Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal and molecular structure of the title compound, C20H16Cl2N4Si2+·2I-, has been determined at 173 K. To our knowledge, this is the first crystal structure of a silicon tetrahalide complex with a bidentate base as a ligand. The two chloro ligands are cis relative to each other. The Si-N bonds trans to a chloro ligand are longer than the Si-N bonds trans to an Si-N bond. This feature is observed for the majority of M(bipy)2Cl2 (M = metal and bipy = 2,2'-bipyridyl) complexes, but it does not hold for all structures retrieved from the Cambridge Structural Database. The two pyridyl rings of each bipyridyl unit are nearly coplanar, whereas the bipyridyl units are almost perpendicular to each other. The two I- ions are more than 5 Å from the silicon centre. As a result, the compound can definitely be described as ionic. The crystal packing is stabilized by short C-H...I contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001888/sk1363sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001888/sk1363Isup2.hkl
Contains datablock I

CCDC reference: 145554

Comment top

In recent years coordination compounds of silicon have been the subject of many structural (Hensen et al., 1983; Tandura et al., 1986), spectroscopic (Helmer et al., 1983; Bassindale & Stout, 1984), reactivity (Chuit et al., 1993) and ab initio studies (Damrauer et al., 1988; Arshadi et al., 1996). A subset of that class of compounds, the complexes between siliconhalides and tertiary aromatic nitrogen bases, are of fundamental interest concerning Lewis acid-base interactions. However, little information is available about the molecular structure of complexes containing a bidentate nitrogen base. Cationic bis-2,2'-bipyridyl-silicon complexes have been described by Kummer & Seshadri (1977), Kummer et al. (1977) and Sawitzki et al. (1978). The cation has been characterized spectroscopically with IR and NMR techniques and an octahedral structure was proposed for the complex with the chlorine ligands cis to each other.

In order to determine unambiguously the nature of the silicon complex and its precise geometry we have synthesized the title compound, (I), and present here the first crystal structure of a silicontetrahalide complex containing a bidentate nitrogen base. \sch

The silicon atom in the title compound is in fact virtually octahedrally co-ordinated (Table 1). The two chloro ligands are arranged cis with respect to each other. The two Si—Cl bonds are rather short compared with similar ionic complexes (Hensen et al., 2000), where these bonds are in the range from 2.184 (1) to 2.207 (1) Å. The Si—N bond lengths are in the usual range, but they are significantly different from each other. The Si—N bonds trans to a Si—Cl bond are longer than the Si—N bonds trans to an Si—N bond. This feature could also be observed when the central atom of the complex is replaced by Ga (Restivo & Palenik, 1972), Al (Bellavance et al., 1977), Mo (Hey et al., 1983), Fe (Figgis, Reynolds & Lehner, 1983; Figgis, Patrick et al., 1983), Ni (Hipler et al., 1998) and Mn (Lumme & Lindell, 1988; McCann et al., 1998). In the Re complex (Helberg et al., 1996) all four Si—N bonds are of equal length. In the Co complex (Krämer & Strähle, 1986) in one bipyridyl unit the Si—N bond trans to a Cl ligand is longer than the Si—N bond trans to an Si—N bond, but in the other bipyridyl unit the inverse situation is found. In the Rh complex (Lahuerta et al., 1991) the Si—N bonds trans to a Cl ligand are shorter than the Si—N bonds trans to an Si—N bond. In the RuIII complex the Si—N bonds show the same relation as in the title compound, but in the RuII complex the situation is inverse (Eggleston et al., 1985). As a result of that, there is a strong tendency of the Si—N bond trans to the chloro ligand to be longer than the Si—N bond trans to an Si—N bond, but this feature is not encountered in all the structures retrieved from the Cambridge Structural Database (Version 5.18, October 1999; Allen & Kennard, 1983), a fact which might be attributed to the different electronic configuration of the central atom. It is interesting to note that in all but one Me(bipy)2Hal2 complexes retrieved from the database the halogen ligands are chlorine atoms. The only exception is bis-(2,2'-bipyridine)-cis-di-iodo-calcium (Skelton et al., 1996).

The N—Si—N bond angles between two N atoms of the same bipyridyl unit are rather small due to steric strain. This fact is also observed in the previously mentioned bis-bipyridyl complexes.

Both N—C—C—N torsion angles of the bipyridyl units are very small [3.0 (3)°] indicating that the two pyridyl rings of each bipyridyl unit are nearly coplanar. The dihedral angle between the two bipyridyl units is 85.47 (5)°. The distances between Si1 and the two iodine ions [Si1···I1(2 - x, 1 - y, 1 - z) 5.130 (1) and Si1···I2(x - 1,y,z) 5.677 (1) Å] demonstrate the ionic character of the title compound. Both iodine ions show short contacts to aromatic H atoms (Table 2).

Experimental top

The title compound was prepared according to Kummer et al. (1977) from SiCl2I2 with 2,2'-bipyridine in chloroform and dried in vacuo. An elemental analysis revealed that the red brown powder still contained one equivalent of chloroform. The crystal structure analysis, however, clearly showed that there is no solvent in the crystal. A 29Si NMR spectrum of the title compound in deuterated methanol showed one single signal at -161.0 p.p.m.. Kummer & Seshadri (1977) had found for [SiCl2bipy2]Cl2 a value of -161.1 p.p.m.. Thus, the different anions do not show any effect on the chemical shift of the silicon atom. Recrystallization of the title compound in warm methanol yielded dark red crystals, which seemed not to be very susceptible to hydrolysis.

Refinement top

All H atoms were located by difference Fourier synthesis refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C—H = 0.95 Å.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level.
; top
Crystal data top
C20H16Cl2N4Si2+·2IF(000) = 1272
Mr = 665.16Dx = 1.957 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.831 (2) ÅCell parameters from 8192 reflections
b = 14.927 (3) Åθ = 0–25°
c = 12.929 (3) ŵ = 3.09 mm1
β = 98.63 (3)°T = 173 K
V = 2257.4 (8) Å3Block, dark red
Z = 40.50 × 0.45 × 0.40 mm
Data collection top
Siemens CCD three-circle
diffractometer
6809 independent reflections
Radiation source: fine-focus sealed tube5513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 31.9°, θmin = 1.7°
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
h = 1516
Tmin = 0.240, Tmax = 0.290k = 2022
47312 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0208P)2 + 2.551P]
where P = (Fo2 + 2Fc2)/3
6809 reflections(Δ/σ)max = 0.004
262 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C20H16Cl2N4Si2+·2IV = 2257.4 (8) Å3
Mr = 665.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.831 (2) ŵ = 3.09 mm1
b = 14.927 (3) ÅT = 173 K
c = 12.929 (3) Å0.50 × 0.45 × 0.40 mm
β = 98.63 (3)°
Data collection top
Siemens CCD three-circle
diffractometer
6809 independent reflections
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
5513 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.290Rint = 0.031
47312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
6809 reflectionsΔρmin = 0.82 e Å3
262 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different ϕ angle for the crystal and each exposure covered 0.3° in ω. The crystal-to-detector distance was 4.5 cm. Coverage of the unique set is 100% complete to at least 26.4° in θ. Crystal decay was monitored by repeating the initial frames at the end of data collection and analyzing the duplicate reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.915812 (14)0.666289 (11)0.378287 (12)0.03081 (5)
I21.391391 (16)0.657641 (12)0.921795 (14)0.03722 (5)
Si10.75504 (5)0.51796 (4)0.72980 (4)0.01859 (11)
Cl10.92615 (5)0.56316 (4)0.72435 (4)0.02584 (11)
Cl20.67761 (5)0.64305 (4)0.67566 (5)0.02775 (12)
N10.77425 (16)0.54887 (13)0.87562 (14)0.0221 (4)
C10.7514 (2)0.62950 (17)0.9155 (2)0.0303 (5)
H10.71360.67390.87030.036*
C20.7822 (2)0.64867 (19)1.0211 (2)0.0358 (6)
H20.76580.70571.04780.043*
C30.8367 (2)0.5846 (2)1.0868 (2)0.0362 (6)
H30.85860.59711.15910.043*
C40.8592 (2)0.50160 (19)1.04657 (18)0.0319 (5)
H40.89590.45641.09120.038*
C50.82781 (18)0.48514 (16)0.94089 (17)0.0227 (4)
N20.81398 (15)0.40292 (12)0.78324 (14)0.0196 (4)
C60.84761 (19)0.40127 (16)0.88897 (17)0.0226 (4)
C70.8959 (2)0.32494 (18)0.9383 (2)0.0304 (5)
H70.92010.32491.01180.037*
C80.9086 (2)0.24894 (18)0.8803 (2)0.0322 (5)
H80.94250.19650.91300.039*
C90.8717 (2)0.25039 (16)0.7744 (2)0.0301 (5)
H90.87750.19820.73360.036*
C100.8258 (2)0.32825 (15)0.72749 (19)0.0255 (5)
H100.80200.32900.65400.031*
N30.60578 (15)0.46645 (12)0.73474 (14)0.0203 (4)
C110.5478 (2)0.46822 (17)0.81668 (19)0.0281 (5)
H110.57820.50080.87760.034*
C120.4447 (2)0.42357 (19)0.8142 (2)0.0348 (6)
H120.40540.42540.87300.042*
C130.3998 (2)0.37653 (18)0.7261 (2)0.0357 (6)
H130.32990.34480.72390.043*
C140.4578 (2)0.37590 (17)0.6408 (2)0.0316 (5)
H140.42740.34460.57880.038*
C150.56019 (19)0.42127 (15)0.64667 (18)0.0232 (4)
N40.73035 (16)0.47222 (12)0.58981 (14)0.0209 (4)
C160.63004 (19)0.42671 (14)0.56289 (18)0.0229 (4)
C170.6016 (2)0.38905 (16)0.46479 (19)0.0301 (5)
H170.53300.35550.44820.036*
C180.6740 (2)0.40060 (17)0.39074 (19)0.0348 (6)
H180.65540.37550.32280.042*
C190.7734 (2)0.44910 (17)0.41731 (19)0.0327 (6)
H190.82310.45880.36710.039*
C200.8006 (2)0.48383 (16)0.51791 (18)0.0275 (5)
H200.86980.51620.53620.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03052 (8)0.03602 (9)0.02469 (8)0.00595 (7)0.00018 (6)0.00469 (6)
I20.04448 (11)0.03173 (9)0.03463 (10)0.00009 (7)0.00326 (7)0.00019 (7)
Si10.0182 (3)0.0206 (3)0.0160 (3)0.0012 (2)0.0007 (2)0.0005 (2)
Cl10.0221 (3)0.0311 (3)0.0240 (3)0.0072 (2)0.0021 (2)0.0008 (2)
Cl20.0315 (3)0.0215 (2)0.0279 (3)0.0018 (2)0.0033 (2)0.0015 (2)
N10.0214 (9)0.0270 (9)0.0176 (9)0.0035 (7)0.0026 (7)0.0029 (7)
C10.0329 (13)0.0304 (12)0.0279 (12)0.0026 (10)0.0052 (10)0.0056 (10)
C20.0397 (15)0.0400 (15)0.0303 (13)0.0107 (12)0.0134 (11)0.0143 (11)
C30.0338 (14)0.0548 (17)0.0207 (12)0.0169 (12)0.0059 (10)0.0090 (11)
C40.0290 (12)0.0470 (15)0.0181 (11)0.0071 (11)0.0012 (9)0.0019 (10)
C50.0179 (10)0.0305 (11)0.0194 (10)0.0053 (9)0.0018 (8)0.0008 (9)
N20.0157 (8)0.0229 (9)0.0196 (9)0.0005 (7)0.0003 (7)0.0027 (7)
C60.0181 (10)0.0308 (12)0.0183 (10)0.0027 (9)0.0006 (8)0.0042 (9)
C70.0294 (12)0.0363 (13)0.0235 (11)0.0004 (10)0.0026 (9)0.0094 (10)
C80.0288 (12)0.0316 (13)0.0343 (13)0.0040 (10)0.0016 (10)0.0122 (10)
C90.0297 (13)0.0244 (11)0.0350 (13)0.0049 (9)0.0010 (10)0.0028 (10)
C100.0254 (11)0.0261 (11)0.0239 (11)0.0023 (9)0.0002 (9)0.0005 (9)
N30.0167 (8)0.0216 (9)0.0217 (9)0.0001 (7)0.0003 (7)0.0008 (7)
C110.0233 (11)0.0346 (13)0.0266 (12)0.0022 (10)0.0049 (9)0.0014 (10)
C120.0219 (12)0.0419 (15)0.0419 (15)0.0020 (10)0.0094 (11)0.0035 (12)
C130.0204 (11)0.0313 (13)0.0547 (17)0.0046 (10)0.0032 (11)0.0011 (12)
C140.0244 (12)0.0274 (12)0.0402 (14)0.0026 (10)0.0045 (10)0.0035 (11)
C150.0202 (10)0.0197 (10)0.0274 (11)0.0018 (8)0.0043 (8)0.0006 (8)
N40.0240 (9)0.0204 (9)0.0168 (8)0.0015 (7)0.0016 (7)0.0031 (7)
C160.0238 (11)0.0188 (10)0.0234 (11)0.0015 (8)0.0051 (8)0.0012 (8)
C170.0327 (13)0.0260 (12)0.0278 (12)0.0008 (10)0.0081 (10)0.0042 (9)
C180.0513 (16)0.0298 (13)0.0202 (11)0.0087 (11)0.0051 (11)0.0047 (10)
C190.0478 (16)0.0292 (12)0.0218 (12)0.0044 (11)0.0071 (11)0.0016 (10)
C200.0345 (13)0.0267 (11)0.0214 (11)0.0025 (10)0.0046 (9)0.0026 (9)
Geometric parameters (Å, º) top
Si1—N41.9155 (19)C7—C81.381 (4)
Si1—N11.9209 (19)C8—C91.373 (4)
Si1—N31.9359 (19)C9—C101.384 (3)
Si1—N21.9411 (19)N3—C111.346 (3)
Si1—Cl12.1450 (9)N3—C151.363 (3)
Si1—Cl22.1502 (9)C11—C121.386 (3)
N1—C11.352 (3)C12—C131.375 (4)
N1—C51.363 (3)C13—C141.384 (4)
C1—C21.390 (4)C14—C151.380 (3)
C2—C31.373 (4)C15—C161.460 (3)
C3—C41.385 (4)N4—C201.348 (3)
C4—C51.383 (3)N4—C161.366 (3)
C5—C61.456 (3)C16—C171.382 (3)
N2—C101.346 (3)C17—C181.388 (4)
N2—C61.365 (3)C18—C191.379 (4)
C6—C71.386 (3)C19—C201.392 (3)
N4—Si1—N1172.65 (9)N2—C6—C7120.9 (2)
N4—Si1—N383.05 (9)N2—C6—C5113.77 (19)
N1—Si1—N392.13 (9)C7—C6—C5125.3 (2)
N4—Si1—N290.95 (8)C8—C7—C6119.7 (2)
N1—Si1—N283.10 (8)C9—C8—C7119.0 (2)
N3—Si1—N285.27 (8)C8—C9—C10119.7 (2)
N4—Si1—Cl195.27 (7)N2—C10—C9121.7 (2)
N1—Si1—Cl189.06 (7)C11—N3—C15118.9 (2)
N3—Si1—Cl1174.93 (6)C11—N3—Si1126.39 (16)
N2—Si1—Cl189.98 (6)C15—N3—Si1114.68 (16)
N4—Si1—Cl290.28 (6)N3—C11—C12121.5 (2)
N1—Si1—Cl295.33 (7)C13—C12—C11119.6 (3)
N3—Si1—Cl290.54 (6)C12—C13—C14119.2 (2)
N2—Si1—Cl2175.46 (6)C15—C14—C13119.2 (2)
Cl1—Si1—Cl294.26 (3)N3—C15—C14121.5 (2)
C1—N1—C5119.1 (2)N3—C15—C16113.28 (19)
C1—N1—Si1125.92 (17)C14—C15—C16125.2 (2)
C5—N1—Si1114.55 (15)C20—N4—C16119.3 (2)
N1—C1—C2121.3 (3)C20—N4—Si1125.70 (16)
C3—C2—C1119.6 (3)C16—N4—Si1114.92 (16)
C2—C3—C4119.3 (2)N4—C16—C17121.2 (2)
C5—C4—C3119.5 (2)N4—C16—C15113.92 (19)
N1—C5—C4121.2 (2)C17—C16—C15124.8 (2)
N1—C5—C6114.00 (19)C16—C17—C18119.5 (2)
C4—C5—C6124.8 (2)C19—C18—C17119.0 (2)
C10—N2—C6118.89 (19)C18—C19—C20119.8 (2)
C10—N2—Si1127.05 (15)N4—C20—C19121.1 (2)
C6—N2—Si1114.05 (15)
N4—Si1—N1—C1144.8 (6)N4—Si1—N3—C11179.6 (2)
N3—Si1—N1—C196.0 (2)N1—Si1—N3—C116.0 (2)
N2—Si1—N1—C1179.1 (2)N2—Si1—N3—C1188.9 (2)
Cl1—Si1—N1—C189.0 (2)Cl1—Si1—N3—C11109.5 (7)
Cl2—Si1—N1—C15.2 (2)Cl2—Si1—N3—C1189.36 (19)
N4—Si1—N1—C543.0 (7)N4—Si1—N3—C153.43 (15)
N3—Si1—N1—C591.80 (16)N1—Si1—N3—C15171.00 (16)
N2—Si1—N1—C56.82 (16)N2—Si1—N3—C1588.11 (16)
Cl1—Si1—N1—C583.27 (15)Cl1—Si1—N3—C1567.5 (8)
Cl2—Si1—N1—C5177.46 (15)Cl2—Si1—N3—C1593.65 (15)
C5—N1—C1—C20.5 (4)C15—N3—C11—C121.6 (3)
Si1—N1—C1—C2171.45 (19)Si1—N3—C11—C12175.33 (19)
N1—C1—C2—C30.2 (4)N3—C11—C12—C130.3 (4)
C1—C2—C3—C40.5 (4)C11—C12—C13—C141.0 (4)
C2—C3—C4—C50.8 (4)C12—C13—C14—C151.1 (4)
C1—N1—C5—C40.1 (3)C11—N3—C15—C141.5 (3)
Si1—N1—C5—C4172.70 (18)Si1—N3—C15—C14175.73 (18)
C1—N1—C5—C6180.0 (2)C11—N3—C15—C16178.4 (2)
Si1—N1—C5—C67.2 (2)Si1—N3—C15—C164.4 (2)
C3—C4—C5—N10.5 (4)C13—C14—C15—N30.2 (4)
C3—C4—C5—C6179.4 (2)C13—C14—C15—C16179.7 (2)
N4—Si1—N2—C100.3 (2)N1—Si1—N4—C20134.6 (6)
N1—Si1—N2—C10176.0 (2)N3—Si1—N4—C20176.1 (2)
N3—Si1—N2—C1083.3 (2)N2—Si1—N4—C2098.77 (19)
Cl1—Si1—N2—C1094.95 (19)Cl1—Si1—N4—C208.71 (19)
Cl2—Si1—N2—C10106.0 (8)Cl2—Si1—N4—C2085.59 (19)
N4—Si1—N2—C6179.25 (16)N1—Si1—N4—C1647.5 (7)
N1—Si1—N2—C65.08 (15)N3—Si1—N4—C161.72 (15)
N3—Si1—N2—C697.81 (16)N2—Si1—N4—C1683.40 (16)
Cl1—Si1—N2—C683.97 (15)Cl1—Si1—N4—C16173.46 (14)
Cl2—Si1—N2—C675.1 (8)Cl2—Si1—N4—C1692.23 (15)
C10—N2—C6—C71.7 (3)C20—N4—C16—C172.8 (3)
Si1—N2—C6—C7177.36 (18)Si1—N4—C16—C17179.18 (17)
C10—N2—C6—C5178.46 (19)C20—N4—C16—C15178.1 (2)
Si1—N2—C6—C52.5 (2)Si1—N4—C16—C150.2 (2)
N1—C5—C6—N23.0 (3)N3—C15—C16—N43.0 (3)
C4—C5—C6—N2176.9 (2)C14—C15—C16—N4177.1 (2)
N1—C5—C6—C7177.1 (2)N3—C15—C16—C17178.1 (2)
C4—C5—C6—C73.0 (4)C14—C15—C16—C171.8 (4)
N2—C6—C7—C81.0 (4)N4—C16—C17—C182.6 (3)
C5—C6—C7—C8179.1 (2)C15—C16—C17—C18178.5 (2)
C6—C7—C8—C90.8 (4)C16—C17—C18—C190.4 (4)
C7—C8—C9—C102.0 (4)C17—C18—C19—C201.4 (4)
C6—N2—C10—C90.4 (3)C16—N4—C20—C191.0 (3)
Si1—N2—C10—C9178.44 (18)Si1—N4—C20—C19178.71 (18)
C8—C9—C10—N21.4 (4)C18—C19—C20—N41.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I1i0.953.003.938 (3)171
C13—H13···I1ii0.953.013.829 (3)145
C8—H8···I1iii0.952.993.693 (3)132
C11—H11···I2iv0.953.333.745 (3)109
C18—H18···I2v0.953.174.093 (3)165
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x1, y, z; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H16Cl2N4Si2+·2I
Mr665.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.831 (2), 14.927 (3), 12.929 (3)
β (°) 98.63 (3)
V3)2257.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.50 × 0.45 × 0.40
Data collection
DiffractometerSiemens CCD three-circle
diffractometer
Absorption correctionEmpirical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.240, 0.290
No. of measured, independent and
observed [I > 2σ(I)] reflections
47312, 6809, 5513
Rint0.031
(sin θ/λ)max1)0.743
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.060, 1.07
No. of reflections6809
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.82

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991).

Selected geometric parameters (Å, º) top
Si1—N41.9155 (19)Si1—N21.9411 (19)
Si1—N11.9209 (19)Si1—Cl12.1450 (9)
Si1—N31.9359 (19)Si1—Cl22.1502 (9)
N4—Si1—N1172.65 (9)N3—Si1—Cl1174.93 (6)
N4—Si1—N383.05 (9)N2—Si1—Cl189.98 (6)
N1—Si1—N392.13 (9)N4—Si1—Cl290.28 (6)
N4—Si1—N290.95 (8)N1—Si1—Cl295.33 (7)
N1—Si1—N283.10 (8)N3—Si1—Cl290.54 (6)
N3—Si1—N285.27 (8)N2—Si1—Cl2175.46 (6)
N4—Si1—Cl195.27 (7)Cl1—Si1—Cl294.26 (3)
N1—Si1—Cl189.06 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···I1i0.953.003.938 (3)170.9
C13—H13···I1ii0.953.013.829 (3)145.1
C8—H8···I1iii0.952.993.693 (3)132.0
C11—H11···I2iv0.953.333.745 (3)108.9
C18—H18···I2v0.953.174.093 (3)165.2
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x1, y, z; (v) x+2, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds