Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
4-Methyl-2-nitro­aniline, (I), C7H8N2O2, crystallizes with two mol­ecules in the asymmetric unit. The mol­ecules both form intramolecular N-H...O hydrogen bonds and they are linked into hydrogen-bonded C22(12) chains in which the two independent mol­ecules alternate. 4,5-Di­methyl-2-nitro­aniline, (II), C8H10N2O2, also has Z' = 2 and the two independent mol­ecules each form hydrogen-bonded C(6) chains. In 4-­methyl-3-nitro­aniline, (III), C7H8N2O2, there are four mol­ecules in the asymmetric unit. Molecules of two of these types are linked by N-H...O hydrogen bonds into molecular ladders containing R43(18) rings and the other two types independently form single C(7) chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100017984/sk1437sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017984/sk1437Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017984/sk1437IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100017984/sk1437IIIsup4.hkl
Contains datablock III

CCDC references: 160011; 160012; 160013

Comment top

The three isomers of nitroaniline, O2NC6H4NH2, exhibit markedly different patterns of supramolecular aggregation. Thus, in the 1,4-isomer [Cambridge Structural Database (CSD; Allen & Kennard, 1993) code NANILI02; Tonogaki et al., 1993], each molecule acts as a double donor and a double acceptor of N—H···O hydrogen bonds, and the molecules are thereby linked into (4,4) nets (Batten & Robson, 1998) in which the nodes are single molecules. The resulting sheets, built from a single type of R44(22) ring (Bernstein et al., 1995), are weakly linked by aromatic π···π stacking interactions.

Molecules of the 1,3-isomer (CSD code MNIANL01; Ploug-Sørensen & Andersen, 1986) also act as double donors and double acceptors but now the molecules are linked by equal numbers of N—H···O and N—H···N hydrogen bonds, with only one of the nitro O atoms involved. The molecules form (4,4) nets built from R44(18) rings, with no significant π···π stacking interactions between neighbouring sheets.

The 1,2-isomer (CSD code ONITAN; Dhaneshwar et al., 1978) crystallizes in space group P21/a with Z' = 2. Each of the independent molecules forms an intramolecular N—H···O hydrogen bond, generating an S(6) motif, and the molecules are linked by further N—H···O hydrogen bonds into continuous C22(12) chains in which the two independent molecules alternate. These chains run parallel to the [011] direction in the domain -0.34 < x < 0.34 and parallel to [011] in the domain 0.16 < x < 0.84, so that the entire structure is a criss-cross stack, with chains in alternate layers inclined to one another by ca 81°. As in the 1,3-isomer, there are no π···π stacking interactions between the chains.

In view of this wide disparity of structural types, it is of interest to investigate the supramolecular aggregation of C-methylated nitroanilines to determine the effects of substituents of modest steric bulk. We present here the structures of three such C-methylated nitroanilines, 4-methyl-2-nitroaniline, (I), 4,5-dimethyl-2-nitroaniline, (II) and 4-methyl-3-nitroaniline, (III). \sch

The crystals of (I) are triclinic, P1, with Z' = 2. In each of the independent molecules (Fig. 1) there is an intramolecular N—H···O hydrogen bond forming an S(6) motif, and the molecules are linked into C22(12) chains running parallel to the [001] direction, in which molecules of the two types alternate (Fig. 2), as in ONITAN. However, the chain-forming hydrogen bonds (Table 2) differ from those in ONITAN. While N11 at (x, y, z) acts as donor, via H12, to O22i [symmetry code: (i) x, y, z - 1], by contrast N21 acts as donor, via H22, to both O11 and O22 in an almost planar three-centre system, forming an R12(4) motif (Fig. 2). This asymmetric bifurcated type of hydrogen bond, although absent from the three isomers of nitroaniline, is, in fact, the commonest mode of hydrogen bonding to C-nitro groups (Allen et al., 1997). In addition, C16 at (x, y, z) acts as donor to O21i, forming a rather weak C—H···O hydrogen bond and so completing an R22(8) motif. Thus, there are alternating R12(4) and R22(8) rings embedded in the C22(12) chain (Fig. 2). In compound (I), all of the C22(12) chains are parallel with one another, in contrast with the criss-cross arrangement in ONITAN. Thus (I) differs from its unsubstituted analogue, 2-nitroaniline, both in the form of the hydrogen bonding and in the stacking of the resulting chains: there are no π···π stacking interactions in either compound. The CSD records a polymorph of (I) (CSD code TEHGUI; Ellena et al., 1996) crystallized from acetone [cf. (I) crystallized from ethanol]. This second form is monoclinic, C2/c, with Z = 8. Each molecule forms an intramolecular N—H···O hydrogen bond in the usual S(6) motif, and they are linked by a single type of unbifurcated N—H···O hydrogen bond into zig-zig C(6) chains along [001] generated by glide planes. These chains are weakly coupled into pairs by means of aromatic π···π stacking interactions.

The introduction of a second C-methyl group into 2-nitroaniline to give (II) generates a pattern of intermolecular aggregation different from that in (I). Each of the two independent molecules in (II) forms an intramolecular S(6) motif (Fig. 3) and each type of molecule separately forms C(6) chains built from N—H···O hydrogen bonds (Table 4). These chains are generated by translation and run parallel to [100] (Fig. 4). There is, in addition, a C—H···O hydrogen bond in one of the chains (Table 4) which reinforces the effect of the intermolecular N—H···O hydrogen bond by forming an R21(6) ring. The chains formed by the two independent molecules occupy different domains of z: that formed by molecule A (containing N11) lies in the domain 0.29 < z < 0.71, with the chain lying approximately along the line (x,1/4,1/2), while that formed by molecule B (containing N21) lies in the domain -0.21 < z < 0.21, approximately along the line (x,1/4,0). In addition, the chains of each type are weakly linked by aromatic π···π stacking interactions. For molecules of type A, the ring at (x, y, z) forms π···π interactions with those at (-x, 1 - y, 1 - z) [interplanar spacing 3.448 (3) Å and centroid offset 1.442 (3) Å] and at (1 - x, -y 1 - z) [interplanar spacing 3.407 (3) Å and centroid offset 1.739 (3) Å], so linking the neighbouring chains of A-type molecules into an (001) sheet. Similarly for molecules of type B, the ring at (x, y, z) is linked to those at (1 - x, 1 - y, -z) [interplanar spacing 3.405 (3) Å and centroid offset 1.323 (3) Å] and at (2 - x, -y, -z) [interplanar spacing 3.463 (3) Å and centroid offset 1.732 (3) Å], producing a similar sheet in the other domain of z. The overall `millefeuille' structure thus consists of alternating sheets of A and B molecules, each comprising hydrogen-bonded chains linked by π···π stacking interactions.

There are four independent molecules in 4-methyl-3-nitroaniline, (III), (Fig. 5), conveniently characterized as types n = 1–4, where type n contains atom Nn1. Molecules of types 1, 2 and 3 act as single donors of N—H···O hydrogen bonds, and molecules of types 1, 3 and 4 act as single acceptors. Type 4 molecules are double donors and type 2 molecules are double acceptors (Table 6). Each type of molecule forms, by translation, a C(7) chain containing a single type of N—H···O hydrogen bond and running parallel to the [010] direction. There are thus eight chains passing through each unit cell. There are chains aligned approximately along (0.57, y, 0.31) and (0.07, y, 0.19) comprising molecules of types 1 and 2, respectively, in which the N—H···O hydrogen bonds are directed along the positive and negative directions of b, respectively (Table 6), and a similar pair containing molecules of types 3 and 4 aligned approximately along (0.17, y, 0.43) and (0.67, y, 0.07). In addition, there is a further set of four chains generated from the first set by the centres of inversion. The chains built of type 2 and type 4 molecules are linked in pairs by a further N—H···O hydrogen bond: N41 at (x, y, z) acts as donor, via H41A, to O21v [symmetry code: (v) 1 - x, 1 - y, -z], while N41v similarly acts as donor to O21 at (x, y, z). Hence molecules of types 2 and 4 form a molecular ladder built of R43(18) rings (Fig. 6). The molecules of types 1 and 3, on the other hand, form isolated single chains of the type C(7). The CSD records a monoclinic polymorph of (III) (CSD code ZZZJIQ; Nigam & Murty, 1965), space group A2/a or Aa, whose cell dimensions are consistent with Z = 8. However, atomic coordinates were not determined and the crystallization solvent was not recorded.

Compound (IV) (CSD code TIXQUM01; Ellena et al., 1999) differs from (III) only in the location of its methyl group. Compound (IV) crystallizes in space group P21/n with Z' = 1, and each molecule acts as a double donor and a double acceptor of N—H···O hydrogen bonds. The structure generated by these interactions comprises continuous sheets built from centrosymmetric R22(14) and R66(26) rings (Fig. 7) arranged in a chessboard fashion. The elegance and simplicity of this structure formed by N—H···O hydrogen bonds is unfortunately obscured in the original report by the inclusion of a large number of very weak C—H.·O interactions, some of doubtful significance.

Compound (V) (CSD code BAJCIY; Lipscomb et al., 1981) differs from (IV) only in the location of the nitro group. The crystals are monoclinic, space group Cc, but no atomic coordinates are recorded either in the original report or in the CSD.

Isomeric with (II) is the N-methyl compound (VI) (CSD code MNOMAN10; Chiaroni, 1971), in which the N-methyl group is cisoid to the nitro group. The molecules are linked by a single N—H···O hydrogen bond into C(7) chains generated by translation (Fig. 8).

In both (I) and (II) the C—C bond distances in the aryl rings (Tables 1 and 3) show marked quinonoid bond fixation, which is absent in (III). Moreover, both the C—NH2 and C—NO2 bond lengths in (I) and (II) are significantly shorter than the corresponding bonds in (III), whereas the N—O distances in (I) and (II) are significantly longer than those in (III) (Table 5). Thus, the canonical form (VIIa) is a much more significant contributor in both (I) and (II) than in (III), which is itself better represented by (VIIb).

Related literature top

For related literature, see: Allen & Kennard (1993); Allen et al. (1997); Batten & Robson (1998); Bernstein et al. (1995); Chiaroni (1971); Dhaneshwar et al. (1978); Ellena et al. (1996, 1999); Lipscomb et al. (1981); Nigam & Murty (1965); Ploug-Sørensen & Andersen (1986); Spek (2000); Tonogaki et al. (1993).

Experimental top

Samples of compounds (I)-(III) were obtained from Aldrich. Crystals suitable for single-crystal X-ray diffraction were grown from solutions in ethanol.

Refinement top

Compounds (I)-(III) are all triclinic at 150 K; for each, the space group P1 was assumed and confirmed by the analysis. H atoms were treated as riding, with C—H 0.95 Å (aromatic) or 0.98 Å (methyl), and N—H 0.88 Å. For compound (I), it was evident that the methyl groups exhibited rotational disorder, and they were modelled using six half-occupancy sites, offset from one another by 60° rotations. Examination of the structures with PLATON (Spek, 2000) showed that there were no solvent-accessible voids.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules in (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing formation of a C22(12) chain parallel to [001] [symmetry code: (i) x, y, z - 1].
[Figure 3] Fig. 3. The two independent molecules in (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the two independent chains parallel to [100] [symmetry code: (ii) x - 1, y, z].
[Figure 5] Fig. 5. The four independent molecules in (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 6] Fig. 6. Part of the crystal structure of (III), showing formation of a molecular ladder of R43(18) rings parallel to [010] and containing molecules of types 2 and 4. The unit-cell box is omitted for the sake of clarity [symmetry codes: (iv) x, y - 1, z; (v) 1 - x, 1 - y, -z].
[Figure 7] Fig. 7. Part of the crystal structure of (IV), showing the formation of the R22(14) and R66(26) rings which generate the chessboard pattern. For the sake of clarity, H atoms bonded to C have been omitted [symmetry codes: (vi) 1/2 + x, 1/2 - y, z - 1/2; (vii) 2 - x, 1 - y, 1 - z].
[Figure 8] Fig. 8. Part of the crystal structure of (VI) showing the formation of a C(7) chain [symmetry code: (viii) 1 + x, y, z)]
(I) 4-Methyl-2-nitroaniline top
Crystal data top
C7H8N2O2Z = 4
Mr = 152.15F(000) = 320
Triclinic, P1Dx = 1.422 Mg m3
a = 7.8329 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.990 (2) ÅCell parameters from 11810 reflections
c = 12.369 (3) Åθ = 3.0–26.5°
α = 79.766 (17)°µ = 0.11 mm1
β = 81.257 (19)°T = 150 K
γ = 69.646 (8)°Block, red
V = 710.8 (3) Å30.10 × 0.05 × 0.05 mm
Data collection top
KappaCCD
diffractometer
2849 independent reflections
Radiation source: fine-focus sealed X-ray tube988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ scans and ω scans with κ offsetsθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 98
Tmin = 0.989, Tmax = 0.995k = 810
22499 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max = 0.016
201 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C7H8N2O2γ = 69.646 (8)°
Mr = 152.15V = 710.8 (3) Å3
Triclinic, P1Z = 4
a = 7.8329 (15) ÅMo Kα radiation
b = 7.990 (2) ŵ = 0.11 mm1
c = 12.369 (3) ÅT = 150 K
α = 79.766 (17)°0.10 × 0.05 × 0.05 mm
β = 81.257 (19)°
Data collection top
KappaCCD
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
988 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.995Rint = 0.014
22499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.83Δρmax = 0.23 e Å3
2849 reflectionsΔρmin = 0.28 e Å3
201 parameters
Special details top

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.5024 (5)0.7393 (5)0.1528 (3)0.0377 (10)
N110.3515 (4)0.8855 (4)0.1645 (2)0.0500 (10)
C120.5877 (5)0.6730 (5)0.0541 (3)0.0341 (10)
N120.5215 (5)0.7586 (4)0.0417 (3)0.0431 (9)
O110.3786 (4)0.8923 (4)0.0435 (2)0.0488 (8)
O120.6058 (4)0.6990 (4)0.1257 (2)0.0563 (9)
C130.7437 (5)0.5176 (5)0.0483 (3)0.0384 (10)
C140.8159 (5)0.4226 (5)0.1342 (3)0.0426 (11)
C1410.9803 (6)0.2544 (5)0.1284 (3)0.0568 (13)
C150.7272 (6)0.4917 (5)0.2330 (3)0.0466 (11)
C160.5794 (6)0.6414 (5)0.2416 (3)0.0443 (11)
N210.3364 (5)0.9081 (4)0.3057 (3)0.0555 (11)
C210.1956 (6)1.0524 (5)0.3327 (3)0.0415 (11)
C220.1502 (5)1.1104 (5)0.4374 (3)0.0346 (10)
N220.2575 (5)1.0122 (4)0.5270 (3)0.0443 (9)
O210.3909 (4)0.8738 (4)0.5130 (2)0.0529 (8)
O220.2122 (4)1.0671 (4)0.6182 (2)0.0571 (9)
C230.0009 (5)1.2626 (5)0.4590 (3)0.0413 (11)
C240.1107 (6)1.3626 (5)0.3805 (3)0.0412 (11)
C2410.2750 (6)1.5240 (5)0.4047 (4)0.0595 (13)
C250.0677 (6)1.3065 (5)0.2759 (3)0.0462 (11)
C260.0769 (6)1.1604 (5)0.2528 (3)0.0460 (12)
H120.30220.91860.22760.060*
H110.30220.94790.10910.060*
H130.80060.47800.01850.046*
H14A1.04370.23970.20250.085*0.50
H14B0.94100.15000.09900.085*0.50
H14C1.06350.26400.07990.085*0.50
H14D0.98850.19610.05180.085*0.50
H14E1.09110.28580.15530.085*0.50
H14F0.96870.17170.17440.085*0.50
H150.77460.42950.29540.056*
H160.52600.68150.30960.053*
H210.40960.84080.35560.067*
H220.35560.88080.23800.067*
H230.02331.29730.53090.050*
H24A0.34671.56730.34090.089*0.50
H24B0.23421.61980.41950.089*0.50
H24C0.35101.48970.46940.089*0.50
H24D0.27461.55060.47900.089*0.50
H24E0.38701.49800.40030.089*0.50
H24F0.27031.62820.35040.089*0.50
H250.14291.37370.21900.055*
H260.09981.12900.18010.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.039 (3)0.031 (2)0.042 (2)0.011 (2)0.003 (2)0.0031 (18)
N110.046 (3)0.049 (2)0.045 (2)0.002 (2)0.0157 (17)0.0081 (16)
C120.031 (3)0.031 (2)0.038 (2)0.008 (2)0.0004 (19)0.0084 (18)
N120.045 (3)0.045 (2)0.038 (2)0.013 (2)0.0040 (18)0.0042 (17)
O110.045 (2)0.0441 (18)0.0491 (17)0.0020 (16)0.0033 (14)0.0134 (13)
O120.059 (2)0.066 (2)0.0405 (17)0.0111 (17)0.0116 (15)0.0109 (14)
C130.034 (3)0.040 (3)0.041 (2)0.012 (2)0.004 (2)0.0064 (19)
C140.034 (3)0.042 (3)0.048 (3)0.011 (2)0.007 (2)0.007 (2)
C1410.041 (3)0.047 (3)0.074 (3)0.004 (2)0.003 (2)0.016 (2)
C150.050 (3)0.051 (3)0.042 (3)0.019 (2)0.005 (2)0.017 (2)
C160.050 (3)0.045 (3)0.036 (2)0.011 (2)0.007 (2)0.0083 (19)
N210.057 (3)0.046 (2)0.056 (2)0.003 (2)0.0042 (19)0.0162 (17)
C210.043 (3)0.032 (3)0.046 (3)0.013 (2)0.002 (2)0.0045 (19)
C220.034 (3)0.037 (2)0.034 (2)0.015 (2)0.0042 (19)0.0021 (18)
N220.044 (3)0.040 (2)0.045 (2)0.0093 (19)0.0091 (18)0.0012 (17)
O210.039 (2)0.0386 (18)0.068 (2)0.0043 (16)0.0109 (15)0.0034 (14)
O220.065 (2)0.061 (2)0.0401 (17)0.0120 (16)0.0124 (15)0.0082 (15)
C230.038 (3)0.043 (3)0.038 (2)0.006 (2)0.005 (2)0.0068 (19)
C240.040 (3)0.041 (3)0.042 (3)0.014 (2)0.005 (2)0.003 (2)
C2410.041 (3)0.048 (3)0.078 (3)0.000 (2)0.007 (2)0.010 (2)
C250.046 (3)0.044 (3)0.047 (3)0.011 (2)0.016 (2)0.001 (2)
C260.051 (3)0.050 (3)0.038 (2)0.018 (3)0.005 (2)0.006 (2)
Geometric parameters (Å, º) top
C11—C121.411 (5)C21—C221.406 (5)
C12—C131.407 (5)C22—C231.396 (5)
C13—C141.352 (5)C23—C241.357 (5)
C13—H130.9500C23—H230.9500
C14—C151.426 (5)C24—C251.399 (5)
C14—C1411.503 (5)C24—C2411.508 (5)
C141—H14A0.9800C241—H24A0.9800
C141—H14B0.9800C241—H24B0.9800
C141—H14C0.9800C241—H24C0.9800
C141—H14D0.9800C241—H24D0.9800
C141—H14E0.9800C241—H24E0.9800
C141—H14F0.9800C241—H24F0.9800
C15—C161.346 (5)C25—C261.352 (5)
C15—H150.9500C25—H250.9500
C16—C111.399 (5)C26—C211.416 (5)
C16—H160.9500C26—H260.9500
C11—N111.347 (4)C21—N211.341 (5)
N11—H120.8800N21—H210.8800
N11—H110.8800N21—H220.8800
C12—N121.413 (4)C22—N221.437 (5)
N12—O111.250 (4)N22—O211.247 (4)
N12—O121.247 (4)N22—O221.239 (4)
N11—C11—C16119.4 (4)C21—N21—H21120.0
N11—C11—C12124.0 (4)C21—N21—H22120.0
C16—C11—C12116.6 (4)H21—N21—H22120.0
C11—N11—H11120.0N21—C21—C22125.6 (4)
C11—N11—H12120.0N21—C21—C26120.1 (4)
H11—N11—H12120.0C22—C21—C26114.3 (4)
C13—C12—C11120.5 (4)C23—C22—C21122.1 (4)
C13—C12—N12117.6 (3)C23—C22—N22117.5 (3)
C11—C12—N12121.9 (4)C21—C22—N22120.4 (4)
O12—N12—O11119.8 (3)O22—N22—O21121.3 (3)
O12—N12—C12119.5 (3)O22—N22—C22118.3 (3)
O11—N12—C12120.7 (3)O21—N22—C22120.3 (3)
C14—C13—C12122.6 (4)C24—C23—C22122.0 (4)
C14—C13—H13118.7C24—C23—H23119.0
C12—C13—H13118.7C22—C23—H23119.0
C13—C14—C15116.0 (4)C23—C24—C25116.6 (4)
C13—C14—C141123.1 (4)C23—C24—C241122.0 (4)
C15—C14—C141120.9 (4)C25—C24—C241121.4 (4)
C14—C141—H14A109.5C24—C241—H24A109.5
C14—C141—H14B109.5C24—C241—H24B109.5
H14A—C141—H14B109.5H24A—C241—H24B109.5
C14—C141—H14C109.5C24—C241—H24C109.5
H14A—C141—H14C109.5H24A—C241—H24C109.5
H14B—C141—H14C109.5H24B—C241—H24C109.5
C14—C141—H14D109.5C24—C241—H24D109.5
H14A—C141—H14D141.1H24A—C241—H24D141.1
H14B—C141—H14D56.3H24B—C241—H24D56.3
H14C—C141—H14D56.3H24C—C241—H24D56.3
C14—C141—H14E109.5C24—C241—H24E109.5
H14A—C141—H14E56.3H24A—C241—H24E56.3
H14B—C141—H14E141.1H24B—C241—H24E141.1
H14C—C141—H14E56.3H24C—C241—H24E56.3
H14D—C141—H14E109.5H24D—C241—H24E109.5
C14—C141—H14F109.5C24—C241—H24F109.5
H14A—C141—H14F56.3H24A—C241—H24F56.3
H14B—C141—H14F56.3H24B—C241—H24F56.3
H14C—C141—H14F141.1H24C—C241—H24F141.1
H14D—C141—H14F109.5H24D—C241—H24F109.5
H14E—C141—H14F109.5H24E—C241—H24F109.5
C16—C15—C14122.9 (4)C26—C25—C24122.5 (4)
C16—C15—H15118.6C26—C25—H25118.8
C14—C15—H15118.6C24—C25—H25118.8
C15—C16—C11121.5 (4)C25—C26—C21122.5 (4)
C15—C16—H16119.2C25—C26—H26118.8
C11—C16—H16119.2C21—C26—H26118.8
N11—C11—C12—C13179.0 (4)N21—C21—C22—C23180.0 (19)
C16—C11—C12—C131.0 (6)C26—C21—C22—C230.4 (5)
N11—C11—C12—N121.1 (6)N21—C21—C22—N220.4 (6)
C16—C11—C12—N12179.2 (3)C26—C21—C22—N22179.2 (3)
C13—C12—N12—O122.7 (5)C23—C22—N22—O220.1 (5)
C11—C12—N12—O12177.2 (3)C21—C22—N22—O22179.5 (3)
C13—C12—N12—O11176.7 (3)C23—C22—N22—O21179.0 (4)
C11—C12—N12—O113.4 (6)C21—C22—N22—O210.6 (5)
C11—C12—C13—C141.9 (6)C21—C22—C23—C240.8 (6)
N12—C12—C13—C14178.3 (4)N22—C22—C23—C24178.9 (3)
C12—C13—C14—C151.6 (6)C22—C23—C24—C250.6 (6)
C12—C13—C14—C141178.8 (4)C22—C23—C24—C241178.2 (4)
C13—C14—C15—C160.6 (6)C23—C24—C25—C260.1 (6)
C141—C14—C15—C16179.8 (4)C241—C24—C25—C26178.7 (4)
C14—C15—C16—C110.1 (6)C24—C25—C26—C210.2 (6)
N11—C11—C16—C15178.2 (4)N21—C21—C26—C25179.6 (4)
C12—C11—C16—C150.0 (6)C22—C21—C26—C250.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O110.881.992.625 (4)128
N21—H21···O210.881.992.614 (4)127
N11—H12···O22i0.882.142.987 (4)162
N21—H22···O110.882.373.230 (4)165
N21—H22···O120.882.413.105 (5)137
C16—H16···O21i0.952.583.505 (5)164
Symmetry code: (i) x, y, z1.
(II) 4,5-Dimethyl-2-nitroaniline top
Crystal data top
C8H10N2O2Z = 4
Mr = 166.18F(000) = 352
Triclinic, P1Dx = 1.398 Mg m3
a = 7.1422 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4564 (15) ÅCell parameters from 3468 reflections
c = 17.044 (3) Åθ = 3.1–27.4°
α = 81.43 (3)°µ = 0.10 mm1
β = 89.27 (3)°T = 150 K
γ = 61.84 (3)°Plate, orange
V = 789.6 (3) Å30.14 × 0.12 × 0.03 mm
Data collection top
KappaCCD
diffractometer
3468 independent reflections
Radiation source: fine-focus sealed X-ray tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ scans and ω scans with κ offsetsθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 99
Tmin = 0.986, Tmax = 0.997k = 99
9952 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0797P)2]
where P = (Fo2 + 2Fc2)/3
3468 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C8H10N2O2γ = 61.84 (3)°
Mr = 166.18V = 789.6 (3) Å3
Triclinic, P1Z = 4
a = 7.1422 (14) ÅMo Kα radiation
b = 7.4564 (15) ŵ = 0.10 mm1
c = 17.044 (3) ÅT = 150 K
α = 81.43 (3)°0.14 × 0.12 × 0.03 mm
β = 89.27 (3)°
Data collection top
KappaCCD
diffractometer
3468 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1988 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.997Rint = 0.060
9952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.96Δρmax = 0.28 e Å3
3468 reflectionsΔρmin = 0.37 e Å3
221 parameters
Special details top

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1776 (3)0.2439 (3)0.43577 (13)0.0248 (5)
N110.0998 (3)0.2384 (3)0.36530 (11)0.0344 (5)
C120.3601 (3)0.2648 (3)0.44836 (12)0.0245 (5)
N120.4881 (3)0.2767 (3)0.38443 (11)0.0279 (5)
O110.4327 (2)0.2760 (2)0.31550 (9)0.0378 (4)
O120.6506 (2)0.2893 (2)0.39840 (10)0.0399 (5)
C130.4285 (3)0.2688 (3)0.52446 (13)0.0251 (5)
C140.3224 (3)0.2513 (3)0.59004 (13)0.0262 (5)
C1410.3980 (4)0.2544 (4)0.67129 (14)0.0363 (6)
C150.1386 (3)0.2287 (3)0.57891 (13)0.0264 (5)
C1510.0158 (4)0.2084 (4)0.64872 (14)0.0374 (6)
C160.0710 (3)0.2268 (3)0.50424 (13)0.0259 (5)
C210.6658 (3)0.2342 (3)0.08580 (13)0.0242 (5)
N210.5849 (3)0.2189 (3)0.15665 (11)0.0306 (5)
C220.8492 (3)0.2572 (3)0.07220 (13)0.0233 (5)
N220.9730 (3)0.2610 (3)0.13588 (11)0.0281 (5)
O210.9171 (2)0.2496 (2)0.20502 (9)0.0384 (4)
O221.1372 (2)0.2745 (3)0.12186 (10)0.0414 (5)
C230.9179 (3)0.2737 (3)0.00477 (13)0.0259 (5)
C240.8125 (3)0.2672 (3)0.06986 (13)0.0273 (5)
C2410.8899 (4)0.2839 (3)0.15149 (14)0.0358 (6)
C250.6289 (3)0.2425 (3)0.05741 (13)0.0255 (5)
C2510.5056 (4)0.2374 (3)0.12683 (14)0.0353 (6)
C260.5616 (3)0.2273 (3)0.01757 (13)0.0262 (5)
H110.16430.24840.32180.041*
H120.01580.22490.36260.041*
H130.55190.28410.53070.030*
H1410.52830.26730.66770.054*
H1420.42730.12610.70640.054*
H1430.28780.37190.69290.054*
H1510.10030.18580.63100.056*
H1520.04330.33490.67220.056*
H1530.11080.09120.68850.056*
H160.05360.21320.49840.031*
H220.46930.20500.15970.037*
H210.64770.22290.20000.037*
H231.04150.28980.01190.031*
H2411.01580.30360.14850.054*
H2420.77740.40180.18630.054*
H2430.92700.15730.17300.054*
H2510.38680.21540.10780.053*
H2520.59920.12480.15480.053*
H2530.45020.36880.16330.053*
H260.43770.21130.02400.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0258 (11)0.0273 (11)0.0221 (13)0.0126 (9)0.0016 (9)0.0065 (9)
N110.0351 (10)0.0518 (12)0.0251 (12)0.0268 (10)0.0040 (8)0.0099 (9)
C120.0279 (11)0.0256 (11)0.0214 (13)0.0138 (10)0.0069 (9)0.0047 (9)
N120.0272 (10)0.0301 (10)0.0260 (12)0.0135 (9)0.0055 (8)0.0043 (8)
O110.0416 (10)0.0523 (10)0.0212 (10)0.0232 (8)0.0052 (7)0.0080 (8)
O120.0343 (9)0.0550 (11)0.0401 (11)0.0294 (9)0.0076 (8)0.0070 (8)
C130.0200 (10)0.0287 (11)0.0259 (13)0.0111 (9)0.0017 (9)0.0045 (9)
C140.0274 (11)0.0268 (11)0.0221 (13)0.0108 (10)0.0024 (9)0.0042 (9)
C1410.0415 (14)0.0436 (14)0.0255 (14)0.0212 (12)0.0011 (10)0.0068 (11)
C150.0249 (11)0.0235 (11)0.0261 (14)0.0079 (9)0.0041 (9)0.0032 (9)
C1510.0408 (14)0.0440 (14)0.0301 (15)0.0224 (12)0.0111 (11)0.0067 (11)
C160.0229 (11)0.0282 (11)0.0280 (13)0.0136 (9)0.0005 (9)0.0037 (9)
C210.0263 (11)0.0243 (11)0.0219 (13)0.0117 (9)0.0044 (9)0.0050 (9)
N210.0331 (10)0.0462 (11)0.0210 (11)0.0255 (9)0.0056 (8)0.0067 (9)
C220.0233 (11)0.0230 (11)0.0229 (12)0.0103 (9)0.0018 (9)0.0038 (9)
N220.0245 (10)0.0299 (10)0.0282 (12)0.0116 (8)0.0018 (8)0.0040 (8)
O210.0410 (9)0.0559 (10)0.0222 (10)0.0262 (8)0.0021 (7)0.0061 (8)
O220.0305 (9)0.0565 (11)0.0452 (11)0.0271 (8)0.0010 (8)0.0084 (8)
C230.0224 (11)0.0259 (11)0.0289 (13)0.0112 (9)0.0047 (9)0.0044 (9)
C240.0306 (12)0.0244 (11)0.0240 (13)0.0107 (10)0.0054 (10)0.0047 (9)
C2410.0413 (14)0.0378 (13)0.0264 (14)0.0174 (11)0.0085 (10)0.0055 (10)
C250.0285 (12)0.0232 (11)0.0224 (13)0.0099 (10)0.0002 (9)0.0052 (9)
C2510.0361 (13)0.0392 (13)0.0293 (14)0.0162 (11)0.0028 (10)0.0077 (10)
C260.0233 (11)0.0277 (11)0.0280 (14)0.0122 (10)0.0018 (9)0.0054 (9)
Geometric parameters (Å, º) top
C11—C121.407 (3)N12—O121.237 (2)
C12—C131.401 (3)C21—C221.411 (3)
C12—N121.433 (3)C22—C231.403 (3)
N12—O121.237 (2)C23—C241.368 (3)
N12—O111.246 (2)C23—H230.9500
C13—C141.367 (3)C24—C251.417 (3)
C13—H130.9500C24—C2411.500 (3)
C14—C151.419 (3)C241—H2410.9800
C14—C1411.500 (3)C241—H2420.9800
C141—H1410.9800C241—H2430.9800
C141—H1420.9800C25—C261.367 (3)
C141—H1430.9800C25—C2511.499 (3)
C15—C161.371 (3)C251—H2510.9800
C15—C1511.501 (3)C251—H2520.9800
C151—H1510.9800C251—H2530.9800
C151—H1520.9800C26—C211.409 (3)
C151—H1530.9800C26—H260.9500
C16—C111.408 (3)C21—N211.345 (3)
C16—H160.9500N21—H220.8800
C11—N111.344 (3)N21—H210.8800
N11—H110.8800C22—N221.420 (3)
N11—H120.8800N22—O211.243 (2)
C12—N121.433 (3)N22—O221.241 (2)
N12—O111.246 (2)
N11—C11—C12125.78 (19)N21—C21—C26118.60 (19)
N11—C11—C16118.62 (19)N21—C21—C22126.0 (2)
C12—C11—C16115.6 (2)C26—C21—C22115.35 (19)
C11—N11—H11120.0C21—N21—H22120.0
C11—N11—H12120.0C21—N21—H21120.0
H11—N11—H12120.0H22—N21—H21120.0
C13—C12—C11121.42 (18)C23—C22—C21121.1 (2)
C13—C12—N12116.98 (18)C23—C22—N22117.57 (18)
C11—C12—N12121.56 (19)C21—C22—N22121.35 (19)
O12—N12—O11121.06 (18)O22—N22—O21120.60 (19)
O12—N12—C12119.53 (19)O22—N22—C22119.46 (18)
O11—N12—C12119.41 (17)O21—N22—C22119.94 (18)
C14—C13—C12121.81 (19)C24—C23—C22122.1 (2)
C14—C13—H13119.1C24—C23—H23118.9
C12—C13—H13119.1C22—C23—H23118.9
C13—C14—C15117.8 (2)C23—C24—C25117.7 (2)
C13—C14—C141121.3 (2)C23—C24—C241121.1 (2)
C15—C14—C141120.89 (19)C25—C24—C241121.2 (2)
C14—C141—H141109.5C24—C241—H241109.5
C14—C141—H142109.5C24—C241—H242109.5
H141—C141—H142109.5H241—C241—H242109.5
C14—C141—H143109.5C24—C241—H243109.5
H141—C141—H143109.5H241—C241—H243109.5
H142—C141—H143109.5H242—C241—H243109.5
C16—C15—C14120.23 (19)C26—C25—C24120.1 (2)
C16—C15—C151119.6 (2)C26—C25—C251119.96 (19)
C14—C15—C151120.2 (2)C24—C25—C251119.9 (2)
C15—C151—H151109.5C25—C251—H251109.5
C15—C151—H152109.5C25—C251—H252109.5
H151—C151—H152109.5H251—C251—H252109.5
C15—C151—H153109.5C25—C251—H253109.5
H151—C151—H153109.5H251—C251—H253109.5
H152—C151—H153109.5H252—C251—H253109.5
C15—C16—C11123.1 (2)C25—C26—C21123.63 (19)
C15—C16—H16118.4C25—C26—H26118.2
C11—C16—H16118.4C21—C26—H26118.2
N11—C11—C12—C13180.00 (19)N21—C21—C22—C23179.37 (18)
C16—C11—C12—C130.2 (3)C26—C21—C22—C230.6 (3)
N11—C11—C12—N121.9 (3)N21—C21—C22—N221.7 (3)
C16—C11—C12—N12177.86 (17)C26—C21—C22—N22178.33 (17)
C13—C12—N12—O120.2 (3)C23—C22—N22—O221.4 (3)
C11—C12—N12—O12177.98 (18)C21—C22—N22—O22177.60 (18)
C13—C12—N12—O11179.22 (17)C23—C22—N22—O21179.04 (17)
C11—C12—N12—O112.6 (3)C21—C22—N22—O212.0 (3)
C11—C12—C13—C140.4 (3)C21—C22—C23—C240.4 (3)
N12—C12—C13—C14177.74 (18)N22—C22—C23—C24178.58 (18)
C12—C13—C14—C150.0 (3)C22—C23—C24—C250.1 (3)
C12—C13—C14—C141179.58 (18)C22—C23—C24—C241179.64 (18)
C13—C14—C15—C160.6 (3)C23—C24—C25—C260.4 (3)
C141—C14—C15—C16179.81 (18)C241—C24—C25—C26179.92 (19)
C13—C14—C15—C151179.88 (18)C23—C24—C25—C251179.13 (18)
C141—C14—C15—C1510.3 (3)C241—C24—C25—C2511.4 (3)
C14—C15—C16—C110.8 (3)C24—C25—C26—C210.2 (3)
C151—C15—C16—C11179.65 (19)C251—C25—C26—C21178.90 (18)
N11—C11—C16—C15179.39 (18)N21—C21—C26—C25179.65 (18)
C12—C11—C16—C150.4 (3)C22—C21—C26—C250.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O110.882.022.638 (3)126
N21—H21···O210.882.032.642 (3)126
N11—H12···O12i0.882.293.102 (3)153
N21—H22···O22i0.882.263.078 (3)155
C16—H16···O12i0.952.523.325 (3)142
Symmetry code: (i) x1, y, z.
(III) 4-Methyl-3-nitroaniline top
Crystal data top
C7H8N2O2Z = 8
Mr = 152.15F(000) = 640
Triclinic, P1Dx = 1.419 Mg m3
a = 7.3814 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2085 (3) ÅCell parameters from 5933 reflections
c = 23.5355 (9) Åθ = 2.9–42.1°
α = 87.9310 (13)°µ = 0.11 mm1
β = 89.8880 (12)°T = 150 K
γ = 88.371 (2)°Plate, orange
V = 1424.52 (8) Å30.45 × 0.20 × 0.02 mm
Data collection top
KappaCCD
diffractometer
6812 independent reflections
Radiation source: fine-focus sealed X-ray tube3517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 99
Tmin = 0.954, Tmax = 0.999k = 1010
14564 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0972P)2]
where P = (Fo2 + 2Fc2)/3
6812 reflections(Δ/σ)max = 0.001
401 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C7H8N2O2γ = 88.371 (2)°
Mr = 152.15V = 1424.52 (8) Å3
Triclinic, P1Z = 8
a = 7.3814 (2) ÅMo Kα radiation
b = 8.2085 (3) ŵ = 0.11 mm1
c = 23.5355 (9) ÅT = 150 K
α = 87.9310 (13)°0.45 × 0.20 × 0.02 mm
β = 89.8880 (12)°
Data collection top
KappaCCD
diffractometer
6812 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3517 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.999Rint = 0.061
14564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 0.97Δρmax = 0.33 e Å3
6812 reflectionsΔρmin = 0.38 e Å3
401 parameters
Special details top

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.56474 (18)0.86353 (17)0.35323 (6)0.0314 (4)
N110.53317 (17)0.97841 (15)0.39364 (6)0.0403 (4)
C120.53661 (18)0.69945 (17)0.36455 (6)0.0300 (4)
C130.56699 (17)0.58859 (16)0.32220 (6)0.0288 (4)
N130.52948 (16)0.41871 (15)0.33812 (6)0.0371 (3)
O110.55196 (15)0.37198 (13)0.38791 (5)0.0468 (3)
O120.47637 (17)0.32950 (14)0.30145 (6)0.0590 (4)
C140.62959 (17)0.62960 (17)0.26776 (6)0.0303 (4)
C1410.6623 (2)0.51338 (19)0.22092 (7)0.0420 (4)
C150.66299 (18)0.79488 (18)0.25902 (7)0.0342 (4)
C160.63206 (19)0.90821 (18)0.29961 (7)0.0332 (4)
C210.07558 (18)0.35053 (17)0.14782 (6)0.0308 (4)
N210.04961 (17)0.46572 (15)0.10789 (6)0.0417 (4)
C220.04596 (18)0.18566 (17)0.13501 (6)0.0296 (4)
C230.06983 (17)0.07392 (16)0.17661 (7)0.0292 (4)
N230.03456 (16)0.09718 (15)0.15865 (6)0.0365 (3)
O210.05719 (15)0.13749 (13)0.10834 (5)0.0481 (3)
O220.01548 (17)0.19462 (14)0.19403 (6)0.0595 (4)
C240.12629 (18)0.11310 (18)0.23207 (6)0.0299 (4)
C2410.1525 (2)0.00382 (19)0.27840 (7)0.0406 (4)
C250.16208 (18)0.27956 (18)0.24247 (7)0.0341 (4)
C260.13699 (19)0.39476 (18)0.20244 (7)0.0343 (4)
C310.17567 (19)0.75218 (18)0.47215 (7)0.0347 (4)
N310.2312 (2)0.87271 (17)0.50703 (7)0.0611 (5)
C320.22739 (18)0.59087 (17)0.48274 (6)0.0320 (4)
C330.17436 (18)0.47341 (17)0.44621 (7)0.0317 (4)
N330.23562 (17)0.30612 (16)0.46143 (6)0.0412 (4)
O310.17802 (19)0.19418 (15)0.43514 (7)0.0745 (5)
O320.34353 (17)0.28293 (15)0.50014 (6)0.0569 (4)
C340.06883 (18)0.50611 (18)0.39773 (7)0.0333 (4)
C3410.0114 (2)0.3859 (2)0.35488 (8)0.0462 (5)
C350.01686 (18)0.67065 (18)0.38913 (7)0.0340 (4)
C360.06698 (19)0.78939 (19)0.42482 (7)0.0350 (4)
C410.6822 (2)0.77143 (19)0.02979 (7)0.0385 (4)
N410.7432 (2)0.65100 (18)0.00485 (7)0.0778 (6)
C420.7289 (2)0.93232 (19)0.01955 (7)0.0402 (4)
C430.67149 (19)1.05069 (18)0.05635 (7)0.0361 (4)
N430.72699 (18)1.21696 (17)0.04090 (7)0.0487 (4)
O410.6734 (2)1.32797 (17)0.06923 (9)0.1218 (7)
O420.8274 (2)1.23829 (16)0.00100 (6)0.0684 (4)
C440.56794 (19)1.01953 (18)0.10478 (7)0.0359 (4)
C4410.5070 (2)1.1402 (2)0.14802 (8)0.0502 (5)
C450.52115 (19)0.85592 (19)0.11306 (7)0.0358 (4)
C460.57408 (19)0.73627 (19)0.07713 (7)0.0353 (4)
H11A0.49410.94820.42770.048*
H11B0.55211.08200.38540.048*
H120.49670.66300.40110.036*
H4A0.54590.47670.20690.063*
H4B0.73470.41900.23540.063*
H41C0.72770.56840.18980.063*
H150.70950.83080.22320.041*
H160.65691.01930.29110.040*
H21A0.01350.43540.07340.050*
H21B0.06910.56980.11680.050*
H220.00950.14990.09780.036*
H41D0.22750.09330.26430.061*
H41E0.21280.05300.31080.061*
H41F0.03430.04780.29050.061*
H250.20580.31480.27890.041*
H260.16190.50650.21210.041*
H31A0.30060.84740.53660.073*
H31B0.19710.97490.49970.073*
H320.29930.56090.51510.038*
H41G0.11830.32600.34100.069*
H41H0.04930.44440.32290.069*
H41I0.07240.30900.37280.069*
H350.05640.70110.35710.041*
H360.02700.89900.41720.042*
H41A0.81300.67520.03410.093*
H41B0.71250.54940.00220.093*
H420.80020.96110.01270.048*
H41J0.61261.19440.16290.075*
H41K0.44461.08300.17930.075*
H41L0.42391.22180.13000.075*
H450.44920.82690.14520.043*
H460.53680.62770.08450.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0327 (7)0.0258 (8)0.0354 (9)0.0004 (6)0.0024 (6)0.0004 (7)
N110.0593 (8)0.0244 (7)0.0376 (8)0.0028 (6)0.0021 (6)0.0037 (6)
C120.0321 (7)0.0255 (8)0.0319 (8)0.0000 (6)0.0026 (6)0.0028 (7)
C130.0298 (7)0.0197 (7)0.0367 (9)0.0009 (5)0.0003 (6)0.0001 (7)
N130.0390 (6)0.0244 (7)0.0477 (8)0.0000 (5)0.0081 (6)0.0035 (6)
O110.0591 (7)0.0306 (6)0.0497 (7)0.0017 (5)0.0086 (6)0.0106 (6)
O120.0779 (8)0.0353 (6)0.0655 (9)0.0200 (6)0.0042 (7)0.0122 (6)
C140.0272 (7)0.0309 (8)0.0327 (8)0.0012 (6)0.0010 (6)0.0003 (7)
C1410.0418 (8)0.0475 (10)0.0373 (9)0.0011 (7)0.0047 (7)0.0100 (8)
C150.0339 (7)0.0366 (9)0.0315 (8)0.0042 (6)0.0027 (6)0.0081 (7)
C160.0371 (7)0.0222 (8)0.0401 (9)0.0044 (6)0.0031 (6)0.0045 (7)
C210.0313 (7)0.0273 (8)0.0337 (8)0.0010 (6)0.0027 (6)0.0021 (7)
N210.0632 (8)0.0231 (7)0.0388 (8)0.0006 (6)0.0004 (6)0.0017 (6)
C220.0310 (7)0.0282 (8)0.0294 (8)0.0035 (6)0.0019 (6)0.0049 (7)
C230.0269 (7)0.0216 (7)0.0391 (9)0.0007 (5)0.0015 (6)0.0002 (7)
N230.0394 (7)0.0261 (7)0.0442 (8)0.0019 (5)0.0061 (6)0.0008 (6)
O210.0665 (7)0.0298 (6)0.0475 (7)0.0048 (5)0.0085 (6)0.0100 (6)
O220.0836 (9)0.0331 (7)0.0617 (9)0.0152 (6)0.0037 (7)0.0126 (6)
C240.0263 (7)0.0328 (8)0.0309 (8)0.0019 (6)0.0016 (6)0.0018 (7)
C2410.0404 (8)0.0461 (10)0.0357 (9)0.0013 (7)0.0031 (7)0.0083 (8)
C250.0308 (7)0.0392 (9)0.0316 (9)0.0015 (6)0.0019 (6)0.0053 (7)
C260.0375 (8)0.0258 (8)0.0390 (9)0.0014 (6)0.0026 (7)0.0042 (7)
C310.0387 (8)0.0310 (8)0.0345 (9)0.0050 (6)0.0023 (6)0.0008 (7)
N310.0885 (11)0.0317 (8)0.0639 (11)0.0037 (7)0.0272 (9)0.0092 (8)
C320.0316 (7)0.0309 (8)0.0331 (9)0.0031 (6)0.0021 (6)0.0041 (7)
C330.0302 (7)0.0248 (8)0.0398 (9)0.0004 (6)0.0049 (6)0.0036 (7)
N330.0396 (7)0.0304 (7)0.0530 (9)0.0004 (6)0.0042 (6)0.0059 (7)
O310.0850 (9)0.0256 (7)0.1136 (12)0.0026 (6)0.0296 (8)0.0093 (7)
O320.0700 (8)0.0420 (7)0.0571 (8)0.0096 (6)0.0094 (6)0.0138 (6)
C340.0267 (7)0.0328 (8)0.0407 (9)0.0031 (6)0.0042 (6)0.0046 (7)
C3410.0384 (8)0.0447 (10)0.0564 (11)0.0020 (7)0.0023 (8)0.0140 (9)
C350.0293 (7)0.0367 (9)0.0357 (9)0.0033 (6)0.0024 (6)0.0009 (7)
C360.0335 (7)0.0281 (8)0.0427 (9)0.0049 (6)0.0014 (7)0.0033 (7)
C410.0465 (8)0.0311 (9)0.0375 (9)0.0032 (7)0.0015 (7)0.0005 (8)
N410.1300 (14)0.0332 (9)0.0701 (11)0.0013 (9)0.0514 (10)0.0063 (8)
C420.0437 (8)0.0367 (9)0.0394 (10)0.0008 (7)0.0058 (7)0.0097 (8)
C430.0341 (7)0.0245 (8)0.0491 (10)0.0003 (6)0.0028 (7)0.0054 (7)
N430.0428 (7)0.0327 (8)0.0699 (11)0.0020 (6)0.0005 (7)0.0078 (7)
O410.1295 (11)0.0258 (8)0.2105 (18)0.0023 (8)0.0974 (12)0.0136 (10)
O420.1024 (10)0.0506 (8)0.0526 (9)0.0283 (7)0.0062 (7)0.0137 (7)
C440.0299 (7)0.0323 (8)0.0457 (10)0.0004 (6)0.0045 (7)0.0048 (8)
C4410.0492 (9)0.0417 (10)0.0605 (12)0.0019 (8)0.0007 (8)0.0138 (9)
C450.0314 (7)0.0405 (9)0.0355 (9)0.0056 (6)0.0001 (6)0.0002 (7)
C460.0371 (8)0.0286 (8)0.0401 (9)0.0035 (6)0.0022 (7)0.0038 (7)
Geometric parameters (Å, º) top
C11—N111.3782 (19)C31—N311.380 (2)
C11—C121.385 (2)C31—C321.382 (2)
C11—C161.396 (2)C31—C361.394 (2)
N11—H11A0.8800N31—H31A0.8800
N11—H11B0.8800N31—H31B0.8800
C12—C131.388 (2)C32—C331.380 (2)
C12—H120.9500C32—H320.9500
C13—C141.394 (2)C33—C341.396 (2)
C13—N131.4648 (18)C33—N331.4657 (19)
N13—O111.2300 (17)N33—O311.2134 (18)
N13—O121.2237 (17)N33—O321.2177 (18)
C14—C151.394 (2)C34—C351.401 (2)
C14—C1411.499 (2)C34—C3411.506 (2)
C141—H4A0.9800C341—H41G0.9800
C141—H4B0.9800C341—H41H0.9800
C141—H41C0.9800C341—H41I0.9800
C15—C161.372 (2)C35—C361.369 (2)
C15—H150.9500C35—H350.9500
C16—H160.9500C36—H360.9500
C21—N211.3744 (19)C41—N411.370 (2)
C21—C221.387 (2)C41—C421.387 (2)
C21—C261.396 (2)C41—C461.396 (2)
N21—H21A0.8800N41—H41A0.8800
N21—H21B0.8800N41—H41B0.8800
C22—C231.380 (2)C42—C431.382 (2)
C22—H220.9500C42—H420.9500
C23—C241.395 (2)C43—C441.391 (2)
C23—N231.4682 (18)C43—N431.469 (2)
N23—O211.2303 (17)N43—O411.206 (2)
N23—O221.2246 (17)N43—O421.2063 (19)
C24—C251.397 (2)C44—C451.403 (2)
C24—C2411.495 (2)C44—C4411.505 (2)
C241—H41D0.9800C441—H41J0.9800
C241—H41E0.9800C441—H41K0.9800
C241—H41F0.9800C441—H41L0.9800
C25—C261.375 (2)C45—C461.367 (2)
C25—H250.9500C45—H450.9500
C26—H260.9500C46—H460.9500
N11—C11—C12121.68 (14)N31—C31—C32121.04 (15)
N11—C11—C16120.91 (13)N31—C31—C36121.08 (14)
C12—C11—C16117.38 (13)C32—C31—C36117.87 (14)
C11—N11—H11A120.0C31—N31—H31A120.0
C11—N11—H11B120.0C31—N31—H31B120.0
H11A—N11—H11B120.0H31A—N31—H31B120.0
C11—C12—C13119.64 (14)C33—C32—C31119.83 (14)
C11—C12—H12120.2C33—C32—H32120.1
C13—C12—H12120.2C31—C32—H32120.1
C12—C13—C14124.41 (13)C32—C33—C34124.05 (14)
C12—C13—N13115.35 (13)C32—C33—N33115.50 (13)
C14—C13—N13120.23 (13)C34—C33—N33120.45 (13)
O12—N13—O11122.77 (13)O31—N33—O32121.58 (14)
O12—N13—C13118.72 (13)O31—N33—C33119.31 (14)
O11—N13—C13118.51 (12)O32—N33—C33119.11 (13)
C15—C14—C13113.94 (13)C33—C34—C35114.23 (14)
C15—C14—C141120.27 (14)C33—C34—C341127.08 (14)
C13—C14—C141125.79 (13)C35—C34—C341118.67 (14)
C14—C141—H4A109.5C34—C341—H41G109.5
C14—C141—H4B109.5C34—C341—H41H109.5
H4A—C141—H4B109.5H41G—C341—H41H109.5
C14—C141—H41C109.5C34—C341—H41I109.5
H4A—C141—H41C109.5H41G—C341—H41I109.5
H4B—C141—H41C109.5H41H—C341—H41I109.5
C16—C15—C14123.22 (14)C36—C35—C34122.88 (14)
C16—C15—H15118.4C36—C35—H35118.6
C14—C15—H15118.4C34—C35—H35118.6
C15—C16—C11121.32 (14)C35—C36—C31121.11 (14)
C15—C16—H16119.3C35—C36—H36119.4
C11—C16—H16119.3C31—C36—H36119.4
N21—C21—C22121.32 (14)N41—C41—C42120.97 (15)
N21—C21—C26121.23 (13)N41—C41—C46121.28 (15)
C22—C21—C26117.43 (14)C42—C41—C46117.74 (15)
C21—N21—H21A120.0C41—N41—H41A120.0
C21—N21—H21B120.0C41—N41—H41B120.0
H21A—N21—H21B120.0H41A—N41—H41B120.0
C23—C22—C21119.62 (14)C43—C42—C41119.90 (15)
C23—C22—H22120.2C43—C42—H42120.0
C21—C22—H22120.2C41—C42—H42120.0
C22—C23—C24124.79 (13)C42—C43—C44123.97 (14)
C22—C23—N23115.23 (13)C42—C43—N43115.17 (14)
C24—C23—N23119.96 (13)C44—C43—N43120.86 (14)
O22—N23—O21122.34 (13)O41—N43—O42121.87 (15)
O22—N23—C23119.19 (13)O41—N43—C43118.90 (15)
O21—N23—C23118.47 (12)O42—N43—C43119.22 (14)
C23—C24—C25113.72 (13)C43—C44—C45114.30 (14)
C23—C24—C241126.46 (13)C43—C44—C441127.04 (14)
C25—C24—C241119.82 (14)C45—C44—C441118.65 (14)
C24—C241—H41D109.5C44—C441—H41J109.5
C24—C241—H41E109.5C44—C441—H41K109.5
H41D—C241—H41E109.5H41J—C441—H41K109.5
C24—C241—H41F109.5C44—C441—H41L109.5
H41D—C241—H41F109.5H41J—C441—H41L109.5
H41E—C241—H41F109.5H41K—C441—H41L109.5
C26—C25—C24123.14 (14)C46—C45—C44123.15 (14)
C26—C25—H25118.4C46—C45—H45118.4
C24—C25—H25118.4C44—C45—H45118.4
C25—C26—C21121.21 (14)C45—C46—C41120.90 (14)
C25—C26—H26119.4C45—C46—H46119.6
C21—C26—H26119.4C41—C46—H46119.6
N11—C11—C12—C13178.79 (13)N31—C31—C32—C33178.08 (14)
C16—C11—C12—C133.2 (2)C36—C31—C32—C331.4 (2)
C11—C12—C13—C141.6 (2)C31—C32—C33—C340.0 (2)
C11—C12—C13—N13178.72 (12)C31—C32—C33—N33179.72 (12)
C12—C13—N13—O12148.69 (13)C32—C33—N33—O31171.83 (14)
C14—C13—N13—O1231.61 (19)C34—C33—N33—O317.9 (2)
C12—C13—N13—O1130.97 (18)C32—C33—N33—O328.3 (2)
C14—C13—N13—O11148.72 (13)C34—C33—N33—O32171.98 (14)
C12—C13—C14—C150.9 (2)C32—C33—C34—C351.0 (2)
N13—C13—C14—C15178.74 (12)N33—C33—C34—C35178.68 (12)
C12—C13—C14—C141179.44 (14)C32—C33—C34—C341177.66 (14)
N13—C13—C14—C1410.9 (2)N33—C33—C34—C3412.7 (2)
C13—C14—C15—C161.9 (2)C33—C34—C35—C360.7 (2)
C141—C14—C15—C16178.47 (13)C341—C34—C35—C36178.06 (13)
C14—C15—C16—C110.3 (2)C34—C35—C36—C310.6 (2)
N11—C11—C16—C15179.65 (13)N31—C31—C36—C35177.80 (14)
C12—C11—C16—C152.3 (2)C32—C31—C36—C351.6 (2)
N21—C21—C22—C23178.64 (12)N41—C41—C42—C43177.50 (16)
C26—C21—C22—C232.9 (2)C46—C41—C42—C431.3 (2)
C21—C22—C23—C241.3 (2)C41—C42—C43—C440.5 (2)
C21—C22—C23—N23179.86 (12)C41—C42—C43—N43179.26 (14)
C22—C23—N23—O22152.31 (13)C42—C43—N43—O41175.87 (17)
C24—C23—N23—O2228.77 (19)C44—C43—N43—O413.9 (2)
C22—C23—N23—O2127.94 (18)C42—C43—N43—O425.5 (2)
C24—C23—N23—O21150.98 (13)C44—C43—N43—O42174.72 (15)
C22—C23—C24—C251.39 (19)C42—C43—C44—C451.5 (2)
N23—C23—C24—C25177.42 (12)N43—C43—C44—C45178.25 (13)
C22—C23—C24—C241179.54 (13)C42—C43—C44—C441177.30 (15)
N23—C23—C24—C2411.7 (2)N43—C43—C44—C4413.0 (2)
C23—C24—C25—C262.5 (2)C43—C44—C45—C460.7 (2)
C241—C24—C25—C26178.37 (13)C441—C44—C45—C46178.16 (14)
C24—C25—C26—C211.0 (2)C44—C45—C46—C411.0 (2)
N21—C21—C26—C25179.67 (13)N41—C41—C46—C45176.78 (16)
C22—C21—C26—C251.8 (2)C42—C41—C46—C452.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O11i0.882.383.236 (2)163
N21—H21B···O21ii0.882.423.256 (2)158
N31—H31B···O31i0.882.313.099 (2)148
N41—H41B···O41ii0.882.393.174 (2)149
N41—H41A···O21iii0.882.493.308 (2)154
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC7H8N2O2C8H10N2O2C7H8N2O2
Mr152.15166.18152.15
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)150150150
a, b, c (Å)7.8329 (15), 7.990 (2), 12.369 (3)7.1422 (14), 7.4564 (15), 17.044 (3)7.3814 (2), 8.2085 (3), 23.5355 (9)
α, β, γ (°)79.766 (17), 81.257 (19), 69.646 (8)81.43 (3), 89.27 (3), 61.84 (3)87.9310 (13), 89.8880 (12), 88.371 (2)
V3)710.8 (3)789.6 (3)1424.52 (8)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.100.11
Crystal size (mm)0.10 × 0.05 × 0.050.14 × 0.12 × 0.030.45 × 0.20 × 0.02
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.989, 0.9950.986, 0.9970.954, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
22499, 2849, 988 9952, 3468, 1988 14564, 6812, 3517
Rint0.0140.0600.061
(sin θ/λ)max1)0.6280.6460.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.174, 0.83 0.057, 0.159, 0.96 0.063, 0.191, 0.97
No. of reflections284934686812
No. of parameters201221401
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.280.28, 0.370.33, 0.38

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) for (I) top
C11—C121.411 (5)C21—C221.406 (5)
C12—C131.407 (5)C22—C231.396 (5)
C13—C141.352 (5)C23—C241.357 (5)
C14—C151.426 (5)C24—C251.399 (5)
C15—C161.346 (5)C25—C261.352 (5)
C16—C111.399 (5)C26—C211.416 (5)
C11—N111.347 (4)C21—N211.341 (5)
C12—N121.413 (4)C22—N221.437 (5)
N12—O111.250 (4)N22—O211.247 (4)
N12—O121.247 (4)N22—O221.239 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O110.881.992.625 (4)128
N21—H21···O210.881.992.614 (4)127
N11—H12···O22i0.882.142.987 (4)162
N21—H22···O110.882.373.230 (4)165
N21—H22···O120.882.413.105 (5)137
C16—H16···O21i0.952.583.505 (5)164
Symmetry code: (i) x, y, z1.
Selected bond lengths (Å) for (II) top
C11—C121.407 (3)C21—C221.411 (3)
C12—C131.401 (3)C22—C231.403 (3)
C13—C141.367 (3)C23—C241.368 (3)
C14—C151.419 (3)C24—C251.417 (3)
C15—C161.371 (3)C25—C261.367 (3)
C16—C111.408 (3)C26—C211.409 (3)
C11—N111.344 (3)C21—N211.345 (3)
C12—N121.433 (3)C22—N221.420 (3)
N12—O111.246 (2)N22—O211.243 (2)
N12—O121.237 (2)N22—O221.241 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O110.882.022.638 (3)126
N21—H21···O210.882.032.642 (3)126
N11—H12···O12i0.882.293.102 (3)153
N21—H22···O22i0.882.263.078 (3)155
C16—H16···O12i0.952.523.325 (3)142
Symmetry code: (i) x1, y, z.
Selected bond lengths (Å) for (III) top
C11—N111.3782 (19)C31—N311.380 (2)
C13—N131.4648 (18)C33—N331.4657 (19)
N13—O111.2300 (17)N33—O311.2134 (18)
N13—O121.2237 (17)N33—O321.2177 (18)
C21—N211.3744 (19)C41—N411.370 (2)
C23—N231.4682 (18)C43—N431.469 (2)
N23—O211.2303 (17)N43—O411.206 (2)
N23—O221.2246 (17)N43—O421.2063 (19)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O11i0.882.383.236 (2)163
N21—H21B···O21ii0.882.423.256 (2)158
N31—H31B···O31i0.882.313.099 (2)148
N41—H41B···O41ii0.882.393.174 (2)149
N41—H41A···O21iii0.882.493.308 (2)154
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds