Download citation
Download citation
link to html
The triterpenoid natural product [alpha]-onocerin [8,14-secogammacera-8(26),14(27)-diene-3,21-diol], determined here as the chloro­form hemisolvate, C30H50O2·0.5CHCl3, consists of two independent symmetric trans-decalin C15 building blocks. Hydro­gen bonds between the hydroxyl groups form an infinite two-dimensional network perpendicular to the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012403/sk1405sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012403/sk1405Isup2.hkl
Contains datablock I

CCDC reference: 156169

Comment top

The roots of Ononis spinosa L. (Fabaceae) are medicinally used as a diuretic drug. Phytochemical identification, diagnosis of drug adulterations and the standardization of extracts is performed using pure α-onocerin as a reference compound. While isolated already in 1855, its constitution was assigned using chemical methods in 1955 (Barton & Overton, 1955, and references therein). However, only the structure of the related 8,(26),14 (27)-diketones have been studied by X-ray so far (Tsuda et al., 1983). We report here the first X-ray structure of a 3,21-onoceradiene-3,21-diol, (I). This is in continuation of the comprehensive spectral evaluation of α-onocerin focusing on NMR and MS spectral methods which was published recently (Pauli, 2000) and which supported the presence of two trans-decalin C15 building blocks symmetrically linked over a bimethylene bridge.

The structural investigation of (I) confirms the assumed geometry. The framework consists mainly of Csp3—Csp3 bonds [1.498 (6)–1.576 (5) Å], with only C11—C111 and C21—C–211 [1.317 (7) and 1.329 (7) Å] being clearly Csp3—Csp3 bonds. Also, both bonds to the hydroxyl groups are in the expected range for a single C—O bond [1.445 (5) and 1.441 (5) Å]. Furthermore, the geometries of both trans-decalin C15 building blocks are quite similar and comparable with the same skeleton found in gummozine (Nasirov et al., 1977) and 3-α-hydroxymanool hydrate (Kagawa et al., 1993).

Hydrogen bonds between the hydroxyl groups form an infinite two-dimensional network perpendicular to the c axis (Table 2). Besides these, there are no further contacts closer than van der Waals distances.

The recently published NMR spectroscopic evidence for a symmetric constitution of α-onocerin is now definitively roborized by the crystallographic data. Therefore, it becomes clear that the C30 skeleton consists of two halves that are stereochemically identical. Compared to typical pentacyclic triterpene skeletons, such as oleanolic acid, however, this must be rated a very unusual feature with respect to the designated triterpenoid origin of α-onocerin which has not been supported by biogenetic studies so far. It must be mentioned, that no diastereomeric analogues, e.g. isomers with inversion of one or more stereocenters, could be detected by NMR (Pauli, 2000). The biogenetic assignment may be challenged in three points: the necessity for fully stereospecific alterations such as (i) the hydrogenation of the 12,13 double bond and (ii) the hydroxylation of the C-21 position, and most important, (iii) an inversion of the decalin ring fusion being [D/E]cis in oleanolic acid. Therefore, the classification of α-onocerin as a dimeric sesquiterpene is equally justified at this point and should not be omitted. Concerning the numbering of the α-onocerin framework, which in the literature is again based on the assumption that it represents a triterpene, at this point, revision should be avoided unless the biosynthesis has been investigated.

Experimental top

The title compound was obtained from the dried roots of Ononis spinosa (sample No. 9200280, PhytoLab, Vestenbergsgreuth) upon Soxhlet extraction with petrol ether, cleaning-up with active charcoal, in vacuo precipitation, and repeated crystallization from petrol ether, CH2Cl2/EtOAc (1:1), and CHCl3 in a final yield of 0.05%. Colorless crystals were obtained from CHCl3. Calculated mass for C30H50O2: 442.7. Mass spectrum (El; m/z): 442 (M+), 427 ([M—CH3]+), 409 ([M—CH3—H2O]+), 391 ([M—CH3-2 H2O]+), 381 ([M—CH3—CO—H2O]+). 1H NMR (CDCl3): δ, 1.572 (qddd, 1[19] A = eq), 0.952 (ddd, 1[19]B = ax), 1.552 (dddd, 2[20] A = eq), 1.441 (dddd, 2[20]B = a), 3.090 (dd, 3[21]a), 0.946 (dd, 5[17]ax), 1.604 ([d]dddd, 6[16] A = eq), 1.239 (dddd, 6[16]B = ax), 2.268 (ddd, 7[15] A = eq), 1.839 (dddddt, 7[15]B = ax), 1.369 (m, 9[13]), 1.369 (m[dddd], 11[12] A), 1.055 (m[dddd], 11[12]B), 0.845 (s, 23[30]), 0.616 (s, 24[29]), 0.505 (br s/d, 25[28]), 4.695 (dd, 26[27] A), 4.442 (ddd, 26[27]B). 13C NMR (CDCl3): 36.84 (1[19]), 27.27 (2[20]), 78.43 (3[21]), 38.84 (4[22]), 54.50 (5[17]), 23.81 (6[16]), 38.03 (7[15]), 148.28 (8[14]), 57.28 (9[13]), 39.00 (10[18]), 22.30 (11[12], 27.91 (23[30]), 15.09 (24[29]), 14.21 (25[28]), 106.35 (26[27]).

Computing details top

Data collection: EXPRESS (Nonius, 1994); cell refinement: EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. DIAMOND (50% probability) plot (Brandenburg, 1996) of the title compound with the atomic numbering scheme.
8(26),14 (27)-Onoceradiene-3,21-diol top
Crystal data top
C30H50O2·0.5CHCl3Dx = 1.124 Mg m3
Mr = 502.38Melting point: 483 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
a = 7.470 (1) ÅCell parameters from 25 reflections
b = 14.681 (2) Åθ = 22.5–46.1°
c = 27.079 (4) ŵ = 1.72 mm1
V = 2969.7 (7) Å3T = 223 K
Z = 4Block, colourless
F(000) = 11000.30 × 0.20 × 0.15 mm
Data collection top
Enraf Nonius CAD-4
diffractometer
2318 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 74.3°, θmin = 5.8°
ω/2θ scansh = 09
Absorption correction: empirical (using intensity measurements)
via ψ scan (Fair, 1990)
k = 018
Tmin = 0.627, Tmax = 0.783l = 033
3450 measured reflections3 standard reflections every 250 reflections
3450 independent reflections intensity decay: 6.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.228 w = 1/[σ2(Fo2) + (0.1687P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3450 reflectionsΔρmax = 0.70 e Å3
313 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (19)
Crystal data top
C30H50O2·0.5CHCl3V = 2969.7 (7) Å3
Mr = 502.38Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.470 (1) ŵ = 1.72 mm1
b = 14.681 (2) ÅT = 223 K
c = 27.079 (4) Å0.30 × 0.20 × 0.15 mm
Data collection top
Enraf Nonius CAD-4
diffractometer
2318 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (Fair, 1990)
Rint = 0.000
Tmin = 0.627, Tmax = 0.7833 standard reflections every 250 reflections
3450 measured reflections intensity decay: 6.7%
3450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.228Δρmax = 0.70 e Å3
S = 0.99Δρmin = 0.34 e Å3
3450 reflectionsAbsolute structure: Flack (1983)
313 parametersAbsolute structure parameter: 0.05 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7940 (6)0.6807 (3)0.16169 (17)0.0478 (11)
H1A0.87430.66840.13380.057*
H1B0.85510.66130.19190.057*
C100.6236 (6)0.6246 (3)0.15541 (15)0.0404 (9)
H100.56090.65110.12660.048*
C110.4939 (7)0.6318 (3)0.19791 (16)0.0499 (11)
C1110.5309 (10)0.6606 (3)0.24282 (17)0.0672 (17)
H11A0.44300.65800.26760.081*
H11B0.64520.68380.25010.081*
C120.3113 (7)0.5944 (3)0.18555 (18)0.0557 (12)
H12A0.25700.63090.15920.067*
H12B0.23380.59780.21470.067*
C130.3279 (7)0.4947 (3)0.16856 (18)0.0536 (12)
H13A0.36220.45670.19670.064*
H13B0.21130.47350.15660.064*
C140.4663 (6)0.4843 (3)0.12771 (15)0.0387 (9)
H140.42520.52650.10150.046*
C150.4619 (6)0.3872 (3)0.10240 (16)0.0421 (10)
C1510.4959 (8)0.3084 (3)0.13845 (19)0.0561 (13)
H15A0.41500.31360.16630.084*
H15B0.61860.31100.15010.084*
H15C0.47560.25090.12170.084*
C1520.2726 (6)0.3743 (3)0.07917 (19)0.0538 (12)
H15D0.24080.42830.06050.081*
H15E0.18540.36470.10520.081*
H15F0.27380.32180.05740.081*
C160.5980 (6)0.3875 (3)0.06068 (15)0.0414 (10)
H160.55660.43400.03680.050*
O160.5973 (5)0.3017 (2)0.03454 (12)0.0532 (9)
H16A0.67020.26640.04760.080*
C170.7821 (6)0.4159 (3)0.07636 (19)0.0476 (11)
H17A0.86290.41400.04790.057*
H17B0.82740.37330.10130.057*
C180.7788 (6)0.5125 (3)0.09783 (16)0.0451 (10)
H18A0.73990.55520.07210.054*
H18B0.90040.52970.10780.054*
C190.6535 (6)0.5211 (3)0.14254 (15)0.0387 (9)
C1910.7372 (8)0.4734 (3)0.18709 (17)0.0566 (13)
H19A0.76400.41060.17860.085*
H19B0.65400.47470.21460.085*
H19C0.84680.50440.19630.085*
C20.7586 (7)0.7836 (3)0.16447 (18)0.0469 (11)
H2A0.66730.79990.14000.056*
H2B0.71110.79850.19720.056*
C200.9264 (6)0.8403 (3)0.15507 (15)0.0384 (9)
H200.97710.81730.12370.046*
C211.0739 (7)0.8296 (3)0.19325 (17)0.0497 (11)
C2111.0497 (10)0.7937 (3)0.23782 (18)0.0652 (16)
H21A1.14420.79350.26080.078*
H21B0.93830.76850.24640.078*
C221.2492 (8)0.8708 (3)0.1775 (2)0.0595 (13)
H22A1.29470.83870.14830.071*
H22B1.33730.86430.20410.071*
C231.2227 (7)0.9722 (3)0.16537 (19)0.0511 (11)
H23A1.19651.00550.19590.061*
H23B1.33390.99680.15150.061*
C241.0706 (5)0.9869 (3)0.12863 (14)0.0350 (8)
H241.10440.94880.10000.042*
C251.0650 (6)1.0860 (3)0.10719 (16)0.0394 (9)
C2511.0435 (8)1.1604 (3)0.14660 (17)0.0524 (12)
H25A1.13261.15180.17220.079*
H25B0.92481.15650.16090.079*
H25C1.05961.21970.13150.079*
C2521.2414 (6)1.1028 (3)0.0792 (2)0.0531 (11)
H25D1.23261.15920.06070.080*
H25E1.26331.05270.05660.080*
H25F1.33931.10710.10260.080*
C260.9113 (6)1.0910 (3)0.06958 (15)0.0400 (9)
H260.94451.05220.04110.048*
O260.8871 (5)1.1824 (2)0.05139 (12)0.0499 (8)
H26A0.98221.20080.03910.075*
C270.7336 (6)1.0575 (3)0.08883 (18)0.0454 (10)
H27A0.64331.06180.06270.054*
H27B0.69491.09590.11640.054*
C280.7493 (6)0.9588 (3)0.10612 (16)0.0436 (10)
H28A0.77940.92030.07770.052*
H28B0.63280.93870.11870.052*
C290.8912 (6)0.9450 (3)0.14658 (15)0.0377 (9)
C2910.8225 (7)0.9865 (3)0.19540 (16)0.0550 (12)
H29A0.77821.04760.18930.082*
H29B0.91960.98890.21910.082*
H29C0.72640.94910.20840.082*
C301.033 (3)0.7038 (19)0.0083 (8)0.137 (7)*0.50
H300.95150.71900.03600.164*0.50
Cl310.885 (2)0.6546 (11)0.0291 (6)0.322 (7)*0.50
Cl321.068 (2)0.7942 (14)0.0092 (5)0.342 (7)*0.50
Cl331.1703 (17)0.6498 (9)0.0365 (5)0.277 (5)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.034 (2)0.056 (2)0.009 (2)0.000 (2)0.0007 (18)
C100.044 (2)0.0336 (19)0.043 (2)0.0088 (19)0.0028 (19)0.0024 (16)
C110.063 (3)0.038 (2)0.048 (2)0.010 (2)0.006 (2)0.0025 (18)
C1110.099 (5)0.056 (3)0.047 (2)0.028 (3)0.009 (3)0.001 (2)
C120.063 (3)0.049 (3)0.055 (3)0.010 (2)0.012 (3)0.003 (2)
C130.061 (3)0.045 (2)0.055 (3)0.019 (2)0.009 (2)0.001 (2)
C140.042 (2)0.0325 (18)0.042 (2)0.0058 (17)0.0029 (19)0.0050 (16)
C150.045 (2)0.0309 (19)0.050 (2)0.0061 (18)0.012 (2)0.0039 (16)
C1510.072 (3)0.031 (2)0.066 (3)0.010 (2)0.011 (3)0.009 (2)
C1520.049 (3)0.043 (2)0.069 (3)0.011 (2)0.014 (2)0.002 (2)
C160.048 (2)0.0303 (19)0.046 (2)0.0016 (18)0.012 (2)0.0009 (16)
O160.060 (2)0.0392 (16)0.0602 (18)0.0052 (15)0.0180 (18)0.0117 (14)
C170.042 (2)0.040 (2)0.061 (3)0.0005 (19)0.003 (2)0.007 (2)
C180.041 (2)0.039 (2)0.056 (2)0.0084 (18)0.004 (2)0.0013 (19)
C190.044 (2)0.0320 (18)0.040 (2)0.0061 (18)0.0091 (19)0.0023 (16)
C1910.076 (3)0.039 (2)0.055 (3)0.005 (2)0.020 (3)0.0046 (19)
C20.055 (3)0.028 (2)0.057 (2)0.0107 (19)0.010 (2)0.0042 (18)
C200.044 (2)0.0289 (18)0.0417 (19)0.0052 (17)0.0006 (18)0.0032 (15)
C210.063 (3)0.0270 (19)0.059 (2)0.007 (2)0.013 (2)0.0002 (18)
C2110.098 (4)0.046 (3)0.052 (3)0.025 (3)0.019 (3)0.001 (2)
C220.061 (3)0.046 (3)0.072 (3)0.006 (2)0.024 (3)0.003 (2)
C230.049 (3)0.042 (2)0.062 (3)0.013 (2)0.011 (2)0.005 (2)
C240.0325 (19)0.0318 (18)0.0408 (19)0.0027 (16)0.0016 (17)0.0026 (15)
C250.035 (2)0.034 (2)0.049 (2)0.0055 (17)0.0051 (19)0.0036 (17)
C2510.067 (3)0.031 (2)0.059 (2)0.008 (2)0.001 (3)0.0073 (19)
C2520.042 (2)0.043 (2)0.074 (3)0.007 (2)0.005 (2)0.006 (2)
C260.047 (2)0.0303 (19)0.043 (2)0.0005 (18)0.005 (2)0.0021 (16)
O260.0524 (18)0.0362 (15)0.0610 (18)0.0077 (14)0.0121 (16)0.0081 (13)
C270.035 (2)0.044 (2)0.057 (2)0.0008 (19)0.005 (2)0.003 (2)
C280.035 (2)0.043 (2)0.053 (2)0.0063 (19)0.001 (2)0.0023 (18)
C290.041 (2)0.0316 (18)0.041 (2)0.0058 (17)0.0083 (18)0.0065 (16)
C2910.070 (3)0.043 (2)0.052 (2)0.004 (2)0.023 (3)0.005 (2)
Geometric parameters (Å, º) top
C1—C101.525 (6)C20—C211.519 (6)
C1—C21.536 (6)C20—C291.576 (5)
C10—C111.508 (6)C21—C2111.329 (7)
C10—C191.575 (5)C21—C221.505 (7)
C11—C1111.317 (7)C22—C231.537 (6)
C11—C121.507 (7)C23—C241.526 (6)
C12—C131.538 (7)C24—C291.553 (6)
C13—C141.522 (6)C24—C251.567 (5)
C14—C191.552 (6)C25—C2511.535 (6)
C14—C151.583 (6)C25—C261.537 (6)
C15—C161.520 (6)C25—C2521.540 (6)
C15—C1511.534 (6)C26—O261.441 (5)
C15—C1521.559 (6)C26—C271.509 (6)
C16—O161.445 (5)C27—C281.527 (6)
C16—C171.498 (6)C28—C291.538 (6)
C17—C181.533 (6)C29—C2911.544 (5)
C18—C191.535 (6)C30—Cl321.43 (2)
C19—C1911.529 (6)C30—Cl331.51 (2)
C2—C201.526 (6)C30—Cl311.66 (3)
C10—C1—C2113.1 (4)C21—C20—C29108.7 (3)
C11—C10—C1114.4 (4)C2—C20—C29114.8 (4)
C11—C10—C19109.1 (3)C211—C21—C22122.3 (5)
C1—C10—C19115.3 (4)C211—C21—C20124.1 (5)
C111—C11—C12120.8 (5)C22—C21—C20113.4 (4)
C111—C11—C10126.3 (5)C21—C22—C23109.7 (4)
C12—C11—C10112.7 (4)C24—C23—C22111.9 (4)
C11—C12—C13109.9 (4)C23—C24—C29112.5 (3)
C14—C13—C12111.5 (4)C23—C24—C25113.1 (3)
C13—C14—C19112.9 (3)C29—C24—C25117.5 (3)
C13—C14—C15113.0 (3)C251—C25—C26110.4 (4)
C19—C14—C15116.4 (3)C251—C25—C252108.6 (4)
C16—C15—C151111.4 (4)C26—C25—C252107.8 (4)
C16—C15—C152107.9 (4)C251—C25—C24113.9 (3)
C151—C15—C152108.4 (4)C26—C25—C24108.0 (3)
C16—C15—C14107.8 (3)C252—C25—C24108.0 (3)
C151—C15—C14113.6 (3)O26—C26—C27108.2 (3)
C152—C15—C14107.6 (3)O26—C26—C25111.4 (3)
O16—C16—C17112.6 (3)C27—C26—C25114.4 (3)
O16—C16—C15111.0 (3)C26—C27—C28110.4 (4)
C17—C16—C15113.8 (4)C27—C28—C29113.3 (3)
C16—C17—C18110.5 (4)C28—C29—C291109.2 (4)
C17—C18—C19112.6 (3)C28—C29—C24108.6 (3)
C191—C19—C18109.6 (4)C291—C29—C24113.5 (3)
C191—C19—C14114.4 (4)C28—C29—C20110.3 (3)
C18—C19—C14108.5 (3)C291—C29—C20108.4 (3)
C191—C19—C10109.0 (3)C24—C29—C20106.8 (3)
C18—C19—C10109.9 (3)Cl32—C30—Cl33122 (2)
C14—C19—C10105.4 (3)Cl32—C30—Cl31108.9 (18)
C20—C2—C1112.7 (4)Cl33—C30—Cl31122 (2)
C21—C20—C2115.2 (4)
C2—C1—C10—C1163.1 (5)C1—C2—C20—C2164.6 (5)
C2—C1—C10—C19169.2 (3)C1—C2—C20—C29168.0 (3)
C1—C10—C11—C11118.3 (7)C2—C20—C21—C21116.6 (6)
C19—C10—C11—C111112.5 (5)C29—C20—C21—C211113.8 (5)
C1—C10—C11—C12166.4 (4)C2—C20—C21—C22168.1 (4)
C19—C10—C11—C1262.8 (5)C29—C20—C21—C2261.4 (5)
C111—C11—C12—C13118.9 (5)C211—C21—C22—C23118.5 (5)
C10—C11—C12—C1356.6 (5)C20—C21—C22—C2356.8 (5)
C11—C12—C13—C1451.8 (5)C21—C22—C23—C2452.4 (6)
C12—C13—C14—C1956.0 (5)C22—C23—C24—C2955.8 (5)
C12—C13—C14—C15169.3 (4)C22—C23—C24—C25168.2 (4)
C13—C14—C15—C16176.8 (4)C23—C24—C25—C25158.9 (5)
C19—C14—C15—C1650.1 (4)C29—C24—C25—C25174.7 (5)
C13—C14—C15—C15159.3 (5)C23—C24—C25—C26178.0 (4)
C19—C14—C15—C15173.8 (5)C29—C24—C25—C2648.3 (4)
C13—C14—C15—C15260.7 (5)C23—C24—C25—C25261.7 (5)
C19—C14—C15—C152166.2 (4)C29—C24—C25—C252164.6 (4)
C151—C15—C16—O1656.8 (4)C251—C25—C26—O2649.7 (5)
C152—C15—C16—O1662.0 (4)C252—C25—C26—O2668.7 (4)
C14—C15—C16—O16178.0 (3)C24—C25—C26—O26174.8 (3)
C151—C15—C16—C1771.5 (4)C251—C25—C26—C2773.4 (4)
C152—C15—C16—C17169.6 (4)C252—C25—C26—C27168.2 (4)
C14—C15—C16—C1753.7 (4)C24—C25—C26—C2751.8 (4)
O16—C16—C17—C18172.7 (3)O26—C26—C27—C28177.0 (3)
C15—C16—C17—C1859.8 (5)C25—C26—C27—C2858.2 (5)
C16—C17—C18—C1958.8 (5)C26—C27—C28—C2958.1 (5)
C17—C18—C19—C19172.6 (5)C27—C28—C29—C29172.0 (5)
C17—C18—C19—C1453.0 (5)C27—C28—C29—C2452.2 (5)
C17—C18—C19—C10167.7 (4)C27—C28—C29—C20169.0 (3)
C13—C14—C19—C19160.7 (5)C23—C24—C29—C28177.0 (3)
C15—C14—C19—C19172.4 (5)C25—C24—C29—C2849.0 (4)
C13—C14—C19—C18176.6 (4)C23—C24—C29—C29161.3 (5)
C15—C14—C19—C1850.3 (4)C25—C24—C29—C29172.7 (5)
C13—C14—C19—C1059.0 (4)C23—C24—C29—C2058.1 (4)
C15—C14—C19—C10167.9 (3)C25—C24—C29—C20168.0 (3)
C11—C10—C19—C19162.4 (5)C21—C20—C29—C28177.1 (3)
C1—C10—C19—C19167.9 (5)C2—C20—C29—C2852.3 (5)
C11—C10—C19—C18177.5 (3)C21—C20—C29—C29163.4 (5)
C1—C10—C19—C1852.2 (5)C2—C20—C29—C29167.2 (5)
C11—C10—C19—C1460.8 (4)C21—C20—C29—C2459.2 (4)
C1—C10—C19—C14168.8 (3)C2—C20—C29—C24170.1 (3)
C10—C1—C2—C20162.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16A···O26i0.832.042.822 (5)157
O26—H26A···O16ii0.832.172.817 (5)135
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC30H50O2·0.5CHCl3
Mr502.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)223
a, b, c (Å)7.470 (1), 14.681 (2), 27.079 (4)
V3)2969.7 (7)
Z4
Radiation typeCu Kα
µ (mm1)1.72
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerEnraf Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (Fair, 1990)
Tmin, Tmax0.627, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
3450, 3450, 2318
Rint0.000
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.228, 0.99
No. of reflections3450
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.34
Absolute structureFlack (1983)
Absolute structure parameter0.05 (19)

Computer programs: EXPRESS (Nonius, 1994), EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16A···O26i0.832.042.822 (5)157
O26—H26A···O16ii0.832.172.817 (5)135
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds