Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Ni(Im)6](iPr-dtp)2 or [Ni(C3H4N2)6](C6H14O2PS2)2, the coordination around the Ni atom, located on an inversion centre, is octhahedral with all positions being occupied by tertiary N atoms of the imidazole moieties. Hydro­gen bonds link the anions and cations into a two-dimensional network in the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012841/sk1416sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012841/sk1416Isup2.hkl
Contains datablock I

CCDC reference: 156146

Comment top

Imidazole is of considerable interest as a ligand in that its presence in many biological systems (for example in the histidyl residue of proteins) provides a potential binding site for metal ions. Imidazole itself is a monodentate ligand and forms complexes with metal ions through its tertiary N atom. Some complexes of imidazole and its derivatives with transition et al. ions have been reported (Brooks & Davidson, 1960; Inoue et al., 1966; Rao & Li, 1966; Eilbeck et al., 1967; Davis & Smith, 1971). Complexes of copper(II) and cobalt(II) with carboxylate and imidazole ligands have been studied as models for metalloproteins since they both contain functionalities in the side chain (Sigel, 1980; Bernarducci et al., 1983; Abuhijleh & Woods, 1992). In addition, some of these copper(II) compounds were found to have a variety of pharmacological activities (Tamura et al., 1987) and superoxide dismutase activities (Bhirud & Srivastava, 1990). Some complexes of zinc(II) play an important role in biological organisms, especially in enzymatic reactions (Vallee & Wacker, 1970). \scheme1

The asymmetric unit of the title complex, (I), is formed by one half of the hexakis(1H-imidazole)nickel(II) molecule, with the Ni atom located at the center of symmetry, and one bis(O,O'-diisopropyl dithiophosphate) anion. The Ni1—N1, Ni1—N3 and Ni1—N5 bond distances agree with those of hexakis(imidazole)nickel(II) disalicylate [2.141 (1), 2.120 (1) and 2.124 (1) Å, respectively; Jian et al., 1999] and hexakis(imidazoole)nickel(II) bis(4-methoxybenzoate) [2.141 (2), 2.127 (2) and 2.140 (2) Å, respectively; Wang et al., 2000]. The environment around the Ni atom is octahedral, with the N1, N1A, N3, N3A, N5 and N5A atoms occupying all the positions. The two P—S bond lengths of the anions are nearly the same. These bond lengths are different from those when the dialkyl dithiophosphate ligand is coordinated through its S atoms, e.g. 1.99 and 1.98 Å in Ni{(EtO)2PS2}(py)2 (Ooi & Fernando, 1967), and 2.005 (6), 1.925 (6), 1.997 (8) and 1.926 (9) Å in Zn{(iPrO)2PS2}2(bipy) (Harrison et al., 1986). The P—O and C—C bond lengths of the O,O'-diisopropyl dithiophosphate anions are comparable with the reported values, while the O—C distances are shorter (Hoskins & Tiekink, 1985; Sanz-Aparicio et al., 1986).

All the N—H atoms from the hexakis(imidazole)nickel(II) moiety form N—H···S intermolecular hydrogen bonds with the S atoms of the O,O'-diisopropyl dithiophosphate anions (Table 2). One of the S atoms also shows short S···S contacts [S2···S2(-x, y, 1/2 − z) 3.350 (2)°]. Hydrogen bonds link the anions and cations into a two-dimensional network parallel to the bc plane, with no interactions in the stacking (i.e. a) direction.

Experimental top

The title compound was prepared by the addition of imidazole (0.06 mmol) to a solution of nickel(II) bis(O,O'-diisopropyl dithiophosphate) in EtOH (50 ml). The mixture was heated until dissolved, after which it was cooled and filtered. Light-blue single crystals suitable for X-ray analysis were obtained by recrystalization from anhydrous EtOH solution.

Refinement top

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on their attached atoms. The highest peak and deepest hole are located 0.94 and 0.78 Å, respectively, from the S1 atom.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Structure of hexakis(imidazole)nickel(II) bis(O,O'-disopropyl dithiophosphate) top
Crystal data top
[Ni(C3H4N2)6](C6H14O2PS2)2F(000) = 1880
Mr = 893.73Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.7585 (4) ÅCell parameters from 6747 reflections
b = 11.4460 (2) Åθ = 1.8–28.4°
c = 16.5815 (1) ŵ = 0.76 mm1
β = 112.689 (1)°T = 293 K
V = 4335.32 (11) Å3Slab, light blue
Z = 40.40 × 0.34 × 0.12 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5353 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
Detector resolution: 8.33 pixels mm-1θmax = 28.5°, θmin = 1.8°
ω scansh = 1333
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1514
Tmin = 0.750, Tmax = 0.914l = 2221
15098 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1162P)2]
where P = (Fo2 + 2Fc2)/3
5353 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ni(C3H4N2)6](C6H14O2PS2)2V = 4335.32 (11) Å3
Mr = 893.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.7585 (4) ŵ = 0.76 mm1
b = 11.4460 (2) ÅT = 293 K
c = 16.5815 (1) Å0.40 × 0.34 × 0.12 mm
β = 112.689 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5353 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3099 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.914Rint = 0.076
15098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.07Δρmax = 1.32 e Å3
5353 reflectionsΔρmin = 0.65 e Å3
241 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.0371 (2)
P10.14921 (5)0.46690 (10)0.26680 (8)0.0454 (3)
S10.20489 (6)0.36125 (13)0.35270 (10)0.0687 (4)
S20.06624 (6)0.44270 (12)0.24482 (11)0.0688 (4)
O10.16492 (17)0.4433 (3)0.1831 (2)0.0709 (10)
O20.15978 (16)0.5992 (3)0.2924 (3)0.0731 (11)
N10.01946 (16)0.1496 (3)0.0614 (2)0.0424 (8)
N20.00617 (19)0.3123 (3)0.1358 (2)0.0540 (10)
H2B0.00930.37720.15990.065*
N30.06504 (17)0.0480 (3)0.1214 (2)0.0451 (9)
N40.13288 (19)0.1472 (4)0.2238 (3)0.0604 (11)
H4A0.15910.19930.24840.073*
N50.06053 (16)0.1037 (3)0.0312 (2)0.0418 (8)
N60.09742 (19)0.2365 (3)0.0890 (3)0.0552 (10)
H6A0.09930.29180.12280.066*
C10.0626 (2)0.1628 (4)0.0923 (3)0.0527 (12)
H1A0.09310.11050.08290.063*
C20.0546 (2)0.2634 (4)0.1388 (3)0.0565 (12)
H2A0.07780.29240.16690.068*
C30.0139 (2)0.2433 (4)0.0891 (3)0.0475 (11)
H3A0.04700.25890.07730.057*
C40.0487 (2)0.1823 (4)0.0927 (3)0.0491 (11)
H4B0.01130.19840.13360.059*
C50.1426 (2)0.1895 (4)0.0235 (3)0.0581 (13)
H5A0.18190.20900.00620.070*
C60.1195 (2)0.1084 (4)0.0122 (3)0.0512 (11)
H6B0.14090.06210.05990.061*
C70.0993 (2)0.1386 (4)0.1382 (3)0.0560 (12)
H7A0.10040.19120.09610.067*
C80.1175 (3)0.0586 (5)0.2636 (3)0.0752 (18)
H8A0.13290.04260.32320.090*
C90.0762 (3)0.0022 (4)0.2016 (3)0.0668 (15)
H9A0.05770.06840.21110.080*
C100.1442 (3)0.5124 (5)0.1070 (4)0.0752 (17)
H10A0.13400.58900.12350.090*
C110.1968 (4)0.5296 (7)0.0829 (6)0.127 (4)
H11A0.22870.56090.13210.191*
H11B0.18690.58280.03460.191*
H11C0.20810.45580.06670.191*
C120.0908 (5)0.4643 (7)0.0383 (4)0.140 (4)
H12A0.06050.45720.06060.210*
H12B0.09930.38880.02090.210*
H12C0.07800.51580.01130.210*
C130.2153 (3)0.6572 (6)0.3143 (5)0.086 (2)
H13A0.23770.61590.28550.103*
C140.2500 (5)0.6592 (8)0.4085 (5)0.145 (4)
H14A0.25830.58060.42990.218*
H14B0.22840.69830.43770.218*
H14C0.28610.70000.41980.218*
C150.1997 (4)0.7780 (6)0.2739 (7)0.157 (4)
H15A0.17700.77060.21240.236*
H15B0.23500.82060.28280.236*
H15C0.17740.81910.30100.236*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0469 (5)0.0286 (4)0.0359 (4)0.0061 (3)0.0163 (3)0.0018 (3)
P10.0466 (7)0.0460 (6)0.0464 (7)0.0095 (5)0.0208 (6)0.0039 (5)
S10.0510 (8)0.0691 (9)0.0718 (9)0.0099 (6)0.0081 (7)0.0034 (7)
S20.0472 (8)0.0536 (8)0.1079 (12)0.0056 (6)0.0324 (8)0.0240 (7)
O10.079 (3)0.080 (3)0.055 (2)0.013 (2)0.027 (2)0.0074 (19)
O20.068 (2)0.0472 (19)0.116 (3)0.0150 (17)0.048 (2)0.011 (2)
N10.054 (2)0.0321 (17)0.0384 (19)0.0051 (16)0.0152 (18)0.0000 (14)
N20.078 (3)0.0388 (19)0.0349 (19)0.0050 (19)0.010 (2)0.0069 (15)
N30.053 (2)0.0351 (18)0.044 (2)0.0082 (17)0.0152 (18)0.0055 (15)
N40.062 (3)0.049 (2)0.055 (2)0.0019 (19)0.006 (2)0.0146 (19)
N50.052 (2)0.0361 (18)0.0419 (19)0.0099 (16)0.0226 (18)0.0003 (14)
N60.073 (3)0.045 (2)0.056 (2)0.016 (2)0.033 (2)0.0054 (18)
C10.064 (3)0.048 (3)0.049 (3)0.008 (2)0.026 (2)0.007 (2)
C20.074 (3)0.054 (3)0.044 (3)0.004 (3)0.026 (3)0.004 (2)
C30.055 (3)0.041 (2)0.041 (2)0.005 (2)0.012 (2)0.0003 (18)
C40.057 (3)0.041 (2)0.054 (3)0.007 (2)0.026 (2)0.0057 (19)
C50.055 (3)0.059 (3)0.064 (3)0.024 (2)0.026 (3)0.009 (2)
C60.057 (3)0.045 (2)0.049 (3)0.009 (2)0.018 (2)0.000 (2)
C70.066 (3)0.050 (3)0.049 (3)0.003 (2)0.019 (3)0.005 (2)
C80.109 (5)0.058 (3)0.039 (3)0.004 (3)0.006 (3)0.006 (2)
C90.101 (4)0.045 (3)0.042 (3)0.006 (3)0.014 (3)0.000 (2)
C100.094 (5)0.063 (3)0.059 (3)0.005 (3)0.019 (3)0.017 (3)
C110.184 (9)0.133 (7)0.120 (7)0.061 (6)0.119 (7)0.062 (5)
C120.208 (11)0.096 (5)0.054 (4)0.008 (6)0.017 (5)0.006 (4)
C130.071 (4)0.080 (4)0.120 (6)0.030 (3)0.051 (4)0.026 (4)
C140.197 (10)0.120 (7)0.098 (6)0.069 (7)0.035 (6)0.043 (5)
C150.135 (8)0.071 (5)0.239 (12)0.054 (5)0.043 (8)0.024 (6)
Geometric parameters (Å, º) top
Ni1—N3i2.108 (4)N3—C71.301 (6)
Ni1—N32.108 (4)N3—C91.375 (6)
Ni1—N5i2.126 (3)N4—C81.342 (7)
Ni1—N52.126 (3)N4—C71.344 (6)
Ni1—N12.140 (3)N5—C41.305 (5)
Ni1—N1i2.140 (3)N5—C61.357 (6)
P1—O21.568 (3)N6—C51.334 (7)
P1—O11.603 (4)N6—C41.337 (6)
P1—S21.9626 (18)C1—C21.357 (6)
P1—S11.9690 (19)C5—C61.342 (6)
O1—C101.407 (6)C8—C91.333 (8)
O2—C131.441 (6)C10—C121.479 (10)
N1—C31.324 (5)C10—C111.515 (11)
N1—C11.358 (6)C13—C141.465 (10)
N2—C31.329 (6)C13—C151.520 (10)
N2—C21.341 (7)
N3i—Ni1—N3180C1—N1—Ni1128.5 (3)
N3i—Ni1—N5i88.45 (14)C3—N2—C2108.3 (4)
N3—Ni1—N5i91.55 (14)C7—N3—C9104.8 (4)
N3i—Ni1—N591.55 (14)C7—N3—Ni1127.4 (3)
N3—Ni1—N588.45 (14)C9—N3—Ni1127.5 (3)
N5i—Ni1—N5180C8—N4—C7106.7 (4)
N3i—Ni1—N190.97 (13)C4—N5—C6105.0 (4)
N3—Ni1—N189.03 (13)C4—N5—Ni1127.4 (3)
N5i—Ni1—N188.74 (13)C6—N5—Ni1127.5 (3)
N5—Ni1—N191.26 (13)C5—N6—C4108.0 (4)
N3i—Ni1—N1i89.03 (13)C2—C1—N1110.2 (4)
N3—Ni1—N1i90.97 (13)N2—C2—C1105.6 (4)
N5i—Ni1—N1i91.26 (13)N1—C3—N2111.0 (4)
N5—Ni1—N1i88.74 (13)N5—C4—N6110.9 (4)
N1—Ni1—N1i180N6—C5—C6105.8 (4)
O2—P1—O1109.0 (2)C5—C6—N5110.4 (4)
O2—P1—S2103.90 (15)N3—C7—N4111.8 (5)
O1—P1—S2113.69 (17)C9—C8—N4107.1 (5)
O2—P1—S1113.62 (17)C8—C9—N3109.6 (5)
O1—P1—S1100.77 (16)O1—C10—C12113.0 (5)
S2—P1—S1116.00 (8)O1—C10—C11104.8 (5)
C10—O1—P1123.7 (4)C12—C10—C11116.6 (7)
C13—O2—P1123.8 (4)O2—C13—C14112.7 (6)
C3—N1—C1104.8 (4)O2—C13—C15104.6 (6)
C3—N1—Ni1126.0 (3)C14—C13—C15113.6 (7)
O2—P1—O1—C1048.9 (5)N3i—Ni1—N5—C69.9 (4)
S2—P1—O1—C1066.5 (5)N3—Ni1—N5—C6170.1 (4)
S1—P1—O1—C10168.7 (4)N5i—Ni1—N5—C694 (91)
O1—P1—O2—C1358.4 (5)N1—Ni1—N5—C681.1 (4)
S2—P1—O2—C13179.9 (5)N1i—Ni1—N5—C698.9 (4)
S1—P1—O2—C1353.2 (5)C3—N1—C1—C20.6 (5)
N3i—Ni1—N1—C3108.3 (3)Ni1—N1—C1—C2170.3 (3)
N3—Ni1—N1—C371.7 (3)C3—N2—C2—C10.0 (5)
N5i—Ni1—N1—C319.9 (3)N1—C1—C2—N20.4 (5)
N5—Ni1—N1—C3160.1 (3)C1—N1—C3—N20.6 (5)
N1i—Ni1—N1—C3161 (53)Ni1—N1—C3—N2170.6 (3)
N3i—Ni1—N1—C182.5 (4)C2—N2—C3—N10.4 (5)
N3—Ni1—N1—C197.5 (4)C6—N5—C4—N60.7 (5)
N5i—Ni1—N1—C1171.0 (4)Ni1—N5—C4—N6175.3 (3)
N5—Ni1—N1—C19.0 (4)C5—N6—C4—N51.2 (6)
N1i—Ni1—N1—C130 (53)C4—N6—C5—C61.1 (6)
N3i—Ni1—N3—C725 (100)N6—C5—C6—N50.7 (6)
N5i—Ni1—N3—C791.4 (4)C4—N5—C6—C50.0 (5)
N5—Ni1—N3—C788.6 (4)Ni1—N5—C6—C5176.0 (3)
N1—Ni1—N3—C7179.9 (4)C9—N3—C7—N42.0 (6)
N1i—Ni1—N3—C70.1 (4)Ni1—N3—C7—N4175.6 (3)
N3i—Ni1—N3—C9148 (100)C8—N4—C7—N32.0 (6)
N5i—Ni1—N3—C996.4 (4)C7—N4—C8—C91.1 (7)
N5—Ni1—N3—C983.6 (4)N4—C8—C9—N30.1 (7)
N1—Ni1—N3—C97.7 (4)C7—N3—C9—C81.3 (7)
N1i—Ni1—N3—C9172.3 (4)Ni1—N3—C9—C8174.9 (4)
N3i—Ni1—N5—C4165.2 (4)P1—O1—C10—C1295.3 (7)
N3—Ni1—N5—C414.8 (4)P1—O1—C10—C11136.7 (5)
N5i—Ni1—N5—C490 (90)P1—O2—C13—C1494.2 (7)
N1—Ni1—N5—C4103.8 (4)P1—O2—C13—C15141.8 (6)
N1i—Ni1—N5—C476.2 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S10.862.493.288 (5)155
N2—H2B···S2ii0.862.593.442 (4)173
N6—H6A···S2iii0.862.663.481 (4)160
Symmetry codes: (ii) x, y1, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)6](C6H14O2PS2)2
Mr893.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.7585 (4), 11.4460 (2), 16.5815 (1)
β (°) 112.689 (1)
V3)4335.32 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.40 × 0.34 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.750, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
15098, 5353, 3099
Rint0.076
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.227, 1.07
No. of reflections5353
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 0.65

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ni1—N32.108 (4)P1—S21.9626 (18)
Ni1—N52.126 (3)P1—S11.9690 (19)
Ni1—N12.140 (3)O1—C101.407 (6)
P1—O21.568 (3)O2—C131.441 (6)
P1—O11.603 (4)
N3—Ni1—N588.45 (14)N5—Ni1—N191.26 (13)
N3—Ni1—N189.03 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S10.862.493.288 (5)155
N2—H2B···S2i0.862.593.442 (4)173
N6—H6A···S2ii0.862.663.481 (4)160
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds