98
O25—C291.255 (4)O41—C421.411 (6)
O26—C291.248 (4)O41—H410.84
C21—C221.385 (4)C42—H42A0.98
C21—C261.386 (4)C42—H42B0.98
C21—C271.506 (4)C42—H42C0.98
C22—C231.388 (4)O51—C521.439 (10)
C22—H220.95O61—O621.08 (3)
C23—C241.387 (4)
C114—N11—C12114.5 (4)C26—C25—C29120.6 (3)
C114—N11—H11A108.6C24—C25—C29121.0 (3)
C12—N11—H11A108.6C25—C26—C21122.0 (3)
C13—N14—C15117.2 (4)C25—C26—H26119.0
C13—N14—H14E108.0C21—C26—H26119.0
C15—N14—H14E108.0O21—C27—O22124.8 (3)
C13—N14—H14F108.0O21—C27—C21120.1 (3)
C15—N14—H14F108.0O22—C27—C21115.1 (3)
H14E—N14—H14F107.2O24—C28—O23125.5 (3)
C17—N18—C19114.9 (3)O24—C28—C23119.9 (3)
C17—N18—H18A108.6O23—C28—C23114.6 (3)
C19—N18—H18A108.6O26—C29—O25124.7 (3)
C110—N111—C112118.3 (3)O26—C29—C25117.4 (3)
C110—N111—H11C107.7O25—C29—C25117.8 (3)
C112—N111—H11C107.7C32—N31—C314115.3 (15)
C110—N111—H11D107.7C32—N31—H31A108.4
C112—N111—H11D107.7C314—N31—H31A108.4
H11C—N111—H11D107.1C33—N34—C35117.0 (15)
N11—C12—C13110.8 (3)C33—N34—H34A108.0
N11—C12—H2A109.5C35—N34—H34A108.0
C13—C12—H2A109.5C33—N34—H34B108.0
N11—C12—H2B109.5C35—N34—H34B108.0
C13—C12—H2B109.5H34A—N34—H34B107.3
H2A—C12—H2B108.1C37—N38—C39119 (3)
N14—C13—C12110.8 (3)C37—N38—H38A107.6
N14—C13—H3A109.5C39—N38—H38A107.6
C12—C13—H3A109.5C310—N311—C312117 (2)
N14—C13—H3B109.5C310—N311—H31C108.1
C12—C13—H3B109.5C312—N311—H31C108.1
H3A—C13—H3B108.1C310—N311—H31D108.1
C116—C15—N14105.9 (4)C312—N311—H31D108.1
C116—C15—C115110.5 (4)H31C—N311—H31D107.3
N14—C15—C115108.7 (4)N31—C32—C33110.0 (17)
C116—C15—C16111.5 (4)N31—C32—H32A109.7
N14—C15—C16110.2 (4)C33—C32—H32A109.7
C115—C15—C16109.9 (5)N31—C32—H32B109.7
C15—C16—C17119.3 (4)C33—C32—H32B109.7
C15—C16—H6A107.5H32A—C32—H32B108.2
C17—C16—H6A107.5N34—C33—C32110.1 (17)
C15—C16—H6B107.5N34—C33—H33A109.6
C17—C16—H6B107.5C32—C33—H33A109.6
H6A—C16—H6B107.0N34—C33—H33B109.6
N18—C17—C16109.1 (3)C32—C33—H33B109.6
N18—C17—C117113.5 (4)H33A—C33—H33B108.1
C16—C17—C117108.7 (3)N34—C35—C36107.0 (17)
N18—C17—H7108.5N34—C35—C315107.5 (15)
C16—C17—H7108.5C36—C35—C315110.7 (16)
C117—C17—H7108.5N34—C35—C316104.5 (15)
N18—C19—C110110.8 (3)C36—C35—C316117.9 (17)
N18—C19—H9A109.5C315—C35—C316108.6 (16)
C110—C19—H9A109.5C37—C36—C35115.2 (19)
N18—C19—H9B109.5C37—C36—H36A108.5
C110—C19—H9B109.5C35—C36—H36A108.5
H9A—C19—H9B108.1C37—C36—H36B108.5
N111—C110—C19110.4 (3)C35—C36—H36B108.5
N111—C110—H10A109.6H36A—C36—H36B107.5
C19—C110—H10A109.6N38—C37—C317116 (3)
N111—C110—H10B109.6N38—C37—C36108 (2)
C19—C110—H10B109.6C317—C37—C36109 (2)
H10A—C110—H10B108.1N38—C37—H37107.7
N111—C112—C119105.1 (3)C317—C37—H37107.7
N111—C112—C118108.8 (3)C36—C37—H37107.7
C119—C112—C118109.9 (3)N38—C39—C310111 (2)
N111—C112—C113110.7 (3)N38—C39—H39A109.3
C119—C112—C113112.3 (3)C310—C39—H39A109.3
C118—C112—C113109.9 (3)N38—C39—H39B109.3
C114—C113—C112118.0 (4)C310—C39—H39B109.3
C114—C113—H13A107.8H39A—C39—H39B108.0
C112—C113—H13A107.8C39—C310—N311111 (2)
C114—C113—H13B107.8C39—C310—H31E109.5
C112—C113—H13B107.8N311—C310—H31E109.5
H13A—C113—H13B107.1C39—C310—H31F109.5
N11—C114—C113111.7 (4)N311—C310—H31F109.5
N11—C114—C120112.5 (4)H31E—C310—H31F108.1
C113—C114—C120108.9 (4)N311—C312—C313110 (2)
N11—C114—H14107.9N311—C312—C318110 (2)
C113—C114—H14107.9C313—C312—C318110 (2)
C120—C114—H14107.9N311—C312—C319106 (2)
C15—C115—H51A109.5C313—C312—C319113 (2)
C15—C115—H51B109.5C318—C312—C319109 (2)
H51A—C115—H51B109.5C314—C313—C312120.2 (17)
C15—C115—H51C109.5C314—C313—H31G107.3
H51A—C115—H51C109.5C312—C313—H31G107.3
H51B—C115—H51C109.5C314—C313—H31H107.3
C15—C116—H52A109.5C312—C313—H31H107.3
C15—C116—H52B109.5H31G—C313—H31H106.9
H52A—C116—H52B109.5N31—C314—C313109.7 (15)
C15—C116—H52C109.5N31—C314—C320113.1 (17)
H52A—C116—H52C109.5C313—C314—C320105.3 (16)
H52B—C116—H52C109.5N31—C314—H314109.5
C17—C117—H71A109.5C313—C314—H314109.5
C17—C117—H71B109.5C320—C314—H314109.5
H71A—C117—H71B109.5C35—C315—H31I109.5
C17—C117—H71C109.5C35—C315—H31J109.5
H71A—C117—H71C109.5H31I—C315—H31J109.5
H71B—C117—H71C109.5C35—C315—H31K109.5
C112—C118—H12D109.5H31I—C315—H31K109.5
C112—C118—H12E109.5H31J—C315—H31K109.5
H12D—C118—H12E109.5C35—C316—H31L109.5
C112—C118—H12F109.5C35—C316—H31M109.5
H12D—C118—H12F109.5H31L—C316—H31M109.5
H12E—C118—H12F109.5C35—C316—H31N109.5
C112—C119—H12A109.5H31L—C316—H31N109.5
C112—C119—H12B109.5H31M—C316—H31N109.5
H12A—C119—H12B109.5C37—C317—H31O109.5
C112—C119—H12C109.5C37—C317—H31P109.5
H12A—C119—H12C109.5H31O—C317—H31P109.5
H12B—C119—H12C109.5C37—C317—H31Q109.5
C114—C120—H14A109.5H31O—C317—H31Q109.5
C114—C120—H14B109.5H31P—C317—H31Q109.5
H14A—C120—H14B109.5C312—C318—H31R109.5
C114—C120—H14C109.5C312—C318—H31S109.5
H14A—C120—H14C109.5H31R—C318—H31S109.5
H14B—C120—H14C109.5C312—C318—H31T109.5
C27—O22—H222109.5H31R—C318—H31T109.5
C28—O23—H223109.5H31S—C318—H31T109.5
C22—C21—C26118.5 (3)C312—C319—H31U109.5
C22—C21—C27121.2 (3)C312—C319—H31V109.5
C26—C21—C27120.3 (3)H31U—C319—H31V109.5
C21—C22—C23120.8 (3)C312—C319—H31W109.5
C21—C22—H22119.6H31U—C319—H31W109.5
C23—C22—H22119.6H31V—C319—H31W109.5
C24—C23—C22119.5 (3)C314—C320—H32C109.5
C24—C23—C28120.1 (3)C314—C320—H32D109.5
C22—C23—C28120.4 (3)H32C—C320—H32D109.5
C23—C24—C25120.7 (3)C314—C320—H32E109.5
C23—C24—H24119.7H32C—C320—H32E109.5
C25—C24—H24119.7H32D—C320—H32E109.5
C26—C25—C24118.4 (3)
N11—C12—C13—N1467.0 (5)C22—C21—C27—O21178.5 (3)
C12—C13—N14—C15174.4 (5)C26—C21—C27—O211.0 (5)
C13—N14—C15—C116168.0 (6)C22—C21—C27—O220.7 (5)
C13—N14—C15—C11549.2 (7)C26—C21—C27—O22179.8 (3)
C13—N14—C15—C1671.3 (7)C24—C23—C28—O249.1 (5)
C116—C15—C16—C1753.3 (5)C22—C23—C28—O238.4 (5)
N14—C15—C16—C1764.0 (5)C22—C23—C28—O24169.6 (3)
C115—C15—C16—C17176.2 (4)C24—C23—C28—O23172.9 (3)
C19—N18—C17—C11762.4 (4)C26—C25—C29—O2616.2 (5)
C15—C16—C17—N1862.5 (5)C24—C25—C29—O2516.9 (5)
C16—C17—N18—C19176.2 (3)C24—C25—C29—O26163.3 (3)
C15—C16—C17—C117173.3 (4)C26—C25—C29—O25163.6 (3)
C17—N18—C19—C110174.9 (3)C314—N31—C32—C33177.3 (18)
N18—C19—C110—N11167.6 (4)C35—N34—C33—C32174.8 (16)
C19—C110—N111—C112174.6 (3)N31—C32—C33—N3467 (3)
C110—N111—C112—C119178.8 (3)C33—N34—C35—C3655 (2)
C110—N111—C112—C11861.1 (4)C33—N34—C35—C31564 (2)
C110—N111—C112—C11359.8 (4)C33—N34—C35—C316179.2 (18)
N111—C112—C113—C11467.3 (6)N34—C35—C36—C3779 (3)
C119—C112—C113—C11449.7 (6)C315—C35—C36—C37164 (3)
C118—C112—C113—C114172.4 (5)C316—C35—C36—C3739 (3)
C12—N11—C114—C12070.0 (6)C39—N38—C37—C31762 (6)
C112—C113—C114—N1156.2 (6)C39—N38—C37—C36175 (4)
C113—C114—N11—C12167.2 (4)C35—C36—C37—N3868 (4)
C114—N11—C12—C13170.0 (4)C35—C36—C37—C317165 (3)
C112—C113—C114—C120179.0 (5)C37—N38—C39—C310172 (4)
C26—C21—C22—C231.0 (5)N38—C39—C310—N31164 (4)
C27—C21—C22—C23178.6 (3)C312—N311—C310—C39178 (3)
C21—C22—C23—C243.3 (5)C310—N311—C312—C31375 (4)
C21—C22—C23—C28175.4 (3)C310—N311—C312—C31847 (4)
C22—C23—C24—C252.6 (5)C310—N311—C312—C319164 (3)
C28—C23—C24—C25176.1 (3)N311—C312—C313—C31463 (3)
C23—C24—C25—C260.5 (5)C318—C312—C313—C314176 (2)
C23—C24—C25—C29180.0 (3)C319—C312—C313—C31454 (3)
C24—C25—C26—C213.0 (5)C32—N31—C314—C313178.2 (19)
C29—C25—C26—C21177.6 (3)C32—N31—C314—C32064 (3)
C22—C21—C26—C252.2 (5)C312—C313—C314—N3162 (3)
C27—C21—C26—C25178.2 (3)C312—C313—C314—C320176 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14E···N180.922.172.878 (9)133
N111—H11C···N110.922.242.880 (5)126
N11—H11A···O210.922.083.002 (6)179
N14—H14F···O24i0.922.032.853 (9)148
N18—H18A···O210.922.163.071 (4)169
N111—H11D···O26ii0.921.852.695 (3)152
O22—H222···O22iii0.851.622.458 (4)171
O23—H223···O23iv1.101.352.442 (4)170
O41—H41···O250.841.812.643 (4)172
N34—H34A···N380.922.332.94 (4)124
N311—H31C···N310.922.112.84 (5)136
N31—H31A···O24i0.922.473.34 (2)158
N34—H34B···O25ii0.921.912.75 (2)152
N38—H38A···O24i0.921.912.82 (7)170
N311—H31D···O210.922.293.10 (4)147
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H38N4+·C9H4O6·0.78CH4O·1.12H2O
Mr539.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)13.8921 (9), 15.3390 (6), 14.0209 (8)
β (°) 95.666 (2)
V3)2973.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.12 × 0.12
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.974, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
33988, 5228, 3154
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.212, 0.99
No. of reflections5228
No. of parameters427
No. of restraints49
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.467 (5)N111—C1121.520 (5)
N11—C1141.460 (5)O21—C271.231 (4)
N14—C131.499 (6)O22—C271.276 (4)
N14—C151.530 (6)O23—C281.278 (4)
N18—C171.467 (5)O24—C281.230 (4)
N18—C191.473 (4)O25—C291.255 (4)
N111—C1101.487 (4)O26—C291.248 (4)
N11—C12—C13—N1467.0 (5)N111—C112—C113—C11467.3 (6)
C12—C13—N14—C15174.4 (5)C112—C113—C114—N1156.2 (6)
C13—N14—C15—C1671.3 (7)C113—C114—N11—C12167.2 (4)
N14—C15—C16—C1764.0 (5)C114—N11—C12—C13170.0 (4)
C15—C16—C17—N1862.5 (5)C22—C21—C27—O21178.5 (3)
C16—C17—N18—C19176.2 (3)C22—C21—C27—O220.7 (5)
C17—N18—C19—C110174.9 (3)C22—C23—C28—O238.4 (5)
N18—C19—C110—N11167.6 (4)C22—C23—C28—O24169.6 (3)
C19—C110—N111—C112174.6 (3)C24—C25—C29—O2516.9 (5)
C110—N111—C112—C11359.8 (4)C24—C25—C29—O26163.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14E···N180.922.172.878 (9)133
N111—H11C···N110.922.242.880 (5)126
N11—H11A···O210.922.083.002 (6)179
N14—H14F···O24i0.922.032.853 (9)148
N18—H18A···O210.922.163.071 (4)169
N111—H11D···O26ii0.921.852.695 (3)152
O22—H222···O22iii0.851.622.458 (4)171
O23—H223···O23iv1.101.352.442 (4)170
O41—H41···O250.841.812.643 (4)172
N34—H34A···N380.922.332.94 (4)124
N311—H31C···N310.922.112.84 (5)136
N31—H31A···O24i0.922.473.34 (2)158
N34—H34B···O25ii0.921.912.75 (2)152
N38—H38A···O24i0.921.912.82 (7)170
N311—H31D···O210.922.293.10 (4)147
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+2, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds