Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction of Cu and V in a Rb2S5 melt yields black crystals of rubidium dicopper vanadium tetra­sulfide, RbCu2VS4. The structure is comprised of [Cu2VS4]- layers within the (010) plane which are separated by Rb+ cations. The layers consist of a network of edge- and corner-sharing [VS4] and [CuS4] tetrahedra parallel to (010). The optical band gap was determined as 1.45 eV.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019442/sk1402sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019442/sk1402Isup2.hkl
Contains datablock I

Computing details top

Data collection: DIF4 (Stoe & Cie, 1991); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: CIFTAB in SHELXL93.

Rubidiumdicoppervanadiumtetrasulfide top
Crystal data top
RbCu2VS4F(000) = 728
Mr = 391.73Dx = 3.580 Mg m3
Orthorhombic, Ama2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2aCell parameters from 10 reflections
a = 7.382 (3) Åθ = 13–24°
b = 18.187 (11) ŵ = 14.74 mm1
c = 5.413 (2) ÅT = 293 K
V = 726.7 (6) Å3Needle, black
Z = 40.08 × 0.08 × 0.07 mm
Data collection top
STOE AED-II four-circle
diffractometer
483 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ωθ scansh = 08
Absorption correction: empirical (using intensity measurements)
(XEMP in SHELXTL/PC; Siemens, 1990)
k = 2121
Tmin = 0.290, Tmax = 0.345l = 64
1230 measured reflections4 standard reflections every every 2 h min
628 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0374P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.95 e Å3
628 reflectionsΔρmin = 0.66 e Å3
46 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.01 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V0.25000.10888 (13)0.6036 (7)0.0143 (6)
Cu10.00000.00000.6253 (4)0.0214 (5)
Cu20.25000.10573 (10)0.1029 (4)0.0204 (6)
S10.25000.2040 (2)0.3668 (17)0.0248 (9)
S20.0076 (3)0.10917 (14)0.8357 (7)0.0194 (5)
S30.25000.0076 (2)0.3709 (8)0.0157 (7)
Rb0.75000.18224 (8)0.3550 (6)0.0294 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V0.0132 (12)0.0164 (12)0.013 (2)0.0000.0000.000 (2)
Cu10.0150 (7)0.0242 (9)0.0249 (10)0.0039 (8)0.0000.000
Cu20.0224 (10)0.0252 (11)0.0136 (12)0.0000.0000.0029 (14)
S10.041 (2)0.016 (2)0.017 (2)0.0000.0000.004 (3)
S20.0152 (10)0.0265 (11)0.0164 (13)0.0031 (9)0.001 (3)0.0014 (13)
S30.0162 (14)0.0157 (15)0.015 (2)0.0000.0000.001 (3)
Rb0.0336 (8)0.0271 (7)0.0274 (8)0.0000.0000.0048 (13)
Geometric parameters (Å, º) top
V—S12.153 (7)Cu2—Rbx4.083 (4)
V—S2i2.186 (4)Cu2—Rb4.174 (2)
V—S22.186 (4)Cu2—Rbv4.174 (2)
V—S32.232 (5)S1—Rbiv3.356 (9)
V—Cu2ii2.703 (4)S1—Rbx3.458 (10)
V—Cu12.709 (2)S1—Rbv3.713 (2)
V—Cu1iii2.709 (2)S1—Rb3.713 (2)
V—Cu22.711 (4)S2—Cu2ii2.302 (3)
V—Rbiv4.035 (4)S2—Rbv3.486 (4)
V—Rbv4.149 (2)S2—Rbxi3.645 (4)
V—Rb4.149 (2)S3—Cu1iii2.307 (3)
Cu1—S22.290 (3)S3—Rbvii3.453 (4)
Cu1—S2vi2.290 (3)Rb—S1x3.356 (9)
Cu1—S3vi2.307 (3)Rb—S3vii3.453 (4)
Cu1—S32.307 (3)Rb—S1iv3.458 (10)
Cu1—Vvi2.709 (2)Rb—S2xii3.486 (4)
Cu1—Rbvii4.066 (2)Rb—S2i3.486 (4)
Cu1—Rbv4.066 (2)Rb—S2ix3.645 (4)
Cu2—S12.288 (6)Rb—S2xiii3.645 (4)
Cu2—S32.300 (4)Rb—S1xii3.713 (2)
Cu2—S2viii2.302 (3)Rb—Vx4.035 (4)
Cu2—S2ix2.302 (3)Rb—Cu1iii4.066 (2)
Cu2—Vviii2.703 (4)Rb—Cu1xii4.066 (2)
S1—V—S2i109.88 (14)Rbx—Cu2—Rb78.03 (3)
S1—V—S2109.88 (14)S1—Cu2—Rbv62.32 (4)
S2i—V—S2109.9 (3)S3—Cu2—Rbv93.02 (7)
S1—V—S3109.1 (2)S2viii—Cu2—Rbv60.59 (10)
S2i—V—S3109.05 (12)S2ix—Cu2—Rbv152.10 (13)
S2—V—S3109.05 (12)Vviii—Cu2—Rbv108.65 (6)
S1—V—Cu2ii127.7 (2)V—Cu2—Rbv70.50 (6)
S2i—V—Cu2ii54.94 (14)Rbx—Cu2—Rbv78.03 (3)
S2—V—Cu2ii54.94 (14)Rb—Cu2—Rbv124.34 (8)
S3—V—Cu2ii123.2 (2)V—S1—Cu275.16 (14)
S1—V—Cu1127.81 (14)V—S1—Rbiv91.5 (3)
S2i—V—Cu1122.3 (2)Cu2—S1—Rbiv166.7 (3)
S2—V—Cu154.51 (8)V—S1—Rbx163.3 (3)
S3—V—Cu154.63 (9)Cu2—S1—Rbx88.1 (3)
Cu2ii—V—Cu186.63 (10)Rbiv—S1—Rbx105.20 (11)
S1—V—Cu1iii127.81 (13)V—S1—Rbv85.67 (11)
S2i—V—Cu1iii54.51 (8)Cu2—S1—Rbv84.60 (11)
S2—V—Cu1iii122.3 (2)Rbiv—S1—Rbv94.55 (15)
S3—V—Cu1iii54.63 (9)Rbx—S1—Rbv92.9 (2)
Cu2ii—V—Cu1iii86.63 (10)V—S1—Rb85.67 (11)
Cu1—V—Cu1iii85.87 (8)Cu2—S1—Rb84.60 (11)
S1—V—Cu254.7 (2)Rbiv—S1—Rb94.5 (2)
S2i—V—Cu2125.07 (14)Rbx—S1—Rb92.9 (2)
S2—V—Cu2125.07 (14)Rbv—S1—Rb167.60 (11)
S3—V—Cu254.43 (12)V—S2—Cu174.47 (13)
Cu2ii—V—Cu2177.58 (14)V—S2—Cu2ii74.03 (11)
Cu1—V—Cu291.60 (11)Cu1—S2—Cu2ii107.95 (11)
Cu1iii—V—Cu291.60 (11)V—S2—Rbv91.1 (2)
S1—V—Rbiv56.2 (2)Cu1—S2—Rbv86.90 (10)
S2i—V—Rbiv78.70 (11)Cu2ii—S2—Rbv154.63 (13)
S2—V—Rbiv78.70 (11)V—S2—Rbxi150.59 (14)
S3—V—Rbiv165.3 (2)Cu1—S2—Rbxi133.39 (10)
Cu2ii—V—Rbiv71.51 (10)Cu2ii—S2—Rbxi86.03 (13)
Cu1—V—Rbiv132.33 (8)Rbv—S2—Rbxi98.74 (7)
Cu1iii—V—Rbiv132.33 (8)V—S3—Cu273.45 (14)
Cu2—V—Rbiv110.91 (11)V—S3—Cu1iii73.28 (12)
S1—V—Rbv63.16 (5)Cu2—S3—Cu1iii115.01 (10)
S2i—V—Rbv156.0 (2)V—S3—Cu173.28 (12)
S2—V—Rbv57.15 (10)Cu2—S3—Cu1115.01 (10)
S3—V—Rbv94.72 (9)Cu1iii—S3—Cu1106.3 (2)
Cu2ii—V—Rbv109.34 (8)V—S3—Rbvii147.1 (2)
Cu1—V—Rbv69.09 (5)Cu2—S3—Rbvii139.5 (2)
Cu1iii—V—Rbv148.76 (10)Cu1iii—S3—Rbvii87.44 (9)
Cu2—V—Rbv71.49 (7)Cu1—S3—Rbvii87.44 (9)
Rbiv—V—Rbv78.85 (4)S1x—Rb—S3vii129.5 (2)
S1—V—Rb63.16 (5)S1x—Rb—S1iv105.20 (11)
S2i—V—Rb57.15 (10)S3vii—Rb—S1iv125.3 (2)
S2—V—Rb156.0 (2)S1x—Rb—S2xii145.35 (5)
S3—V—Rb94.72 (9)S3vii—Rb—S2xii66.44 (8)
Cu2ii—V—Rb109.34 (8)S1iv—Rb—S2xii68.29 (14)
Cu1—V—Rb148.76 (10)S1x—Rb—S2i145.35 (5)
Cu1iii—V—Rb69.09 (5)S3vii—Rb—S2i66.44 (8)
Cu2—V—Rb71.49 (7)S1iv—Rb—S2i68.29 (13)
Rbiv—V—Rb78.85 (4)S2xii—Rb—S2i66.12 (11)
Rbv—V—Rb125.64 (11)S1x—Rb—S2ix67.51 (15)
S2—Cu1—S2vi120.4 (2)S3vii—Rb—S2ix69.80 (9)
S2—Cu1—S3vi111.61 (10)S1iv—Rb—S2ix146.73 (5)
S2vi—Cu1—S3vi103.03 (11)S2xii—Rb—S2ix136.16 (9)
S2—Cu1—S3103.03 (11)S2i—Rb—S2ix98.74 (7)
S2vi—Cu1—S3111.61 (10)S1x—Rb—S2xiii67.51 (15)
S3vi—Cu1—S3106.7 (2)S3vii—Rb—S2xiii69.80 (9)
S2—Cu1—V51.02 (11)S1iv—Rb—S2xiii146.73 (5)
S2vi—Cu1—V132.23 (9)S2xii—Rb—S2xiii98.74 (7)
S3vi—Cu1—V124.24 (14)S2i—Rb—S2xiii136.16 (9)
S3—Cu1—V52.09 (10)S2ix—Rb—S2xiii62.91 (9)
S2—Cu1—Vvi132.23 (9)S1x—Rb—S1xii87.01 (13)
S2vi—Cu1—Vvi51.02 (11)S3vii—Rb—S1xii96.09 (5)
S3vi—Cu1—Vvi52.09 (10)S1iv—Rb—S1xii85.55 (14)
S3—Cu1—Vvi124.24 (14)S2xii—Rb—S1xii59.03 (14)
V—Cu1—Vvi175.0 (2)S2i—Rb—S1xii124.8 (2)
S2—Cu1—Rbvii151.01 (6)S2ix—Rb—S1xii124.8 (2)
S2vi—Cu1—Rbvii58.89 (9)S2xiii—Rb—S1xii62.19 (14)
S3vi—Cu1—Rbvii95.72 (10)S1x—Rb—S187.01 (14)
S3—Cu1—Rbvii58.04 (9)S3vii—Rb—S196.09 (5)
V—Cu1—Rbvii105.72 (6)S1iv—Rb—S185.55 (14)
Vvi—Cu1—Rbvii72.41 (6)S2xii—Rb—S1124.8 (2)
S2—Cu1—Rbv58.89 (9)S2i—Rb—S159.03 (14)
S2vi—Cu1—Rbv151.01 (6)S2ix—Rb—S162.19 (14)
S3vi—Cu1—Rbv58.04 (9)S2xiii—Rb—S1124.8 (2)
S3—Cu1—Rbv95.72 (10)S1xii—Rb—S1167.60 (11)
V—Cu1—Rbv72.41 (6)S1x—Rb—Vx32.24 (11)
Vvi—Cu1—Rbv105.72 (6)S3vii—Rb—Vx161.7 (2)
Rbvii—Cu1—Rbv137.81 (11)S1iv—Rb—Vx72.95 (10)
S1—Cu2—S3102.3 (2)S2xii—Rb—Vx127.63 (7)
S1—Cu2—S2viii111.79 (13)S2i—Rb—Vx127.63 (7)
S3—Cu2—S2viii114.67 (12)S2ix—Rb—Vx94.78 (9)
S1—Cu2—S2ix111.79 (13)S2xiii—Rb—Vx94.78 (9)
S3—Cu2—S2ix114.67 (12)S1xii—Rb—Vx84.57 (8)
S2viii—Cu2—S2ix102.0 (2)S1—Rb—Vx84.57 (8)
S1—Cu2—Vviii127.4 (2)S1x—Rb—Cu1iii141.80 (13)
S3—Cu2—Vviii130.30 (15)S3vii—Rb—Cu1iii34.53 (6)
S2viii—Cu2—Vviii51.02 (11)S1iv—Rb—Cu1iii101.50 (15)
S2ix—Cu2—Vviii51.02 (10)S2xii—Rb—Cu1iii70.62 (7)
S1—Cu2—V50.2 (2)S2i—Rb—Cu1iii34.21 (5)
S3—Cu2—V52.12 (12)S2ix—Rb—Cu1iii75.14 (6)
S2viii—Cu2—V128.89 (10)S2xiii—Rb—Cu1iii102.54 (6)
S2ix—Cu2—V128.89 (10)S1xii—Rb—Cu1iii122.14 (11)
Vviii—Cu2—V177.58 (14)S1—Rb—Cu1iii68.25 (8)
S1—Cu2—Rbx57.8 (2)Vx—Rb—Cu1iii152.72 (2)
S3—Cu2—Rbx160.11 (13)S1x—Rb—Cu1xii141.80 (13)
S2viii—Cu2—Rbx76.57 (10)S3vii—Rb—Cu1xii34.53 (6)
S2ix—Cu2—Rbx76.57 (10)S1iv—Rb—Cu1xii101.50 (15)
Vviii—Cu2—Rbx69.60 (9)S2xii—Rb—Cu1xii34.21 (5)
V—Cu2—Rbx107.99 (9)S2i—Rb—Cu1xii70.62 (7)
S1—Cu2—Rb62.32 (4)S2ix—Rb—Cu1xii102.54 (6)
S3—Cu2—Rb93.02 (7)S2xiii—Rb—Cu1xii75.14 (6)
S2viii—Cu2—Rb152.10 (13)S1xii—Rb—Cu1xii68.25 (8)
S2ix—Cu2—Rb60.59 (10)S1—Rb—Cu1xii122.14 (11)
Vviii—Cu2—Rb108.65 (6)Vx—Rb—Cu1xii152.72 (2)
V—Cu2—Rb70.50 (6)Cu1iii—Rb—Cu1xii53.99 (4)
Symmetry codes: (i) x+1/2, y, z; (ii) x, y, z+1; (iii) x+1/2, y, z; (iv) x+1, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y, z; (vii) x+1, y, z; (viii) x, y, z1; (ix) x+1/2, y, z1; (x) x+1, y+1/2, z1/2; (xi) x1, y, z+1; (xii) x+1, y, z; (xiii) x+1, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds