Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C12H15NO7S, the molecular conformation shows a concerted disrotatory twist of the nitro group and the galactose fragment out of the plane of the aryl ring. The mol­ecules are linked by O-H...O hydrogen bonds [O...O range 2.725 (2)-3.024 (2) Å and O-H...O range 155-175°] to form a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012427/sk1419sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012427/sk1419Isup2.hkl
Contains datablock I

CCDC reference: 156161

Comment top

We have recently discussed the interplay between molecular conformation and intermolecular forces, particularly soft hydrogen bonds of the C—H···O type, in a range of 2-nitrophenylthiolates, 2-O2NC6H4SX (Low, Storey et al., 2000; Low, Glidewell & Wardell, 2000; Glidewell et al., 2000). Two distinct conformational types can be observed in this series of compounds: in one conformation, corresponding to the global energy minimum, both the nitro group and α-atom of substituent X are effectively coplanar with the nitrated aryl ring; the second conformer, in which the nitro group and the substituent X exhibit a significant and concerted twist out of the aryl ring plane, represents a local energy minimum and seems to occur only in the presence of intermolecular hydrogen bonds. As a further test of this idea, we report here a structural investigation of 2-nitrophenyl-β-D-thiogalactopyranoside, (I), selected for study because of the potential of the galactose fragment for the formation of multiple intermolecular O—H···O hydrogen bonds.

The nitro group in (I) (Fig. 1) is twisted out of the plane of the adjacent aryl ring and this is accompanied by the usual (Low, Storey et al., 2000; Low, Glidewell & Wardell, 2000; Glidewell et al., 2000) disrotatory twist of the S substituent out of this plane, as illustrated by the torsion angles C11—C12—N1—O11 and C12—C11—S1—C21 (Table 1). The extensive hydrogen bonding described below involves the nitro O11 atom as one of the hydrogen-bond acceptors. The β-D-galactopyranoside fragment adopts the usual chair conformation (Longchambon et al., 1975; Sheldrick, 1976), with all substituents other than O4 in equatorial sites.

The bond lengths in the nitroaryl ring portion (Table 1) do not show the marked quinonoid bond fixation observed in 2-O2NC6H4SCHCHPh (Low, Storey et al., 2000). The C—O bond lengths in the galactose fragment show the usual difference between C21—O5 and C25—O5; the exocyclic C—O bonds span the range 1.4151 (17)–1.4358 (17) Å, whereas in β-D-galactopyranose itself, the exocyclic C—O bond distances are all of similar lengths, apart from the hemiacetal bond at C1 (Sheldrick, 1976).

The molecules of (I) are linked by four different hydrogen bonds: O3 is both a hydrogen-bond donor and a double acceptor, O6 is both a donor and acceptor, O4 is a donor only and the nitro O11 atom is a single acceptor (Table 2). Each molecule acts as a hydrogen-bond donor to three others and as a hydrogen-bond acceptor from three further molecules, and the overall supramolecular structure takes the form of a three-dimensional framework, which is best analysed in terms of the interaction of the individual motifs parallel to [100], [010] and [001]. Atoms O4 and O6 in the molecule at (x, y, z) both act as donor to O3 in the molecule at (−1/2 + x, 3/2 − y, 1 − z), while O4 and O6 at (−1/2 + x, 3/2 − y, 1 − z), in turn, are donors to O3 at (−1 + x, y, z), and propagation of these interactions produces a spiral chain generated by the 21 screw axis along (x, 3/4, 1/2). The O4 and O6 donors individually generate C(5) and C(7) (Bernstein et al., 1995) spirals along [100]; embedded in the spiral chains are R12(8) rings. At the same time, O2 in the molecule at (x, y, z) acts as donor to O6 at (1 + x, y, z), so producing by translation a C(8) chain parallel to [100]. The combination of this chain with the C(5) spiral generates a chain of fused R33(16) rings parallel to [100] (Fig. 2)

Atom O3 at (x, y, z) is itself a hydrogen-bond donor to O11 at (2 − x, 1/2 + y, 3/2 − z), while O3 at (2 − x, 1/2 + y, 3/2 − z) is a donor to O11 at (x, 1 + y, z); this hydrogen bond thus produces a C(10) spiral parallel to [010] generated by the 21 screw axis along (1, y, 3/4) (Fig. 3). The combination of the two types of spiral along [100] and [010], respectively, generates a third type of spiral, a C22(15) chain parallel to [001], in which alternate molecules act as donor donors and double acceptors of hydrogen bonds (Fig. 4). The [100] and [010] spirals can each be constructed using a single type of hydrogen bond; concurrent use of these two types generates the [001] spiral. By means of these three motifs parallel to [100], [010] and [001], the molecule at (x, y, z) is linked to those at (±1 + x, y, z), (x, ±1 + y, z) and (x, y, ±1 + z), so that a single framework is sufficient to define the entire crystal structure.

Experimental top

A sample of compound (I) was obtained from Aldrich. Crystals suitable for single-crystal X-ray diffraction analysis were grown from a solution in ethanol.

Refinement top

Compound (I) crystallized in the orthorhombic system; space group P212121 was assigned uniquely from the systematic absences. H atoms were treated as riding atoms, with C—H = 0.93–0.98 Å and O—H = 0.82 Å. Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: XPREP (Bruker, 1997); cell refinement: XPREP; data reduction: XPREP; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing a chain of fused R33(16) rings parallel to [100]. For the sake of clarity, only the H atoms involved in the motif shown are drawn. The atoms marked with a star (*) or hash (#) are at the symmetry positions (−1/2 + x, 3/2 − y, 1 − z) and (1 + x, y, z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I) showing a C(10) spiral parallel to [010]. For the sake of clarity only the H atoms involved in the motif shown are drawn. The atom marked with a star (*) is at the symmetry position (2 − x, 1/2 + y, 3/2 − z).
[Figure 4] Fig. 4. Part of the crystal structure of (I) showing a C22(15) spiral parallel to [001]. For the sake of clarity, only the H atoms involved in the motif shown are drawn. The atoms marked with a star (*) or hash (#) are at the symmetry positions (−1/2 + x, 3/2 − y, 1 − z) and (2 − x, 1/2 + y, 3/2 − z), respectively.
2-Nitrophenyl-β-D-thiogalactopyranoside top
Crystal data top
C12H15NO7SDx = 1.559 Mg m3
Mr = 317.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3097 reflections
a = 8.2214 (4) Åθ = 2.3–27.4°
b = 11.4293 (5) ŵ = 0.27 mm1
c = 14.3861 (6) ÅT = 298 K
V = 1351.79 (10) Å3Block, yellow
Z = 40.37 × 0.30 × 0.30 mm
F(000) = 664
Data collection top
KappaCCD
diffractometer
3097 independent reflections
Radiation source: fine-focus sealed X-ray tube2874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scans with κ offsetsθmax = 27.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 107
Tmin = 0.905, Tmax = 0.922k = 1414
10075 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3097 reflectionsΔρmax = 0.23 e Å3
188 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C12H15NO7SV = 1351.79 (10) Å3
Mr = 317.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2214 (4) ŵ = 0.27 mm1
b = 11.4293 (5) ÅT = 298 K
c = 14.3861 (6) Å0.37 × 0.30 × 0.30 mm
Data collection top
KappaCCD
diffractometer
3097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2874 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.922Rint = 0.023
10075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.23 e Å3
S = 1.01Δρmin = 0.21 e Å3
3097 reflectionsAbsolute structure: Flack (1983)
188 parametersAbsolute structure parameter: 0.03 (6)
0 restraints
Special details top

Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77449 (5)0.61321 (4)0.81936 (2)0.03595 (10)
C110.71053 (17)0.60652 (12)0.93619 (9)0.0288 (3)
C120.81725 (18)0.57723 (12)1.00849 (10)0.0304 (3)
N10.99067 (17)0.55948 (11)0.99031 (9)0.0369 (3)
O111.03245 (16)0.52698 (13)0.91302 (9)0.0552 (4)
O121.08659 (16)0.57771 (12)1.05384 (9)0.0542 (3)
C130.7683 (2)0.56643 (15)1.10035 (11)0.0403 (4)
C140.6093 (2)0.58725 (16)1.12318 (11)0.0458 (4)
C150.5008 (2)0.62165 (16)1.05453 (12)0.0423 (4)
C160.54973 (19)0.62961 (14)0.96273 (11)0.0353 (3)
C210.62772 (17)0.71145 (13)0.76760 (9)0.0306 (3)
C220.71078 (17)0.76739 (12)0.68327 (10)0.0303 (3)
O20.84180 (15)0.83866 (11)0.71266 (8)0.0452 (3)
C230.59022 (19)0.84516 (13)0.63260 (10)0.0314 (3)
O30.66404 (13)0.88920 (10)0.54919 (7)0.0399 (2)
C240.43542 (18)0.78063 (13)0.60848 (10)0.0315 (3)
O40.47163 (14)0.69812 (11)0.53711 (7)0.0401 (3)
C250.36809 (17)0.72243 (14)0.69650 (10)0.0331 (3)
C260.2202 (2)0.64512 (16)0.68063 (12)0.0433 (4)
O60.09260 (10)0.71183 (8)0.64071 (8)0.0573 (4)
O50.48775 (10)0.64780 (8)0.73943 (7)0.0337 (2)
H130.84280.54531.14600.048*
H140.57420.57841.18420.055*
H150.39400.63961.07040.051*
H160.47420.65080.91760.042*
H210.59690.77210.81240.037*
H220.75070.70630.64130.036*
H20.92810.80630.70020.054*
H230.56280.91150.67280.038*
H30.74800.92410.56240.060*
H240.35530.83680.58500.038*
H40.38870.66230.52310.060*
H250.33840.78390.74080.040*
H26A0.24870.58110.63950.052*
H26B0.18450.61220.73930.052*
H60.08520.69640.58520.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03172 (18)0.0494 (2)0.02675 (16)0.01206 (17)0.00061 (14)0.00108 (15)
C110.0280 (7)0.0307 (6)0.0277 (6)0.0007 (6)0.0014 (5)0.0009 (5)
C120.0280 (8)0.0301 (6)0.0330 (7)0.0032 (5)0.0020 (6)0.0007 (5)
N10.0330 (7)0.0378 (6)0.0397 (7)0.0087 (6)0.0038 (6)0.0028 (6)
O110.0453 (7)0.0764 (9)0.0440 (7)0.0283 (7)0.0025 (6)0.0005 (6)
O120.0364 (6)0.0650 (8)0.0611 (8)0.0055 (6)0.0171 (6)0.0064 (6)
C130.0447 (9)0.0456 (8)0.0306 (7)0.0022 (8)0.0064 (7)0.0011 (6)
C140.0499 (10)0.0566 (10)0.0309 (8)0.0023 (9)0.0087 (7)0.0010 (7)
C150.0321 (8)0.0490 (9)0.0457 (9)0.0004 (7)0.0103 (7)0.0019 (7)
C160.0266 (7)0.0417 (8)0.0377 (7)0.0012 (6)0.0013 (6)0.0033 (6)
C210.0254 (7)0.0390 (7)0.0272 (6)0.0034 (6)0.0031 (5)0.0001 (6)
C220.0240 (6)0.0370 (7)0.0297 (6)0.0002 (6)0.0016 (6)0.0014 (6)
O20.0293 (6)0.0516 (6)0.0547 (7)0.0093 (5)0.0084 (5)0.0009 (5)
C230.0288 (7)0.0342 (7)0.0311 (7)0.0031 (6)0.0016 (6)0.0001 (5)
O30.0369 (6)0.0446 (6)0.0384 (5)0.0051 (5)0.0008 (5)0.0094 (5)
C240.0272 (7)0.0379 (7)0.0293 (7)0.0060 (6)0.0036 (6)0.0002 (6)
O40.0379 (6)0.0514 (6)0.0311 (5)0.0070 (5)0.0019 (5)0.0083 (5)
C250.0240 (7)0.0457 (8)0.0295 (7)0.0046 (6)0.0006 (5)0.0007 (6)
C260.0252 (7)0.0657 (10)0.0389 (8)0.0046 (7)0.0003 (7)0.0041 (8)
O60.0268 (6)0.1052 (11)0.0399 (6)0.0087 (7)0.0053 (5)0.0005 (7)
O50.0255 (5)0.0426 (5)0.0330 (5)0.0012 (4)0.0041 (4)0.0055 (4)
Geometric parameters (Å, º) top
C11—C121.4013 (19)O2—H20.8200
C12—C131.387 (2)C23—O31.4358 (17)
C13—C141.369 (3)C23—C241.511 (2)
C14—C151.388 (2)C23—H230.9800
C15—C161.384 (2)O3—H30.8200
C16—C111.401 (2)C24—O41.4255 (18)
C12—N11.464 (2)C24—C251.534 (2)
N1—O111.2215 (18)C24—H240.9800
N1—O121.2250 (18)O4—H40.8200
C13—H130.9300C25—O51.4412 (16)
C14—H140.9300C25—C261.520 (2)
C15—H150.9300C25—H250.9800
C16—H160.9300C26—O61.4186 (19)
C21—O51.4205 (16)C26—H26A0.9700
C21—C221.5320 (19)C26—H26B0.9700
C21—H210.9800O6—H60.8200
C22—O21.4151 (17)S1—C111.7628 (14)
C22—C231.518 (2)S1—C211.8086 (14)
C22—H220.9800
C11—S1—C21102.73 (7)C23—C22—H22109.9
C16—C11—C12115.70 (13)C21—C22—H22109.9
C16—C11—S1122.21 (11)C22—O2—H2109.5
C12—C11—S1122.09 (11)O3—C23—C24109.58 (12)
C13—C12—C11123.15 (14)O3—C23—C22109.31 (12)
C13—C12—N1116.14 (13)C24—C23—C22111.98 (12)
C11—C12—N1120.69 (13)O3—C23—H23108.6
O11—N1—O12123.35 (15)C24—C23—H23108.6
O11—N1—C12118.60 (13)C22—C23—H23108.6
O12—N1—C12118.04 (14)C23—O3—H3109.5
C14—C13—C12119.36 (15)O4—C24—C23108.20 (12)
C14—C13—H13120.3O4—C24—C25112.52 (12)
C12—C13—H13120.3C23—C24—C25109.03 (12)
C13—C14—C15119.49 (15)O4—C24—H24109.0
C13—C14—H14120.3C23—C24—H24109.0
C15—C14—H14120.3C25—C24—H24109.0
C16—C15—C14120.74 (16)C24—O4—H4109.5
C16—C15—H15119.6O5—C25—C26105.44 (13)
C14—C15—H15119.6O5—C25—C24111.36 (11)
C15—C16—C11121.46 (15)C26—C25—C24114.64 (12)
C15—C16—H16119.3O5—C25—H25108.4
C11—C16—H16119.3C26—C25—H25108.4
O5—C21—C22110.42 (11)C24—C25—H25108.4
O5—C21—S1109.88 (9)O6—C26—C25109.87 (13)
C22—C21—S1106.72 (9)O6—C26—H26A109.7
O5—C21—H21109.9C25—C26—H26A109.7
C22—C21—H21109.9O6—C26—H26B109.7
S1—C21—H21109.9C25—C26—H26B109.7
O2—C22—C23107.66 (12)H26A—C26—H26B108.2
O2—C22—C21110.05 (11)C26—O6—H6109.5
C23—C22—C21109.49 (12)C21—O5—C25111.85 (10)
O2—C22—H22109.9
C21—S1—C11—C1624.36 (14)S1—C21—C22—C23176.28 (9)
C21—S1—C11—C12155.93 (12)S1—C21—O5—C25179.18 (9)
C16—C11—C12—C132.6 (2)O5—C21—C22—C2356.89 (15)
S1—C11—C12—C13177.11 (12)O2—C22—C23—O365.42 (14)
C16—C11—C12—N1175.59 (13)C21—C22—C23—O3174.95 (11)
S1—C11—C12—N14.69 (19)O2—C22—C23—C24172.96 (12)
C13—C12—N1—O11154.42 (15)C21—C22—C23—C2453.32 (15)
C11—C12—N1—O1127.3 (2)O3—C23—C24—O451.02 (15)
C13—C12—N1—O1225.3 (2)C22—C23—C24—O470.45 (15)
C11—C12—N1—O12152.99 (14)O3—C23—C24—C25173.70 (12)
C11—C12—C13—C141.3 (2)C22—C23—C24—C2552.23 (16)
N1—C12—C13—C14176.96 (15)O4—C24—C25—O564.90 (15)
C12—C13—C14—C151.6 (3)C23—C24—C25—O555.14 (16)
C13—C14—C15—C163.1 (3)C24—C25—O5—C2161.34 (15)
C14—C15—C16—C111.8 (3)O4—C24—C25—C2654.69 (17)
C12—C11—C16—C151.1 (2)C23—C24—C25—C26174.73 (13)
S1—C11—C16—C15178.66 (13)O5—C25—C26—O6178.30 (12)
C11—S1—C21—O585.82 (10)C24—C25—C26—O658.86 (17)
C11—S1—C21—C22154.44 (10)C25—O5—C21—C2261.72 (14)
O5—C21—C22—O2175.05 (11)C26—C25—O5—C21173.75 (11)
S1—C21—C22—O265.57 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.821.932.725 (2)163
O3—H3···O11ii0.822.183.000 (2)175
O4—H4···O3iii0.822.202.989 (2)161
O6—H6···O3iii0.822.263.024 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO7S
Mr317.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.2214 (4), 11.4293 (5), 14.3861 (6)
V3)1351.79 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.37 × 0.30 × 0.30
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.905, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
10075, 3097, 2874
Rint0.023
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.01
No. of reflections3097
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21
Absolute structureFlack (1983)
Absolute structure parameter0.03 (6)

Computer programs: XPREP (Bruker, 1997), XPREP, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek, 2000), SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
C11—C121.4013 (19)C21—O51.4205 (16)
C12—C131.387 (2)C22—O21.4151 (17)
C13—C141.369 (3)C23—O31.4358 (17)
C14—C151.388 (2)C24—O41.4255 (18)
C15—C161.384 (2)C25—O51.4412 (16)
C16—C111.401 (2)C26—O61.4186 (19)
C12—N11.464 (2)S1—C111.7628 (14)
N1—O111.2215 (18)S1—C211.8086 (14)
N1—O121.2250 (18)
C11—S1—C21102.73 (7)O11—N1—O12123.35 (15)
C21—S1—C11—C12155.93 (12)O5—C21—C22—C2356.89 (15)
C11—C12—N1—O1127.3 (2)C21—C22—C23—C2453.32 (15)
C11—S1—C21—O585.82 (10)C22—C23—C24—C2552.23 (16)
C11—S1—C21—C22154.44 (10)C23—C24—C25—O555.14 (16)
S1—C21—C22—C23176.28 (9)C24—C25—O5—C2161.34 (15)
S1—C21—O5—C25179.18 (9)C25—O5—C21—C2261.72 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.821.932.725 (2)163
O3—H3···O11ii0.822.183.000 (2)175
O4—H4···O3iii0.822.202.989 (2)161
O6—H6···O3iii0.822.263.024 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds