Download citation
Download citation
link to html
The aromatic ring of the cinnamic moiety in N-benzyl-2'-iodo­cinnamanilide, C22H18INO, (I), and N-benzyl-2'-iodo-4'-methyl-2-phenyl­cinnamanilide, C29H24INO, (II), makes a dihedral angle with the iodo­phenyl ring of 72.1 (2) and 81.0 (2)° in (I) and (II), respectively. In (I), mol­ecules exist as discrete components, while in (II), they form infinite chains along the b axis, through I...O non-bonded interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015243/sk1348sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015243/sk1348Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015243/sk1348IIsup3.hkl
Contains datablock II

CCDC references: 143253; 143254

Comment top

Cinnamoyl anilides are substrates for cyclization to biologically active five-membered 2-oxindole derivatives and six-membered 2-oxyquinolenes by photochemical methods. o-Iodinated anilides are used for the same reaction by electrochemical methods. The interest lies in the synthetic potential of these iodinated compounds and those of other acyclamides, which react with a wide range of nucleophilic compounds and therefore present new possibilities in the synthesis of heterocyclic compounds (Augustin et al., 1980). We have undertaken X-ray structure analysis of N-benzyl-2'-iodocinnamanilide, (I) and N-benzyl-2'-iodo-4'-methyl-2-phenylcinnamanilide, (II) to identify conformational features that favour cyclization. \scheme

The molecular geometry of the cinnamamide part of the title compounds agrees well with their analogues, N-methyl-2'-nitrocinnamanilide (Subramanian et al., 1999) and N-(4-chloro-2-iodophenyl)-N-methylcinnamamide (Renganayaki et al., 1999), reported by our group, and with other reported values (Iwamoto & Kashino, 1990; Iwamoto et al., 1989). The C—I distance [2.094 (4) in (I) and 2.101 (4) Å in (II)] is comparable with those reported in the literature (Elmali & Elerman, 1997; Banerjee et al., 1994).

The widening of the C1—C7—C8 angle [128.1 (4)°] in (I) is attributable to steric factors involving C2 and C8 [C2···C8 = 3.040 (6) Å]. Steric repulsion between phenyl rings A and D in (II) might contribute to further widening of this angle [130.8 (4)°].

In both compounds, the phenylmethyl ring B and the carbonyl group are syn-periplanar (cis) to each other [O10—C9—N11—C12 = 4.4 (6)° in (I) and 3.9 (6)° in (II)] and the phenyl ring C is anti-periplanar (trans) to the carbonyl group, with the O10—C9—N11—C19 torsion angle = -178.7 (4)° in (I) and -177.7 (4)° in (II). As seen from the torsion angle, the α,β-unsaturated carbonyl unit has the s-cis conformation. The dihedral angles between rings are A/B 62.0 (3), A/C 72.1 (2) and B/C 60.7 (2)° for (I), and 51.9 (3), 81.0 (2) and 48.0 (3)°, respectively, for (II). In (II), rings C and D are in a syn orientation, with an interplanar angle of 21.6 (2)°.

In (I), the packing of the molecules is stabilized by C—H···O and van der Waals interactions, while in (II) the packing is also stabilized by additional I···O interactions [I1···O10(-x + 1, y + 1/2, -z + 1/2) = 3.082 (3) Å].

Experimental top

For the prepapration of (I) the following procedure was employed. To a solution of o-iodoaniline (0.2 mol) and pyridine (0.2 mol) in dry benzene (50 ml), cinnamoyl bromide (0.2 mol in hexane) was added dropwise. The mixture was heated in a water bath at 333–343 K for 5 h and then the mixture was poured into 80–100 ml of water. The benzene layer was separated and washed repeatedly with water 3–4 times. The benzene was dried with magnesium sulfate and the benzene was then evaporated to obtain the anilide. For the benzylation of the anilide, NaH (0.2 mol) was taken in a round-bottomed flask. A solution of anilide (0.2 mol) in dry dimethylformamide (DMF; 50 ml) was added to the NaH. The reaction mixture was stirred for 15 min, and then benzyl bromide was added and stirred for 3 h. The reaction mixture was poured into water, extracted with ethylacetate and washed with water repeatedly to remove the DMF, and the compound was recrystallized from dichloromethane. For the preparation of (II), the synthesis procedure was same as for (I), with α-phenylcinnamoyl bromide as the starting material.

Refinement top

The H atoms were fixed at geometrically calculated distances (C—H = 0.96 Å for methyl and 0.93 Å for others) and were refined as riding on their parent atoms, with assigned isotropic displacement parameters of U(H)iso = 1.5Ueq(C) for methyl and 1.2Ueq(C) for others.

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The structure of (II) showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as small spheres of arbitrary radii.
(I) N-benzyl-2'-iodocinnamanilide top
Crystal data top
C22H18INODx = 1.535 Mg m3
Mr = 439.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8192 reflections
a = 17.7759 (3) Åθ = 1.7–28.4°
b = 9.0661 (2) ŵ = 1.69 mm1
c = 23.5939 (3) ÅT = 293 K
V = 3802.35 (12) Å3Plate, colourless
Z = 80.28 × 0.14 × 0.06 mm
F(000) = 1744
Data collection top
Siemens SMART CCD area detector
diffractometer
4666 independent reflections
Radiation source: fine-focus sealed tube2674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.06
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scanh = 2313
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
k = 1112
Tmin = 0.721, Tmax = 0.901l = 3130
27608 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.023P)2 + 2.0205P]
where P = (Fo2 + 2Fc2)/3
4666 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 1.21 e Å3
Crystal data top
C22H18INOV = 3802.35 (12) Å3
Mr = 439.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.7759 (3) ŵ = 1.69 mm1
b = 9.0661 (2) ÅT = 293 K
c = 23.5939 (3) Å0.28 × 0.14 × 0.06 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
4666 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
2674 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.901Rint = 0.06
27608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.09Δρmax = 0.51 e Å3
4666 reflectionsΔρmin = 1.21 e Å3
226 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 98% and 97% complete for (I) and (II) respectively. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s.planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.075929 (17)0.92867 (4)0.388766 (11)0.05872 (12)
C10.1481 (2)0.3688 (5)0.41637 (16)0.0444 (10)
C20.0760 (3)0.3718 (5)0.43782 (19)0.0638 (13)
H2A0.04140.43900.42340.077*
C30.0541 (3)0.2757 (6)0.4808 (2)0.0718 (15)
H3A0.00550.27980.49520.086*
C40.1041 (3)0.1757 (6)0.50170 (19)0.0706 (15)
H4A0.08950.11200.53060.085*
C50.1756 (3)0.1683 (6)0.4806 (2)0.0711 (15)
H5A0.20930.09910.49470.085*
C60.1976 (2)0.2645 (5)0.43803 (18)0.0575 (12)
H6A0.24630.25900.42370.069*
C70.1745 (2)0.4687 (5)0.37182 (16)0.0481 (11)
H7A0.22590.46730.36460.058*
C80.1345 (2)0.5601 (5)0.34077 (16)0.0436 (10)
H8A0.08240.56090.34420.052*
C90.1717 (2)0.6617 (5)0.30040 (16)0.0423 (10)
O100.24004 (15)0.6593 (4)0.29306 (13)0.0617 (9)
N110.12722 (17)0.7591 (3)0.27217 (12)0.0377 (8)
C120.1631 (2)0.8705 (4)0.23522 (15)0.0448 (10)
H12A0.13710.96380.23990.054*
H12B0.21480.88440.24740.054*
C130.1628 (2)0.8298 (5)0.17298 (17)0.0450 (10)
C140.1913 (3)0.6977 (6)0.15458 (18)0.0615 (13)
H14A0.21110.63150.18080.074*
C150.1912 (3)0.6615 (8)0.0978 (2)0.0852 (18)
H15A0.21100.57170.08600.102*
C160.1618 (3)0.7577 (10)0.0589 (3)0.098 (2)
H16A0.16090.73280.02070.118*
C170.1341 (4)0.8898 (9)0.0766 (2)0.097 (2)
H17A0.11450.95560.05010.116*
C180.1347 (3)0.9277 (6)0.1336 (2)0.0725 (14)
H18A0.11611.01870.14520.087*
C190.0469 (2)0.7693 (4)0.27671 (16)0.0364 (9)
C200.0022 (2)0.7193 (5)0.23274 (17)0.0475 (11)
H20A0.02440.67270.20190.057*
C210.0748 (2)0.7374 (5)0.23398 (19)0.0542 (11)
H21A0.10400.70630.20350.065*
C220.1081 (2)0.8013 (5)0.2802 (2)0.0581 (13)
H22A0.16010.81130.28140.070*
C230.0651 (2)0.8511 (5)0.32492 (18)0.0530 (11)
H23A0.08800.89360.35640.064*
C240.0125 (2)0.8372 (4)0.32275 (15)0.0400 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05869 (19)0.0728 (2)0.04466 (16)0.00328 (18)0.00243 (15)0.01247 (15)
C10.046 (3)0.044 (3)0.043 (2)0.002 (2)0.004 (2)0.002 (2)
C20.063 (3)0.068 (3)0.061 (3)0.015 (3)0.009 (3)0.011 (2)
C30.071 (4)0.084 (4)0.060 (3)0.002 (3)0.019 (3)0.008 (3)
C40.089 (4)0.077 (4)0.045 (3)0.016 (3)0.005 (3)0.013 (3)
C50.072 (4)0.075 (4)0.066 (3)0.001 (3)0.019 (3)0.021 (3)
C60.045 (3)0.066 (3)0.062 (3)0.003 (2)0.009 (2)0.012 (2)
C70.040 (2)0.052 (3)0.052 (2)0.003 (2)0.005 (2)0.001 (2)
C80.030 (2)0.048 (3)0.052 (2)0.003 (2)0.0002 (18)0.000 (2)
C90.038 (2)0.048 (3)0.042 (2)0.003 (2)0.0014 (19)0.0028 (19)
O100.0310 (17)0.077 (2)0.077 (2)0.0051 (16)0.0060 (15)0.0131 (17)
N110.0304 (17)0.041 (2)0.0422 (18)0.0009 (16)0.0049 (15)0.0038 (15)
C120.040 (2)0.038 (2)0.056 (3)0.003 (2)0.008 (2)0.0003 (19)
C130.036 (2)0.051 (3)0.048 (2)0.005 (2)0.0066 (19)0.004 (2)
C140.065 (3)0.067 (4)0.052 (3)0.005 (3)0.005 (2)0.010 (2)
C150.072 (4)0.113 (5)0.071 (4)0.004 (4)0.015 (3)0.029 (3)
C160.077 (4)0.162 (8)0.057 (4)0.033 (5)0.011 (3)0.016 (4)
C170.093 (5)0.135 (7)0.061 (4)0.022 (5)0.013 (3)0.031 (4)
C180.078 (4)0.076 (4)0.064 (3)0.002 (3)0.001 (3)0.012 (3)
C190.031 (2)0.033 (2)0.045 (2)0.0000 (17)0.0004 (17)0.0053 (18)
C200.048 (3)0.048 (3)0.047 (2)0.005 (2)0.003 (2)0.0006 (19)
C210.048 (3)0.055 (3)0.059 (3)0.010 (3)0.020 (2)0.004 (2)
C220.030 (2)0.066 (3)0.078 (3)0.000 (2)0.007 (2)0.015 (3)
C230.039 (3)0.062 (3)0.058 (3)0.007 (2)0.005 (2)0.002 (2)
C240.034 (2)0.045 (3)0.041 (2)0.0014 (19)0.0006 (18)0.0076 (18)
Geometric parameters (Å, º) top
I1—C242.094 (4)C12—H12B0.9700
C1—C21.379 (6)C13—C141.371 (6)
C1—C61.389 (6)C13—C181.379 (6)
C1—C71.464 (6)C14—C151.379 (6)
C2—C31.392 (6)C14—H14A0.9300
C2—H2A0.9300C15—C161.369 (8)
C3—C41.362 (7)C15—H15A0.9300
C3—H3A0.9300C16—C171.361 (8)
C4—C51.366 (7)C16—H16A0.9300
C4—H4A0.9300C17—C181.388 (7)
C5—C61.386 (6)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—H6A0.9300C19—C201.384 (5)
C7—C81.315 (5)C19—C241.391 (5)
C7—H7A0.9300C20—C211.379 (5)
C8—C91.481 (5)C20—H20A0.9300
C8—H8A0.9300C21—C221.369 (6)
C9—O101.227 (4)C21—H21A0.9300
C9—N111.360 (5)C22—C231.379 (6)
N11—C191.434 (4)C22—H22A0.9300
N11—C121.479 (5)C23—C241.386 (5)
C12—C131.514 (5)C23—H23A0.9300
C12—H12A0.9700
C2—C1—C6117.8 (4)C14—C13—C18118.9 (4)
C2—C1—C7123.3 (4)C14—C13—C12121.2 (4)
C6—C1—C7118.9 (4)C18—C13—C12119.9 (4)
C1—C2—C3121.0 (5)C13—C14—C15120.9 (5)
C1—C2—H2A119.5C13—C14—H14A119.5
C3—C2—H2A119.5C15—C14—H14A119.5
C4—C3—C2119.9 (5)C16—C15—C14120.1 (6)
C4—C3—H3A120.1C16—C15—H15A120.0
C2—C3—H3A120.1C14—C15—H15A120.0
C3—C4—C5120.4 (5)C17—C16—C15119.5 (6)
C3—C4—H4A119.8C17—C16—H16A120.2
C5—C4—H4A119.8C15—C16—H16A120.2
C4—C5—C6119.7 (5)C16—C17—C18120.8 (6)
C4—C5—H5A120.1C16—C17—H17A119.6
C6—C5—H5A120.1C18—C17—H17A119.6
C5—C6—C1121.1 (4)C13—C18—C17119.8 (5)
C5—C6—H6A119.5C13—C18—H18A120.1
C1—C6—H6A119.5C17—C18—H18A120.1
C8—C7—C1128.1 (4)C20—C19—C24118.6 (3)
C8—C7—H7A116.0C20—C19—N11119.7 (3)
C1—C7—H7A116.0C24—C19—N11121.6 (3)
C7—C8—C9120.6 (4)C21—C20—C19121.0 (4)
C7—C8—H8A119.7C21—C20—H20A119.5
C9—C8—H8A119.7C19—C20—H20A119.5
O10—C9—N11121.2 (4)C22—C21—C20119.8 (4)
O10—C9—C8121.5 (4)C22—C21—H21A120.1
N11—C9—C8117.3 (3)C20—C21—H21A120.1
C9—N11—C19125.7 (3)C21—C22—C23120.6 (4)
C9—N11—C12118.8 (3)C21—C22—H22A119.7
C19—N11—C12115.4 (3)C23—C22—H22A119.7
N11—C12—C13113.8 (3)C22—C23—C24119.6 (4)
N11—C12—H12A108.8C22—C23—H23A120.2
C13—C12—H12A108.8C24—C23—H23A120.2
N11—C12—H12B108.8C23—C24—C19120.5 (4)
C13—C12—H12B108.8C23—C24—I1118.2 (3)
H12A—C12—H12B107.7C19—C24—I1121.3 (3)
C6—C1—C2—C31.6 (7)C12—C13—C14—C15179.8 (4)
C7—C1—C2—C3179.1 (4)C13—C14—C15—C160.4 (8)
C1—C2—C3—C40.8 (8)C14—C15—C16—C171.1 (9)
C2—C3—C4—C50.4 (8)C15—C16—C17—C180.5 (10)
C3—C4—C5—C60.7 (8)C14—C13—C18—C171.4 (7)
C4—C5—C6—C10.1 (7)C12—C13—C18—C17179.7 (4)
C2—C1—C6—C51.2 (7)C16—C17—C18—C130.7 (9)
C7—C1—C6—C5179.4 (4)C9—N11—C19—C20106.5 (4)
C2—C1—C7—C89.4 (7)C12—N11—C19—C2076.5 (5)
C6—C1—C7—C8169.9 (4)C9—N11—C19—C2477.9 (5)
C1—C7—C8—C9175.3 (4)C12—N11—C19—C2499.2 (4)
C7—C8—C9—O103.1 (6)C24—C19—C20—C210.7 (6)
C7—C8—C9—N11176.2 (4)N11—C19—C20—C21175.2 (4)
O10—C9—N11—C19178.7 (4)C19—C20—C21—C222.2 (7)
C8—C9—N11—C192.0 (6)C20—C21—C22—C231.6 (7)
O10—C9—N11—C124.4 (6)C21—C22—C23—C240.6 (7)
C8—C9—N11—C12174.9 (3)C22—C23—C24—C192.2 (6)
C9—N11—C12—C1398.9 (4)C22—C23—C24—I1175.4 (3)
C19—N11—C12—C1383.8 (4)C20—C19—C24—C231.5 (6)
N11—C12—C13—C1454.0 (5)N11—C19—C24—C23177.3 (4)
N11—C12—C13—C18127.1 (4)C20—C19—C24—I1176.0 (3)
C18—C13—C14—C150.8 (7)N11—C19—C24—I10.2 (5)
(II) N-benzyl-2'-iodo-4'-methyl-2-phenylcinnamanilide top
Crystal data top
C29H24INOF(000) = 1064
Mr = 529.39Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8150 (2) ÅCell parameters from 6014 reflections
b = 11.3607 (2) Åθ = 1.9–28.3°
c = 20.2477 (5) ŵ = 1.31 mm1
β = 91.271 (1)°T = 293 K
V = 2487.14 (9) Å3Block, colourless
Z = 40.32 × 0.18 × 0.10 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
6131 independent reflections
Radiation source: fine-focus sealed tube2831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 8.33 pixels mm-1θmax = 28.5°, θmin = 1.9°
ω scanh = 1014
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick,1996)
k = 1514
Tmin = 0.674, Tmax = 0.897l = 2621
19536 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.028P)2]
where P = (Fo2 + 2Fc2)/3
6131 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C29H24INOV = 2487.14 (9) Å3
Mr = 529.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8150 (2) ŵ = 1.31 mm1
b = 11.3607 (2) ÅT = 293 K
c = 20.2477 (5) Å0.32 × 0.18 × 0.10 mm
β = 91.271 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
6131 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick,1996)
2831 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.897Rint = 0.093
19536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.96Δρmax = 0.45 e Å3
6131 reflectionsΔρmin = 0.79 e Å3
289 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 98% and 97% complete for (I) and (II) respectively. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.30203 (3)0.07701 (3)0.208241 (17)0.06348 (14)
C10.5366 (3)0.2271 (4)0.0928 (2)0.0465 (11)
C20.5663 (4)0.1371 (4)0.0505 (3)0.0621 (13)
H2A0.55760.05960.06450.074*
C30.6089 (5)0.1588 (5)0.0123 (3)0.0754 (15)
H3A0.62700.09630.04010.091*
C40.6244 (4)0.2720 (6)0.0334 (3)0.0777 (16)
H4A0.65230.28690.07570.093*
C50.5988 (5)0.3627 (5)0.0080 (3)0.0757 (16)
H5A0.61130.43980.00570.091*
C60.5540 (4)0.3408 (4)0.0709 (3)0.0644 (14)
H6A0.53560.40370.09840.077*
C70.4963 (4)0.2007 (3)0.1607 (2)0.0465 (11)
H7A0.53190.13370.17940.056*
C80.4173 (3)0.2571 (3)0.1996 (2)0.0417 (10)
C90.4122 (4)0.2184 (3)0.2702 (2)0.0462 (11)
O100.5017 (3)0.2287 (3)0.30675 (16)0.0706 (10)
N110.3051 (3)0.1696 (3)0.29260 (18)0.0492 (9)
C120.2988 (4)0.1217 (4)0.3603 (2)0.0578 (12)
H12A0.26320.04340.35800.069*
H12B0.38230.11410.37830.069*
C130.2247 (4)0.1946 (4)0.4067 (2)0.0555 (12)
C140.2701 (5)0.2967 (5)0.4324 (3)0.0810 (16)
H14A0.34980.32030.42230.097*
C150.2007 (8)0.3654 (6)0.4731 (4)0.112 (2)
H15A0.23450.43460.49020.134*
C160.0835 (8)0.3350 (7)0.4891 (4)0.123 (3)
H16A0.03690.38300.51620.147*
C170.0364 (6)0.2334 (8)0.4647 (4)0.128 (3)
H17A0.04300.21020.47550.153*
C180.1061 (5)0.1639 (6)0.4237 (3)0.099 (2)
H18A0.07210.09450.40700.119*
C190.1954 (4)0.1590 (4)0.2527 (2)0.0486 (11)
C200.1079 (4)0.2478 (4)0.2547 (2)0.0616 (13)
H20A0.12170.31290.28170.074*
C210.0013 (4)0.2407 (5)0.2173 (3)0.0769 (16)
H21A0.05660.30100.21900.092*
C220.0211 (4)0.1446 (6)0.1769 (3)0.0774 (16)
C230.0660 (4)0.0557 (4)0.1751 (2)0.0657 (14)
H23A0.05160.00930.14810.079*
C240.1740 (4)0.0617 (4)0.2127 (2)0.0555 (12)
C250.1381 (5)0.1376 (6)0.1355 (3)0.117 (2)
H25A0.18750.20640.14300.175*
H25B0.11770.13350.08960.175*
H25C0.18370.06870.14740.175*
C260.3386 (3)0.3585 (4)0.1799 (2)0.0462 (11)
C270.3349 (4)0.4574 (4)0.2199 (3)0.0646 (14)
H27A0.38320.45990.25840.078*
C280.2620 (5)0.5506 (4)0.2038 (3)0.0789 (17)
H28A0.26230.61660.23100.095*
C290.1898 (6)0.5490 (5)0.1496 (4)0.095 (2)
H29A0.13910.61290.13950.113*
C300.1908 (5)0.4524 (6)0.1089 (3)0.092 (2)
H30A0.14080.45130.07090.111*
C310.2662 (4)0.3559 (5)0.1238 (2)0.0656 (13)
H31A0.26700.29070.09600.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0630 (2)0.0584 (2)0.0695 (3)0.00272 (17)0.01212 (14)0.00739 (19)
C10.045 (3)0.046 (3)0.049 (3)0.0006 (19)0.003 (2)0.000 (2)
C20.073 (3)0.057 (3)0.056 (4)0.002 (2)0.003 (3)0.005 (3)
C30.093 (4)0.079 (4)0.054 (4)0.004 (3)0.013 (3)0.013 (3)
C40.075 (4)0.106 (5)0.052 (4)0.002 (3)0.011 (3)0.011 (4)
C50.091 (4)0.059 (3)0.078 (5)0.000 (3)0.027 (3)0.017 (3)
C60.076 (3)0.055 (3)0.063 (4)0.005 (2)0.020 (3)0.003 (3)
C70.052 (3)0.040 (2)0.048 (3)0.002 (2)0.001 (2)0.006 (2)
C80.042 (2)0.041 (2)0.043 (3)0.0042 (19)0.001 (2)0.000 (2)
C90.050 (3)0.040 (2)0.049 (3)0.002 (2)0.002 (2)0.004 (2)
O100.063 (2)0.097 (2)0.052 (2)0.0154 (18)0.0164 (17)0.0143 (19)
N110.045 (2)0.058 (2)0.045 (3)0.0010 (17)0.0021 (18)0.0032 (19)
C120.063 (3)0.062 (3)0.049 (4)0.004 (2)0.001 (2)0.009 (3)
C130.062 (3)0.069 (3)0.035 (3)0.007 (2)0.003 (2)0.003 (3)
C140.091 (4)0.082 (4)0.070 (5)0.014 (3)0.010 (3)0.014 (3)
C150.164 (7)0.083 (4)0.089 (6)0.011 (5)0.018 (5)0.020 (4)
C160.153 (8)0.133 (7)0.084 (6)0.027 (6)0.038 (5)0.027 (5)
C170.098 (5)0.183 (8)0.103 (7)0.002 (5)0.035 (4)0.036 (6)
C180.083 (4)0.126 (5)0.089 (5)0.028 (4)0.022 (4)0.038 (4)
C190.042 (3)0.061 (3)0.043 (3)0.001 (2)0.011 (2)0.005 (2)
C200.052 (3)0.074 (3)0.059 (4)0.005 (3)0.009 (2)0.001 (3)
C210.052 (3)0.104 (4)0.076 (5)0.021 (3)0.015 (3)0.013 (4)
C220.044 (3)0.129 (5)0.060 (4)0.002 (3)0.006 (3)0.008 (4)
C230.052 (3)0.091 (4)0.054 (4)0.012 (3)0.006 (2)0.012 (3)
C240.046 (3)0.067 (3)0.054 (3)0.001 (2)0.011 (2)0.002 (3)
C250.058 (4)0.219 (7)0.073 (5)0.007 (4)0.008 (3)0.004 (5)
C260.039 (2)0.056 (3)0.044 (3)0.003 (2)0.002 (2)0.004 (2)
C270.061 (3)0.054 (3)0.079 (4)0.005 (2)0.003 (3)0.003 (3)
C280.061 (3)0.065 (4)0.111 (6)0.011 (3)0.007 (3)0.007 (3)
C290.074 (4)0.083 (5)0.127 (7)0.025 (3)0.015 (4)0.031 (4)
C300.062 (4)0.141 (6)0.074 (5)0.019 (4)0.010 (3)0.036 (4)
C310.060 (3)0.090 (4)0.046 (4)0.011 (3)0.002 (2)0.009 (3)
Geometric parameters (Å, º) top
I1—C242.101 (4)C14—C151.371 (8)
C1—C21.377 (6)C15—C161.359 (9)
C1—C61.380 (6)C16—C171.351 (9)
C1—C71.481 (6)C17—C181.382 (8)
C2—C31.384 (7)C19—C201.384 (6)
C3—C41.366 (7)C19—C241.386 (6)
C4—C51.361 (7)C20—C211.368 (6)
C5—C61.394 (7)C21—C221.381 (7)
C7—C81.339 (6)C22—C231.382 (7)
C8—C261.481 (5)C22—C251.504 (6)
C8—C91.499 (6)C23—C241.382 (6)
C9—O101.211 (4)C26—C311.365 (5)
C9—N111.370 (5)C26—C271.387 (6)
N11—C191.426 (5)C27—C281.355 (6)
N11—C121.478 (5)C28—C291.332 (7)
C12—C131.498 (6)C29—C301.374 (7)
C13—C141.359 (6)C30—C311.395 (7)
C13—C181.380 (7)
C2—C1—C6117.3 (5)C17—C16—C15118.4 (7)
C2—C1—C7120.3 (4)C16—C17—C18120.2 (7)
C6—C1—C7122.3 (4)C13—C18—C17121.8 (6)
C1—C2—C3121.8 (5)C20—C19—C24119.5 (4)
C4—C3—C2120.0 (5)C20—C19—N11118.8 (4)
C5—C4—C3119.5 (5)C24—C19—N11121.6 (4)
C4—C5—C6120.4 (5)C21—C20—C19120.6 (5)
C1—C6—C5120.9 (5)C20—C21—C22120.6 (5)
C8—C7—C1130.8 (4)C21—C22—C23118.8 (4)
C7—C8—C26125.8 (4)C21—C22—C25120.4 (6)
C7—C8—C9117.3 (4)C23—C22—C25120.8 (6)
C26—C8—C9116.9 (4)C24—C23—C22121.2 (5)
O10—C9—N11120.5 (4)C23—C24—C19119.3 (4)
O10—C9—C8120.6 (4)C23—C24—I1119.3 (4)
N11—C9—C8118.9 (4)C19—C24—I1121.4 (3)
C9—N11—C19123.0 (4)C31—C26—C27118.7 (4)
C9—N11—C12120.8 (3)C31—C26—C8121.5 (4)
C19—N11—C12116.1 (3)C27—C26—C8119.8 (4)
N11—C12—C13114.5 (4)C28—C27—C26121.1 (5)
C14—C13—C18116.8 (5)C29—C28—C27121.0 (6)
C14—C13—C12121.2 (5)C28—C29—C30119.5 (5)
C18—C13—C12121.9 (5)C29—C30—C31120.7 (5)
C13—C14—C15121.2 (6)C26—C31—C30119.0 (5)
C16—C15—C14121.6 (7)

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H18INOC29H24INO
Mr439.27529.39
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)17.7759 (3), 9.0661 (2), 23.5939 (3)10.8150 (2), 11.3607 (2), 20.2477 (5)
α, β, γ (°)90, 90, 9090, 91.271 (1), 90
V3)3802.35 (12)2487.14 (9)
Z84
Radiation typeMo KαMo Kα
µ (mm1)1.691.31
Crystal size (mm)0.28 × 0.14 × 0.060.32 × 0.18 × 0.10
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Siemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Empirical (using intensity measurements)
SADABS (Sheldrick,1996)
Tmin, Tmax0.721, 0.9010.674, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
27608, 4666, 2674 19536, 6131, 2831
Rint0.060.093
(sin θ/λ)max1)0.6670.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.095, 1.09 0.057, 0.102, 0.96
No. of reflections46666131
No. of parameters226289
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 1.210.45, 0.79

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected bond lengths (Å) for (I) top
I1—C242.094 (4)N11—C191.434 (4)
C9—N111.360 (5)N11—C121.479 (5)
Selected geometric parameters (Å, º) for (II) top
I1—C242.101 (4)N11—C191.426 (5)
C9—N111.370 (5)N11—C121.478 (5)
C8—C7—C1130.8 (4)C7—C8—C26125.8 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds