Download citation
Download citation
link to html
The title compound, [Fe(C5H5)(C10H7O2S)], an important precursor en route to organometallic donor-[pi]-acceptor systems, forms dimers in the solid state through cyclic intermolecular carboxyl­ic acid O-H...O hydrogen bonds, graph set R{_2^2}(8) [O...O 2.661 (2) Å and O-H...O 175°]. Intermolecular CCp-H...[pi]Cp interactions between the unsubstituted cyclo­penta­dienyl (Cp) rings and Cthiazole-H...[pi]Cp interactions link neighbouring mol­ecules into a three-dimensional network [C...Cg 3.753 (7) Å and C-H...Cg 156°, and C...Cg 3.687 (3) Å and C-H...Cg 129°; Cg is the ring centroid]. Intramolecular C-H...O inter­actions are present, graph set S(7) [C...O 2.925 (3) Å and C-H...O 120°, and the closest C-H...Sthienyl contact has a C...S distance of 3.058 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014360/sk1424sup1.cif
Contains datablocks global, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014360/sk1424Vsup2.hkl
Contains datablock V

CCDC reference: 158232

Comment top

The design of new redox-active compounds for application in materials science has engaged chemists in recent years. Ferrocene derivatives which are efficient redox systems have been studied extensively as charge-transfer complexes, in molecular recognition science, in peptide chemistry and as non-linear optical materials (Moore et al., 1993; Chesney et al., 1998; Glidewell et al., 1997; Kraatz et al., 1999; Hudson et al., 2001). An understanding of the interactions present in the crystal structure of a new material can provide valuable information on the hydrogen-bonding modes, thus facilitating an understanding of solid-state effects and the subsequent design and improvement of currently available systems. The structure of 2-(ferrocenyl)thiophene-3-carboxylic acid, (V), an important precursor en route to organometallic donor-π-acceptor systems, is reported herein. \sch

The synthesis of compound (V) is detailed in the Experimental section and the molecular structure is depicted, with the atomic numbering scheme, in Fig. 1; selected geometric dimensions are given in Table 1. Bond lengths are in accord with the anticipated values (Orpen et al., 1994). The unsubstituted cyclopentadienyl (Cp) ring is disordered over two sites, with occupancies of 0.691 (18) and 0.309 (18) for the major and minor orientations, respectively. Rotational disorder is often observed in the unsubstituted C5H5 ring of ferrocene derivatives, e.g. 1-ferrocenyl-1-phenylethanol (Ferguson et al., 1993). The Fe1—C bond lengths for the substituted Cp ring of (V) are in the range 2.028 (2) to 2.050 (2) Å, which is similar to that observed for the major orientation of the unsubstituted Cp ring [2.039 (4) to 2.051 (7) Å]. The Fe1···Cg1 and Fe1···Cg2 distances are 1.6435 (10) and 1.656 (3) Å, respectively, and the Cg1···Fe1···Cg2 angle is 178.42 (11)°, where Cg1 and Cg2 are the centroids of the substituted and unsubstituted Cp rings in the major orientation, A. The Cp rings deviate from eclipsed geometry, as indicated by the C1nA/B···Cg1···Cg2···C2nA/B torsion angles, which are in the ranges 20.6 (5) to 21.3 (5)° for A (n = 1 - 5) and -5.1 (10) to -16.0 (7)° for the minor orientation, B.

There is significant bending of the thienyl group with respect to the substituted Cp ring, with C3 bent away by 0.098 (3) Å from the C11/C12/C13/C14/C15 plane and on the opposite side to Fe1; the C3—C11···Cg1 angle is 175.21 (15)°. The thienyl system is oriented at an angle of 20.94 (12)° to the C5H4 ring and 5.95 (15)° to the O1/O2/C1/C2 carboxylic acid plane. The angles involving the COOH group are normal (Gallagher et al., 2000). However, the angles centred at C2 are noteworthy. The C1—C2—C3 and C1—C2—C5 angles are 126.48 (18) and 120.82 (18)°, respectively, while the C2—C3—C11 angle is 135.23 (17)°, compared with 115.32 (14)° for S1—C3—C11. Analysis of the C3—C11—C12 and C3—C11—C15 angles, which are 129.38 (17) and 123.97 (18)°, respectively, also suggests that the former C—C—C angles expand considerably due to the combined effects of hydrogen bonding and repulsion about the C3—C11 bond. The angle expansion on the carboxylic acid side of the substituted Cp ring arises where a C—H···O intramolecular interaction is present, graph set S(7) [C12···O2 2.925 (3) Å and C12—H12···O2 120°], resulting in a twist by 20.94 (12)° of the thienyl ring from coplanarity with the C5H4 group about the C3—C11 bond.

Compound (V) assembles as hydrogen-bonded dimers through cyclic intermolecular carboxylic acid O1—H1···O2i hydrogen bonding, graph set R22(8), in the solid state (Fig. 2) [O1···O2i 2.661 (2) Å and O1—H1···O2i 175°; symmetry code: (i) 1 - x, 2 - y, 1 - z]. Intermolecular CpC—H···πCp interactions between the unsubstituted Cp rings link neighbouring molecules into a zigzag chain and, in combination with the dimers, form a two-dimensional network [C25A···Cg2ii 3.753 (7) Å and C25A—H25A···Cg2ii 156°; symmetry code: (ii) 1/2 - x, y - 1/2, -z]. Stacking of the thiophene carboxylic moieties about inversion centres occurs, with an interplanar spacing of 3.46 Å. A thiazoleC4—H4···Cg3iii interaction extends the interactions to form a three-dimensional network [symmetry code: (iii) 1/2 + x, 1/2 - y, z], where Cg3 is the centroid of the substituted C5H4 ring. Query. The closest C—H···S contact is C15···S1 3.058 (2) Å, with C15—H15···S1 97° (Table 2).

A search of the Cambridge Structural Database (Allen & Kennard, 1993), for molecules containing the ferrocenyl group directly bonded to a thienyl ring, suggests that such compounds are rare. Current research on chiral ferrocene derivatives implies that (V) may be of interest as a precursor to heterobimetallic systems, as it contains both thienyl and COOH donor groups.

Experimental top

Compound (V) was prepared as follows. 3-Thiophene carboxaldehyde was protected as its neopentyl acetal, (I), in excellent yield (94%) and o-directed metallation with BuLi (Slocum & Gierer, 1976) gave the 2-iodo isomer, (II), exclusively (94%) after quenching with molecular iodine. Pd-catalysed cross coupling with ferrocenyl zinc chloride (Guillaneux & Kagan, 1995; Hudson et al., 2000) afforded the ferrocenyl adduct, (III), in quantitative yield as an orange oil. Deprotection with oxalic acid in a 1:1 mixture of tetrahydrofuran and water at reflux gave the aldehyde, (IV), in good yield (79%) as a red gum. Oxidation of substituents in direct electronic communication with ferrocene is known (Rosenblum, 1965); however, oxidation of (IV) under varying conditions to form (V) either resulted in complete decomposition of the starting material or in no reaction. Compound (V) could only be obtained in very low yield (<5%) by the action of ethanolic potassium permanganate on (IV) for 2 weeks. It is worth noting that the reduction of (IV) was extremely facile and proceeded in high yield (89%) with LiAlH4 in diethyl ether to afford (VI) as an orange crystalline solid. The detailed synthesis of (V) from (IV) is as follows. Compound (IV) (0.1 g, 0.34 mmol) was added to a 5% solution of KMnO4 in ethanol/water (50/50; 5 ml) and stirred for 12 d at room temperature. The mixture was extracted with diethyl ether (2 × 50 ml) and the organic portions were combined and washed with water (2 × 50 ml) before being dried over magnesium sulfate and evaporated to dryness. The black residue was purified by column chromatography on silica gel with CH2Cl2 as the eluant, to afford (V) as a red solid (0.005 g, <5%). Careful evaporation of a CH2Cl2 solution afforded red crystals of (V). Spectroscopic analysis: 1H NMR (270 MHz; δ p.p.m., CD?Cl3: 7.39 (d, 1H, J = 5.50 Hz, thiophene), 7.09 (d, 1H, J = 5.31 Hz, thiophene), 4.82 (m, 2H, α-C5H4), 4.37 (m, 2H, β-C5H4), 4.16 (s, 5H, C5H5).

Refinement top

All H atoms were allowed for as riding atoms with O—H 0.82 Å and C—H 0.93 Å using the SHELXL97 (Sheldrick, 1997) defaults. Disorder in the unsubstituted ring was treated by generating coordinates for the minor component and the subsequent use of the AFIX59 command in SHELXL97 with appropriate DELU/ISOR controls, to give site occupancies of 0.691 (18) and 0.309 (18) in the final refinement cycles. Examination of the structure with PLATON (Spek, 1998) shows that there are no solvent accessible voids in the crystal lattice.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995) and PLATON (Spek, 1998); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. An ORTEX (McArdle, 1995) view of (V) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The minor Cp-ring disorder form has been omitted for clarity.
[Figure 2] Fig. 2. A view of the primary interactions in the crystal structure of (V).
2-(Ferrocenyl)thiophene-3-carboxylic acid top
Crystal data top
[Fe(C5H5)(C10H7O2S)]F(000) = 640
Mr = 312.16Dx = 1.635 Mg m3
Monoclinic, P21/aMelting point: unknown K
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71073 Å
a = 12.7108 (8) ÅCell parameters from 75 reflections
b = 7.4801 (6) Åθ = 6.2–20.2°
c = 14.2397 (9) ŵ = 1.35 mm1
β = 110.542 (5)°T = 294 K
V = 1267.80 (15) Å3Plate, red
Z = 40.48 × 0.28 × 0.05 mm
Data collection top
Bruker P4
diffractometer
2431 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 3.1°
ω scansh = 161
Absorption correction: ψ-scan
(North et al., 1968)
k = 91
Tmin = 0.64, Tmax = 0.99l = 1718
3919 measured reflections3 standard reflections every 197 reflections
3032 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.5075P]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.30 e Å3
56 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Fe(C5H5)(C10H7O2S)]V = 1267.80 (15) Å3
Mr = 312.16Z = 4
Monoclinic, P21/aMo Kα radiation
a = 12.7108 (8) ŵ = 1.35 mm1
b = 7.4801 (6) ÅT = 294 K
c = 14.2397 (9) Å0.48 × 0.28 × 0.05 mm
β = 110.542 (5)°
Data collection top
Bruker P4
diffractometer
2431 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.64, Tmax = 0.993 standard reflections every 197 reflections
3919 measured reflections intensity decay: 0.5%
3032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03356 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3032 reflectionsΔρmin = 0.33 e Å3
203 parameters
Special details top

Experimental. The O—H···O and C—H···O hydrogen bonding details are as follows,

Specified hydrogen bonds (with e.s.d.'s except fixed and riding H) ============================================================== D—H H···A D···A D—H···A 0.82 1.84 2.661 (2) 175 O1—H1···O2_$1 0.93 2.34 2.925 (3) 120 C12—H12···O2 0.93 2.80 3.058 (2) 97 C15—H15···S1 0.93 2.88 3.753 (7) 156 C25A—H25A···Cg1_$2 0.93 3.03 3.687 (3) 129 C4—H4···Cg3_$3

The C15—H15···S1 details concern the principal C—H···S contact.

Displacement ellipsoid analysis #============================================================ 220_ALERT B Large Non-Solvent C Ueq(max)/Ueq(min) 3.72 range C24B / C3B

The largest difference for Ueqs are for C24B (minor orientation of the disordered unsubstituted ring) and C3 (thienyl ring) with a ratio of 3.72. The next largest difference is 3.12 (ratio) when comparing C23B and C3. This is not unexpected and larger displacement parameters are usually associated with disordered components such as unsubstituted ferocene rings.

Geometry. Geometry around metals involving ring centroids (Å, °) ex-PLATON for (V) ===========================================================================

Cg1···Fe1 1.6435 (10) Cg2···Fe1 1.656 (3) Cg1···Fe1···Cg2 178.42 (11)

where Cg(1) and Cg(2) are the ring centroids of the following cyclopentadienyl rings: Cg1 = {C11,···,C15}, Cg2 = {C21,···,C25}.

Mean plane data ex-SHELXL97 for molecule (V) ############################################

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.2121(0.0136)x + 5.8213(0.0052)y - 8.9282(0.0122)z = 1.4959(0.0056)

* 0.0009 (0.0013) C11 * -0.0002 (0.0014) C12 * -0.0007 (0.0015) C13 * 0.0013 (0.0014) C14 * -0.0014 (0.0013) C15 1.6433 (0.0010) Fe1 0.1116 (0.0045) C2 - 0.0983 (0.0034) C3 - 0.6876 (0.0059) C4 - 0.2433 (0.0057) C5 - 0.7158 (0.0040) S1

Rms deviation of fitted atoms = 0.0010

3.3900(0.0506)x + 5.6441(0.0208)y - 9.3279(0.0461)z = 4.6422(0.0247)

Angle to previous plane (with approximate e.s.d.) = 2.1 (5)

* 0.0000 (0.0000) C21A * 0.0000 (0.0000) C22A * 0.0000 (0.0000) C23A * 0.0000 (0.0000) C24A * 0.0000 (0.0000) C25A -1.6562 (0.0034) Fe1

Rms deviation of fitted atoms = 0.0000

5.5667(0.0114)x + 3.8299(0.0051)y - 12.0416(0.0056)z = 0.4063(0.0059)

Angle to previous plane (with approximate e.s.d.) = 18.9 (4)

* -0.0023 (0.0010) S1 * 0.0032 (0.0012) C2 * -0.0002 (0.0011) C3 * 0.0047 (0.0013) C4 * -0.0054 (0.0014) C5 1.3267 (0.0041) Fe1 0.0754 (0.0031) C1 0.0071 (0.0035) O1 0.2116 (0.0038) O2 - 0.0852 (0.0031) C11 - 0.5686 (0.0043) C12 0.2146 (0.0037) C15

Rms deviation of fitted atoms = 0.0036

3.2121(0.0136)x + 5.8213(0.0052)y - 8.9282(0.0122)z = 1.4959(0.0056)

Angle to previous plane (with approximate e.s.d.) = 20.94 (12)

* 0.0009 (0.0013) C11 * -0.0002 (0.0014) C12 * -0.0007 (0.0015) C13 * 0.0013 (0.0014) C14 * -0.0014 (0.0013) C15 1.6433 (0.0010) Fe1

Rms deviation of fitted atoms = 0.0010

5.5667(0.0114)x + 3.8299(0.0051)y - 12.0416(0.0056)z = 0.4063(0.0059)

Angle to previous plane (with approximate e.s.d.) = 20.94 (12)

* -0.0023 (0.0010) S1 * 0.0032 (0.0012) C2 * -0.0002 (0.0011) C3 * 0.0047 (0.0013) C4 * -0.0054 (0.0014) C5 1.3267 (0.0041) Fe1 0.0754 (0.0031) C1 0.0071 (0.0035) O1 0.2116 (0.0038) O2

Rms deviation of fitted atoms = 0.0036

6.6815(0.0136)x + 3.4588(0.0073)y - 12.1479(0.0088)z = 0.7222(0.0113)

Angle to previous plane (with approximate e.s.d.) = 5.95 (15)

* 0.0023 (0.0005) O1 * 0.0027 (0.0007) O2 * -0.0070 (0.0017) C1 * 0.0021 (0.0005) C2 0.9750 (0.0055) Fe1 0.0802 (0.0045) S1 - 0.0537 (0.0035) C3 0.2104 (0.0047) C4 0.1418 (0.0036) C5 - 0.2763 (0.0045) C11 - 0.8836 (0.0049) C12 - 0.0081 (0.0062) C15

Rms deviation of fitted atoms = 0.0041

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.21323 (2)0.68733 (4)0.17326 (2)0.03284 (10)
S10.48869 (5)0.31118 (7)0.29133 (4)0.04263 (14)
O10.60248 (14)0.8263 (2)0.50699 (13)0.0526 (4)
O20.42144 (14)0.8583 (2)0.41649 (13)0.0511 (4)
C10.50784 (17)0.7703 (3)0.43977 (15)0.0339 (4)
C20.51874 (17)0.5965 (3)0.39553 (14)0.0317 (4)
C30.43313 (17)0.5007 (2)0.32575 (14)0.0311 (4)
C40.6229 (2)0.3601 (3)0.36833 (17)0.0441 (5)
C50.62604 (18)0.5126 (3)0.41914 (16)0.0395 (5)
C110.31109 (17)0.5176 (2)0.28179 (14)0.0312 (4)
C120.23563 (18)0.6143 (3)0.31779 (15)0.0375 (4)
C130.12450 (19)0.5781 (3)0.25424 (18)0.0463 (5)
C140.1282 (2)0.4594 (3)0.17795 (18)0.0468 (5)
C150.24239 (19)0.4212 (3)0.19446 (16)0.0389 (5)
C21A0.3131 (4)0.8151 (10)0.1093 (7)0.066 (3)0.691 (18)
C22A0.2786 (7)0.9350 (8)0.1693 (4)0.059 (3)0.691 (18)
C23A0.1603 (8)0.9428 (7)0.1311 (5)0.054 (2)0.691 (18)
C24A0.1216 (4)0.8278 (9)0.0474 (5)0.0630 (19)0.691 (18)
C25A0.2161 (7)0.7489 (8)0.0340 (5)0.069 (3)0.691 (18)
C21B0.3083 (10)0.8795 (19)0.1475 (10)0.052 (5)0.309 (18)
C22B0.2219 (18)0.9559 (13)0.1698 (11)0.053 (4)0.309 (18)
C23B0.1229 (9)0.899 (2)0.0999 (17)0.097 (9)0.309 (18)
C24B0.1480 (16)0.788 (2)0.0343 (12)0.116 (11)0.309 (18)
C25B0.2626 (18)0.7756 (19)0.0638 (12)0.064 (6)0.309 (18)
H10.59150.92100.53110.079*
H40.68540.29020.37420.053*
H50.69170.55910.46530.047*
H120.25640.68860.37370.045*
H130.05970.62430.26130.056*
H140.06650.41450.12620.056*
H150.26860.34630.15540.047*
H21A0.38690.78500.11790.080*0.691 (18)
H22A0.32570.99780.22440.071*0.691 (18)
H23A0.11551.01170.15650.065*0.691 (18)
H24A0.04690.80760.00800.076*0.691 (18)
H25A0.21470.66750.01580.083*0.691 (18)
H21B0.38450.89540.18300.062*0.309 (18)
H22B0.22921.03270.22310.063*0.309 (18)
H23B0.05110.93080.09730.117*0.309 (18)
H24B0.09640.73040.02050.139*0.309 (18)
H25B0.30240.70860.03240.077*0.309 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03959 (16)0.02297 (15)0.03278 (15)0.00331 (12)0.00871 (12)0.00089 (11)
S10.0512 (3)0.0277 (3)0.0497 (3)0.0038 (2)0.0185 (3)0.0086 (2)
O10.0456 (9)0.0439 (10)0.0576 (10)0.0016 (7)0.0046 (8)0.0231 (8)
O20.0477 (9)0.0351 (8)0.0588 (10)0.0025 (7)0.0040 (8)0.0183 (8)
C10.0408 (11)0.0298 (10)0.0306 (9)0.0041 (8)0.0117 (8)0.0021 (8)
C20.0418 (10)0.0258 (9)0.0289 (9)0.0012 (8)0.0141 (8)0.0001 (7)
C30.0463 (11)0.0205 (8)0.0301 (9)0.0000 (8)0.0177 (8)0.0014 (7)
C40.0455 (12)0.0383 (12)0.0489 (12)0.0087 (10)0.0170 (10)0.0012 (10)
C50.0428 (11)0.0356 (11)0.0387 (10)0.0002 (9)0.0126 (9)0.0023 (9)
C110.0430 (10)0.0196 (8)0.0314 (9)0.0031 (8)0.0137 (8)0.0001 (7)
C120.0436 (11)0.0365 (11)0.0342 (10)0.0027 (9)0.0160 (9)0.0032 (9)
C130.0431 (12)0.0461 (13)0.0520 (13)0.0050 (10)0.0198 (10)0.0008 (11)
C140.0497 (13)0.0355 (12)0.0504 (13)0.0172 (10)0.0117 (10)0.0042 (10)
C150.0543 (13)0.0203 (9)0.0404 (11)0.0058 (9)0.0146 (10)0.0045 (8)
C21A0.070 (4)0.056 (6)0.085 (7)0.003 (3)0.042 (4)0.033 (5)
C22A0.074 (6)0.028 (4)0.055 (3)0.019 (4)0.002 (4)0.010 (2)
C23A0.071 (5)0.028 (2)0.058 (4)0.014 (4)0.016 (4)0.006 (2)
C24A0.073 (3)0.041 (3)0.050 (3)0.003 (3)0.009 (3)0.009 (3)
C25A0.135 (9)0.041 (3)0.032 (4)0.009 (5)0.029 (5)0.004 (3)
C21B0.043 (5)0.041 (12)0.065 (10)0.001 (5)0.011 (6)0.026 (8)
C22B0.063 (11)0.027 (4)0.074 (10)0.005 (8)0.032 (9)0.018 (6)
C23B0.046 (7)0.073 (17)0.15 (2)0.004 (8)0.001 (11)0.070 (15)
C24B0.116 (18)0.092 (19)0.080 (14)0.063 (15)0.040 (12)0.050 (11)
C25B0.110 (15)0.051 (8)0.034 (10)0.004 (11)0.029 (10)0.003 (6)
Geometric parameters (Å, º) top
Fe1—C112.0488 (19)C2—C31.388 (3)
Fe1—C122.050 (2)C2—C51.430 (3)
Fe1—C132.045 (2)C3—C111.460 (3)
Fe1—C142.032 (2)C4—C51.344 (3)
Fe1—C152.028 (2)C11—C121.432 (3)
Fe1—C21A2.041 (4)C11—C151.438 (3)
Fe1—C22A2.039 (4)C12—C131.411 (3)
Fe1—C23A2.045 (5)C13—C141.417 (3)
Fe1—C24A2.051 (7)C14—C151.416 (3)
Fe1—C25A2.049 (6)C21A—C22A1.410 (4)
Fe1—C21B1.993 (11)C21A—C25A1.410 (4)
Fe1—C22B2.013 (10)C22A—C23A1.410 (4)
Fe1—C23B2.020 (12)C23A—C24A1.410 (4)
Fe1—C24B2.003 (16)C24A—C25A1.410 (4)
Fe1—C25B1.986 (14)C21B—C22B1.370 (10)
S1—C31.7296 (19)C21B—C25B1.370 (10)
S1—C41.712 (2)C22B—C23B1.370 (10)
O1—C11.316 (2)C23B—C24B1.370 (10)
O2—C11.222 (3)C24B—C25B1.370 (10)
C1—C21.472 (3)
C3—S1—C493.29 (11)C12—Fe1—C24A148.2 (2)
O1—C1—O2122.11 (19)C12—Fe1—C25A171.2 (2)
O1—C1—C2113.14 (18)C13—Fe1—C21A172.4 (3)
O2—C1—C2124.74 (18)C13—Fe1—C22A133.6 (3)
C1—C2—C3126.48 (18)C13—Fe1—C23A110.4 (2)
C1—C2—C5120.82 (18)C13—Fe1—C24A116.2 (2)
C3—C2—C5112.63 (18)C13—Fe1—C25A146.8 (3)
S1—C3—C2109.31 (15)C14—Fe1—C21A146.0 (3)
S1—C3—C11115.32 (14)C14—Fe1—C22A171.7 (3)
C2—C3—C11135.23 (17)C14—Fe1—C23A132.0 (3)
S1—C4—C5111.17 (17)C14—Fe1—C24A108.2 (2)
C2—C5—C4113.6 (2)C14—Fe1—C25A114.3 (2)
C3—C11—C12129.38 (17)C15—Fe1—C21A114.6 (2)
C3—C11—C15123.97 (18)C15—Fe1—C22A147.2 (3)
C12—C11—C15106.44 (18)C15—Fe1—C23A170.1 (2)
C11—C12—C13108.60 (19)C15—Fe1—C24A130.6 (2)
C12—C13—C14108.5 (2)C15—Fe1—C25A107.48 (17)
C13—C14—C15107.9 (2)C21A—Fe1—C22A40.44 (11)
C11—C15—C14108.59 (19)C21A—Fe1—C23A67.89 (17)
C3—C11—Fe1130.51 (13)C21A—Fe1—C24A67.8 (2)
C12—C11—Fe169.61 (11)C21A—Fe1—C25A40.34 (12)
C15—C11—Fe168.57 (11)C22A—Fe1—C23A40.40 (11)
C11—C12—Fe169.49 (11)C22A—Fe1—C24A67.82 (19)
C13—C12—Fe169.65 (12)C22A—Fe1—C25A67.87 (18)
C12—C13—Fe170.05 (12)C23A—Fe1—C24A40.27 (13)
C14—C13—Fe169.19 (12)C23A—Fe1—C25A67.8 (2)
C13—C14—Fe170.15 (13)C24A—Fe1—C25A40.24 (14)
C15—C14—Fe169.41 (12)C22A—C21A—Fe169.7 (2)
C11—C15—Fe170.14 (11)C25A—C21A—Fe170.1 (2)
C14—C15—Fe169.77 (13)C21A—C22A—Fe169.9 (2)
C11—Fe1—C1240.90 (9)C23A—C22A—Fe170.0 (2)
C11—Fe1—C1368.66 (9)C22A—C23A—Fe169.6 (2)
C11—Fe1—C1469.18 (9)C24A—C23A—Fe170.1 (2)
C11—Fe1—C1541.30 (8)C23A—C24A—Fe169.6 (2)
C12—Fe1—C1340.30 (10)C25A—C24A—Fe169.8 (2)
C12—Fe1—C1468.38 (9)C21A—C25A—Fe169.5 (2)
C12—Fe1—C1568.61 (9)C24A—C25A—Fe170.0 (2)
C13—Fe1—C1440.66 (9)C22A—C21A—C25A108
C13—Fe1—C1568.41 (10)C21A—C22A—C23A108
C14—Fe1—C1540.81 (9)C22A—C23A—C24A108
C11—Fe1—C21A108.57 (14)C23A—C24A—C25A108
C11—Fe1—C22A115.98 (17)C21A—C25A—C24A108
C11—Fe1—C23A148.3 (2)C22B—C21B—C25B108
C11—Fe1—C24A170.0 (2)C21B—C22B—C23B108
C11—Fe1—C25A131.08 (18)C22B—C23B—C24B108
C12—Fe1—C21A133.1 (2)C23B—C24B—C25B108
C12—Fe1—C22A110.81 (18)C21B—C25B—C24B108
C12—Fe1—C23A117.34 (17)
O1—C1—C2—C3177.46 (19)C11—Fe1—C12—C13120.13 (19)
O2—C1—C2—C33.9 (3)C14—Fe1—C12—C1337.40 (14)
O1—C1—C2—C55.7 (3)C15—Fe1—C12—C1381.42 (15)
O2—C1—C2—C5172.9 (2)C13—Fe1—C12—C11120.13 (19)
C1—C2—C3—S1176.63 (16)C14—Fe1—C12—C1182.74 (13)
C5—C2—C3—S10.4 (2)C15—Fe1—C12—C1138.72 (12)
C1—C2—C3—C118.0 (4)Fe1—C12—C13—C1458.68 (16)
C5—C2—C3—C11175.0 (2)C11—C12—C13—Fe158.73 (15)
C4—S1—C3—C20.11 (16)C11—Fe1—C13—C1237.44 (13)
C4—S1—C3—C11176.52 (15)C14—Fe1—C13—C12119.9 (2)
C3—S1—C4—C50.63 (18)C15—Fe1—C13—C1281.97 (14)
C1—C2—C5—C4176.31 (19)C11—Fe1—C13—C1482.49 (15)
C3—C2—C5—C40.9 (3)C15—Fe1—C13—C1437.96 (14)
S1—C3—C11—C12155.42 (18)Fe1—C13—C14—C1559.39 (15)
C2—C3—C11—C1219.8 (4)C12—C13—C14—Fe159.20 (16)
S1—C3—C11—C1518.6 (2)C11—Fe1—C14—C1537.86 (12)
C2—C3—C11—C15166.2 (2)C13—Fe1—C14—C15119.0 (2)
S1—C3—C11—Fe1108.36 (16)C15—Fe1—C14—C13119.0 (2)
C2—C3—C11—Fe176.5 (3)C11—Fe1—C14—C1381.10 (14)
S1—C4—C5—C21.0 (2)Fe1—C14—C15—C1159.60 (14)
C3—C11—C12—C13174.91 (19)C13—C14—C15—Fe159.85 (16)
C3—C11—C15—C14175.38 (18)Fe1—C11—C15—C1459.38 (15)
C12—C11—C15—C140.2 (2)C3—C11—C15—Fe1125.24 (18)
C11—C12—C13—C140.1 (3)C12—C11—C15—Fe159.59 (14)
C12—C13—C14—C150.2 (3)C13—Fe1—C15—C1181.81 (13)
C13—C14—C15—C110.3 (2)C14—Fe1—C15—C11119.63 (18)
Fe1—C11—C12—C1358.82 (16)C11—Fe1—C15—C14119.63 (18)
C15—C11—C12—Fe158.92 (13)C13—Fe1—C15—C1437.81 (13)
C3—C11—C12—Fe1126.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.661 (2)175
C12—H12···O20.932.342.925 (3)120
C15—H15···S10.932.803.058 (2)97
C25A—H25A···Cg2ii0.932.883.753 (7)156
C4—H4···Cg3iii0.933.033.687 (3)129
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C10H7O2S)]
Mr312.16
Crystal system, space groupMonoclinic, P21/a
Temperature (K)294
a, b, c (Å)12.7108 (8), 7.4801 (6), 14.2397 (9)
β (°) 110.542 (5)
V3)1267.80 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.48 × 0.28 × 0.05
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.64, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
3919, 3032, 2431
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.05
No. of reflections3032
No. of parameters203
No. of restraints56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995) and PLATON (Spek, 1998), SHELXL97 and PREP8 (Ferguson, 1998).

Selected geometric parameters (Å, º) top
Fe1—C112.0488 (19)O1—C11.316 (2)
Fe1—C122.050 (2)O2—C11.222 (3)
Fe1—C132.045 (2)C1—C21.472 (3)
Fe1—C142.032 (2)C2—C31.388 (3)
Fe1—C152.028 (2)C2—C51.430 (3)
S1—C31.7296 (19)C3—C111.460 (3)
S1—C41.712 (2)C4—C51.344 (3)
C3—S1—C493.29 (11)C3—C2—C5112.63 (18)
O1—C1—O2122.11 (19)S1—C3—C2109.31 (15)
O1—C1—C2113.14 (18)S1—C3—C11115.32 (14)
O2—C1—C2124.74 (18)C2—C3—C11135.23 (17)
C1—C2—C3126.48 (18)S1—C4—C5111.17 (17)
C1—C2—C5120.82 (18)C2—C5—C4113.6 (2)
O1—C1—C2—C55.7 (3)C2—C3—C11—C1219.8 (4)
C1—C2—C3—C118.0 (4)S1—C3—C11—C1518.6 (2)
S1—C3—C11—C12155.42 (18)C2—C3—C11—C15166.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.842.661 (2)175
C12—H12···O20.932.342.925 (3)120
C15—H15···S10.932.803.058 (2)97
C25A—H25A···Cg2ii0.932.883.753 (7)156
C4—H4···Cg3iii0.933.033.687 (3)129
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds