Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4- anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O-H...O hydrogen bonds involving the water mol­ecules, and intermolecular O-H...N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O-H...O and N-H...N, and intermolecular O-H...N, N-H...O and N-H...N hydrogen bonds form a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015176/sk1341sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015176/sk1341Isup2.hkl
Contains datablock I

CCDC reference: 143222

Comment top

Coordination polymers with supramolecular structures are one of the most interesting topics in current chemistry and crystal engineering, both for the theoretical aspects related to the topologies of novel frameworks with inner cavities and channels (Carlucci et al., 1995; Yaghi & Li 1995) and for their potential applications in catalysis (Fujita et al., 1994), host–guest chemistry (Yaghi et al., 1997; Kawata et al., 1996; Zhang et al., 1996) and molecular electronics (Fallah et al., 1996; Miyasaka et al., 1996). Cyanide is a versatile ligand capable of bridging different metal centres in an asymmetric mode. The most outstanding known example of such behaviour is represented by the mixed-valence polymeric structure of Prussian blue (Buser et al., 1977), where cyanide is C-end attached to low-spin FeII and N-end to high-spin FeIII. We have become interested in these type of complexes and now report the crystal structure of [Zn(dien)2]2Fe(CN)6·4H2O (dien = diethylenetriamine, NH2CH2CH2NHCH2CH2NH2), (I). \sch

The crystal structure of (I) is formed by [Zn(dien)2]2+ cations, water molecules and half of the [Fe(CN)6]4- anions. The Fe atom lies on the inversion centre so that the [Fe(CN)6]4- anion has an inversion symmetry. The bond lengths and angles of the [Zn(dien)2]2+ are comparable with the reported values (Hodgson & Penfold, 1974). The environment around the Zn atom formed by the N atoms of the diethylenetriamine moieties can be described as distorted octahedral [N—Zn—N = 78.58 (4)–179.77 (4)°]. The [Fe(CN)6]4- assumes an octahedrally coordinated geometry with six CN- groups. The bond lengths and angles observed show only small differences with the reported values, even in the presence of different cation (Orpen et al., 1989; Cauzzi et al., 1993).

In the crystal the water molecules are involved in O—H···O intramolecular hydrogen bonds (O1W-H1W1···O2W). Two of the N atoms from the [Zn(dien)2]2+ cations, N3 and N4 formed N—H···N intramolecular hydrogen bonds with N8 from the [Fe(CN)6]4- anions. In addition to the O—H···O intramolecular hydrogen bonds, both the water molecules are also involved in intermolecular O—H···N hydrogen bonds with N atoms from the [Fe(CN)6]4- anions [O1W-H2W1···N9(1 - x, -y, 1 - z); O2W-H1W2···N8(-1/2 + x,1/2 - y,1/2 + z); O2W-H2W2···N7(3/2 - x,1/2 + y,1/2 - z)]. These O—H···O intramolecular and O—H···N intermolecular hydrogen bonds involving water molecules and [Fe(CN)6]4- anions form an infinite chain in the [101] direction where cyanide ligands are connected through the water molecules. The [Zn(dien)2]2+ cations are also involved in N—H···O and N—H···N intermolecular hydrogen bondings with the water molecules and the anions, respectively. These O—H···O, N—H···N intramolecular and O—H···N, N—H···O, N—H···N intermolecular hydrogen bonds form a three dimensional framework.

Experimental top

K4Fe(CN)6 (184 mg, 0.5 mmol) in water (10 cm3) was added to dien (0.30 ml, 4.0 mmol) in H2O (20 cm3) containing Zn(NO3)2 (188 mg, 1.0 mmol). The mixture was refluxed with stirring for 30 min and then allowed to stand in air at room temperature for 2 d. Colourless, single crystals suitable for X-ray analysis were obtained and washed with ethanol.

Refinement top

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms except H atoms of the water molecules which were refined isotropically.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Bis[bis(diethylenetriamine)Zinc(II)] ferrocyanide tetrahydrate [Zn(dien)2]2Fe(CN)6. 4H2O, (dien = diethylenetriamine, NH2CH=CHNHCH=CHNH2) top
Crystal data top
[Zn(C4H13N3)2]2[Fe(CN)6]·4H2OF(000) = 872
Mr = 827.47Dx = 1.465 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2597 (2) ÅCell parameters from 5929 reflections
b = 14.5473 (3) Åθ = 2.9–33.2°
c = 13.9263 (2) ŵ = 1.70 mm1
β = 90.726 (1)°T = 293 K
V = 1875.77 (6) Å3Slab, colourless
Z = 20.48 × 0.32 × 0.18 mm
Data collection top
Siemens SMART CCD area detector
diffractometer
6906 independent reflections
Radiation source: fine-focus sealed tube5745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.33 pixels mm-1θmax = 33.1°, θmin = 2.9°
ω scansh = 1411
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2217
Tmin = 0.495, Tmax = 0.749l = 2121
17004 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3241P]
where P = (Fo2 + 2Fc2)/3
6906 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Zn(C4H13N3)2]2[Fe(CN)6]·4H2OV = 1875.77 (6) Å3
Mr = 827.47Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.2597 (2) ŵ = 1.70 mm1
b = 14.5473 (3) ÅT = 293 K
c = 13.9263 (2) Å0.48 × 0.32 × 0.18 mm
β = 90.726 (1)°
Data collection top
Siemens SMART CCD area detector
diffractometer
6906 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5745 reflections with I > 2σ(I)
Tmin = 0.495, Tmax = 0.749Rint = 0.021
17004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0284 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
6906 reflectionsΔρmin = 0.60 e Å3
230 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct methods and refined by full-matrix least-squares techniques.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.412304 (15)0.227177 (10)0.204060 (10)0.02518 (4)
Fe11.00000.00000.00000.01959 (5)
O1W0.50283 (16)0.20972 (13)0.85242 (13)0.0701 (4)
O2W0.43026 (19)0.38773 (11)0.78911 (11)0.0642 (4)
N10.34670 (15)0.26535 (8)0.35151 (8)0.0358 (2)
H1C0.41400.30190.37880.043*
H1D0.26240.29610.34950.043*
N20.42214 (12)0.09400 (7)0.27286 (8)0.0286 (2)
H2C0.33580.06530.26340.034*
N30.49066 (13)0.13912 (8)0.08448 (8)0.0327 (2)
H3C0.42790.14200.03470.039*
H3D0.57670.15990.06450.039*
N40.64048 (12)0.27629 (8)0.22467 (9)0.0336 (2)
H4C0.66210.27940.28780.040*
H4D0.70180.23640.19730.040*
N50.40335 (12)0.36001 (8)0.13572 (8)0.0308 (2)
H5C0.38230.40260.18130.037*
N60.18753 (13)0.22679 (9)0.15007 (9)0.0368 (2)
H6C0.17710.18470.10310.044*
H6D0.12710.21220.19790.044*
N70.84889 (13)0.00760 (8)0.19849 (8)0.0343 (2)
N80.82607 (14)0.15881 (9)0.08924 (10)0.0393 (3)
N90.77735 (13)0.14191 (9)0.07207 (9)0.0365 (2)
C10.33112 (17)0.18023 (11)0.40788 (10)0.0384 (3)
H1A0.23460.15560.39880.046*
H1B0.34500.19360.47560.046*
C20.44214 (17)0.10974 (10)0.37595 (10)0.0382 (3)
H2A0.53890.13240.38900.046*
H2B0.42930.05270.41080.046*
C30.53451 (15)0.03997 (10)0.22496 (11)0.0362 (3)
H3A0.53270.02310.24760.043*
H3B0.62900.06560.23930.043*
C40.50522 (16)0.04274 (10)0.11723 (11)0.0368 (3)
H4A0.58400.01330.08380.044*
H4B0.41710.00930.10240.044*
C50.65649 (16)0.36762 (11)0.18071 (12)0.0419 (3)
H5A0.75370.37430.15650.050*
H5B0.64160.41470.22890.050*
C60.54826 (17)0.38039 (11)0.09906 (11)0.0413 (3)
H6A0.55200.44310.07550.050*
H6B0.57080.33920.04650.050*
C70.28480 (18)0.35933 (12)0.06478 (11)0.0432 (3)
H7A0.31100.32240.00970.052*
H7B0.26460.42140.04300.052*
C80.15277 (17)0.31902 (12)0.11259 (13)0.0453 (4)
H8A0.12290.35860.16480.054*
H8B0.07370.31490.06640.054*
C90.90170 (12)0.00658 (8)0.12216 (8)0.0240 (2)
C100.88819 (12)0.09894 (8)0.05271 (8)0.0255 (2)
C110.86031 (12)0.08761 (8)0.04569 (8)0.0242 (2)
H2W10.419 (2)0.1824 (15)0.8717 (16)0.069 (7)*
H2W20.504 (2)0.4287 (16)0.7773 (19)0.081 (8)*
H1W20.391 (3)0.377 (2)0.7261 (15)0.121 (12)*
H1W10.474 (3)0.2693 (13)0.849 (2)0.094 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02592 (7)0.02505 (7)0.02458 (7)0.00178 (5)0.00011 (5)0.00136 (5)
Fe10.01778 (10)0.02023 (10)0.02076 (9)0.00013 (7)0.00094 (7)0.00058 (7)
O1W0.0440 (7)0.0761 (11)0.0904 (12)0.0016 (7)0.0130 (7)0.0272 (9)
O2W0.0774 (10)0.0593 (9)0.0560 (8)0.0102 (8)0.0066 (7)0.0109 (7)
N10.0436 (7)0.0343 (6)0.0295 (5)0.0004 (5)0.0036 (5)0.0067 (4)
N20.0283 (5)0.0281 (5)0.0293 (5)0.0007 (4)0.0013 (4)0.0026 (4)
N30.0327 (5)0.0375 (6)0.0280 (5)0.0033 (4)0.0000 (4)0.0065 (4)
N40.0280 (5)0.0372 (6)0.0357 (5)0.0015 (4)0.0004 (4)0.0101 (5)
N50.0349 (6)0.0294 (5)0.0280 (5)0.0016 (4)0.0019 (4)0.0021 (4)
N60.0289 (5)0.0418 (7)0.0396 (6)0.0026 (5)0.0029 (5)0.0040 (5)
N70.0353 (6)0.0357 (6)0.0317 (5)0.0057 (5)0.0069 (4)0.0055 (4)
N80.0351 (6)0.0374 (6)0.0458 (7)0.0074 (5)0.0093 (5)0.0051 (5)
N90.0364 (6)0.0396 (6)0.0336 (5)0.0119 (5)0.0003 (5)0.0053 (5)
C10.0447 (8)0.0448 (8)0.0259 (5)0.0036 (6)0.0055 (5)0.0014 (5)
C20.0467 (8)0.0390 (7)0.0287 (6)0.0001 (6)0.0052 (6)0.0041 (5)
C30.0342 (7)0.0283 (6)0.0459 (7)0.0068 (5)0.0007 (6)0.0004 (5)
C40.0364 (7)0.0319 (6)0.0422 (7)0.0007 (5)0.0052 (6)0.0137 (6)
C50.0350 (7)0.0420 (8)0.0490 (8)0.0114 (6)0.0050 (6)0.0056 (7)
C60.0443 (8)0.0411 (8)0.0388 (7)0.0074 (6)0.0090 (6)0.0045 (6)
C70.0463 (8)0.0454 (8)0.0376 (7)0.0050 (6)0.0083 (6)0.0098 (6)
C80.0317 (7)0.0540 (9)0.0501 (9)0.0111 (6)0.0080 (6)0.0037 (7)
C90.0221 (5)0.0213 (5)0.0287 (5)0.0021 (4)0.0017 (4)0.0016 (4)
C100.0223 (5)0.0274 (5)0.0268 (5)0.0000 (4)0.0013 (4)0.0017 (4)
C110.0243 (5)0.0257 (5)0.0227 (5)0.0006 (4)0.0008 (4)0.0002 (4)
Geometric parameters (Å, º) top
Zn1—N52.155 (1)N5—C61.4719 (19)
Zn1—N22.163 (1)N5—H5C0.9100
Zn1—N62.204 (1)N6—C81.474 (2)
Zn1—N12.219 (1)N6—H6C0.9000
Zn1—N32.230 (1)N6—H6D0.9000
Zn1—N42.245 (1)N7—C91.1645 (16)
Fe1—C91.922 (1)N8—C101.1643 (16)
Fe1—C9i1.9217 (12)N9—C111.1645 (16)
Fe1—C101.924 (1)C1—C21.522 (2)
Fe1—C10i1.9240 (12)C1—H1A0.9700
Fe1—C11i1.9296 (12)C1—H1B0.9700
Fe1—C111.930 (1)C2—H2A0.9700
O1W—H2W10.913 (16)C2—H2B0.9700
O1W—H1W10.908 (17)C3—C41.522 (2)
O2W—H2W20.922 (17)C3—H3A0.9700
O2W—H1W20.958 (17)C3—H3B0.9700
N1—C11.4742 (19)C4—H4A0.9700
N1—H1C0.9000C4—H4B0.9700
N1—H1D0.9000C5—C61.518 (2)
N2—C21.4633 (17)C5—H5A0.9700
N2—C31.4708 (17)C5—H5B0.9700
N2—H2C0.9100C6—H6A0.9700
N3—C41.4800 (19)C6—H6B0.9700
N3—H3C0.9000C7—C81.517 (2)
N3—H3D0.9000C7—H7A0.9700
N4—C51.471 (2)C7—H7B0.9700
N4—H4C0.9000C8—H8A0.9700
N4—H4D0.9000C8—H8B0.9700
N5—C71.4676 (18)
N5—Zn1—N2179.77 (4)C6—N5—H5C108.0
N5—Zn1—N679.68 (5)Zn1—N5—H5C108.0
N2—Zn1—N6100.55 (4)C8—N6—Zn1108.64 (9)
N5—Zn1—N1100.07 (4)C8—N6—H6C110.0
N2—Zn1—N179.91 (4)Zn1—N6—H6C110.0
N6—Zn1—N192.75 (5)C8—N6—H6D110.0
N5—Zn1—N3101.32 (4)Zn1—N6—H6D110.0
N2—Zn1—N378.70 (4)H6C—N6—H6D108.3
N6—Zn1—N393.36 (5)N1—C1—C2109.83 (12)
N1—Zn1—N3158.48 (5)N1—C1—H1A109.7
N5—Zn1—N478.58 (4)C2—C1—H1A109.7
N2—Zn1—N4101.20 (4)N1—C1—H1B109.7
N6—Zn1—N4158.04 (5)C2—C1—H1B109.7
N1—Zn1—N494.03 (5)H1A—C1—H1B108.2
N3—Zn1—N487.92 (4)N2—C2—C1108.33 (11)
C9—Fe1—C9i180.00 (3)N2—C2—H2A110.0
C9—Fe1—C1092.83 (5)C1—C2—H2A110.0
C9i—Fe1—C1087.17 (5)N2—C2—H2B110.0
C9—Fe1—C10i87.17 (5)C1—C2—H2B110.0
C9i—Fe1—C10i92.83 (5)H2A—C2—H2B108.4
C10—Fe1—C10i180.00 (10)N2—C3—C4108.34 (11)
C9—Fe1—C11i89.26 (5)N2—C3—H3A110.0
C9i—Fe1—C11i90.74 (5)C4—C3—H3A110.0
C10—Fe1—C11i89.88 (5)N2—C3—H3B110.0
C10i—Fe1—C11i90.12 (5)C4—C3—H3B110.0
C9—Fe1—C1190.74 (5)H3A—C3—H3B108.4
C9i—Fe1—C1189.26 (5)N3—C4—C3110.08 (11)
C10—Fe1—C1190.12 (5)N3—C4—H4A109.6
C10i—Fe1—C1189.88 (5)C3—C4—H4A109.6
C11i—Fe1—C11180.00 (5)N3—C4—H4B109.6
H2W1—O1W—H1W1100 (2)C3—C4—H4B109.6
H2W2—O2W—H1W2102 (3)H4A—C4—H4B108.2
C1—N1—Zn1108.20 (8)N4—C5—C6110.69 (12)
C1—N1—H1C110.1N4—C5—H5A109.5
Zn1—N1—H1C110.1C6—C5—H5A109.5
C1—N1—H1D110.1N4—C5—H5B109.5
Zn1—N1—H1D110.1C6—C5—H5B109.5
H1C—N1—H1D108.4H5A—C5—H5B108.1
C2—N2—C3116.56 (11)N5—C6—C5108.16 (12)
C2—N2—Zn1107.37 (8)N5—C6—H6A110.1
C3—N2—Zn1107.69 (8)C5—C6—H6A110.1
C2—N2—H2C108.3N5—C6—H6B110.1
C3—N2—H2C108.3C5—C6—H6B110.1
Zn1—N2—H2C108.3H6A—C6—H6B108.4
C4—N3—Zn1110.08 (8)N5—C7—C8107.88 (12)
C4—N3—H3C109.6N5—C7—H7A110.1
Zn1—N3—H3C109.6C8—C7—H7A110.1
C4—N3—H3D109.6N5—C7—H7B110.1
Zn1—N3—H3D109.6C8—C7—H7B110.1
H3C—N3—H3D108.2H7A—C7—H7B108.4
C5—N4—Zn1109.50 (9)N6—C8—C7109.49 (12)
C5—N4—H4C109.8N6—C8—H8A109.8
Zn1—N4—H4C109.8C7—C8—H8A109.8
C5—N4—H4D109.8N6—C8—H8B109.8
Zn1—N4—H4D109.8C7—C8—H8B109.8
H4C—N4—H4D108.2H8A—C8—H8B108.2
C7—N5—C6116.44 (12)N7—C9—Fe1175.92 (12)
C7—N5—Zn1108.39 (9)N8—C10—Fe1175.97 (11)
C6—N5—Zn1107.68 (9)N9—C11—Fe1178.55 (12)
C7—N5—H5C108.0
N5—Zn1—N1—C1173.99 (10)N2—Zn1—N6—C8171.66 (10)
N2—Zn1—N1—C16.24 (9)N1—Zn1—N6—C891.42 (11)
N6—Zn1—N1—C194.00 (10)N3—Zn1—N6—C8109.22 (10)
N3—Zn1—N1—C112.35 (19)N4—Zn1—N6—C816.46 (19)
N4—Zn1—N1—C1106.91 (10)Zn1—N1—C1—C234.27 (13)
N5—Zn1—N2—C259 (12)C3—N2—C2—C1169.96 (12)
N6—Zn1—N2—C2114.40 (9)Zn1—N2—C2—C149.14 (13)
N1—Zn1—N2—C223.47 (9)N1—C1—C2—N257.05 (15)
N3—Zn1—N2—C2154.25 (10)C2—N2—C3—C4172.21 (12)
N4—Zn1—N2—C268.68 (9)Zn1—N2—C3—C451.57 (12)
N5—Zn1—N2—C367 (12)Zn1—N3—C4—C327.37 (14)
N6—Zn1—N2—C3119.33 (9)N2—C3—C4—N352.98 (15)
N1—Zn1—N2—C3149.73 (9)Zn1—N4—C5—C626.94 (14)
N3—Zn1—N2—C327.98 (8)C7—N5—C6—C5173.94 (13)
N4—Zn1—N2—C357.59 (9)Zn1—N5—C6—C552.06 (13)
N5—Zn1—N3—C4179.76 (9)N4—C5—C6—N553.11 (16)
N2—Zn1—N3—C40.01 (9)C6—N5—C7—C8168.98 (13)
N6—Zn1—N3—C4100.11 (9)Zn1—N5—C7—C847.47 (14)
N1—Zn1—N3—C46.14 (18)Zn1—N6—C8—C736.23 (15)
N4—Zn1—N3—C4101.84 (9)N5—C7—C8—N656.67 (17)
N5—Zn1—N4—C50.69 (9)C9i—Fe1—C9—N799.0 (15)
N2—Zn1—N4—C5179.35 (9)C10—Fe1—C9—N7162.6 (15)
N6—Zn1—N4—C57.48 (18)C10i—Fe1—C9—N717.4 (15)
N1—Zn1—N4—C5100.16 (10)C11i—Fe1—C9—N772.8 (15)
N3—Zn1—N4—C5101.30 (10)C11—Fe1—C9—N7107.2 (15)
N2—Zn1—N5—C7165 (100)C9—Fe1—C10—N8170.3 (16)
N6—Zn1—N5—C721.57 (10)C9i—Fe1—C10—N89.7 (16)
N1—Zn1—N5—C7112.55 (10)C10i—Fe1—C10—N8115 (100)
N3—Zn1—N5—C769.82 (10)C11i—Fe1—C10—N881.1 (16)
N4—Zn1—N5—C7155.34 (10)C11—Fe1—C10—N898.9 (16)
N2—Zn1—N5—C638 (12)C9—Fe1—C11—N974 (5)
N6—Zn1—N5—C6148.32 (9)C9i—Fe1—C11—N9106 (5)
N1—Zn1—N5—C6120.70 (9)C10—Fe1—C11—N9167 (5)
N3—Zn1—N5—C656.93 (9)C10i—Fe1—C11—N913 (5)
N4—Zn1—N5—C628.58 (9)C11i—Fe1—C11—N997 (100)
N5—Zn1—N6—C88.31 (10)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3D···N80.902.333.119 (2)146
N4—H4D···N80.902.223.084 (2)162
N4—H4C···N9ii0.902.323.155 (2)153
N1—H1D···O1Wiii0.902.413.205 (2)148
N5—H5C···N7iv0.912.153.054 (2)172
N2—H2C···N7v0.912.203.081 (2)163
N3—H3C···N9v0.902.403.283 (2)167
N6—H6C···N9v0.902.563.351 (2)147
O1W—H1W1···O2W0.91 (2)1.95 (2)2.814 (2)157
O2W—H1W2···N8iv0.96 (2)2.06 (2)3.011 (2)173
O1W—H2W1···N9vi0.92 (2)2.07 (2)2.980 (2)170
O2W—H2W2···N7ii0.92 (2)2.10 (2)2.980 (2)159
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C4H13N3)2]2[Fe(CN)6]·4H2O
Mr827.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.2597 (2), 14.5473 (3), 13.9263 (2)
β (°) 90.726 (1)
V3)1875.77 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.48 × 0.32 × 0.18
Data collection
DiffractometerSiemens SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.495, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
17004, 6906, 5745
Rint0.021
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.07
No. of reflections6906
No. of parameters230
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.60

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Zn1—N52.155 (1)Zn1—N42.245 (1)
Zn1—N22.163 (1)Fe1—C91.922 (1)
Zn1—N62.204 (1)Fe1—C101.924 (1)
Zn1—N12.219 (1)Fe1—C111.930 (1)
Zn1—N32.230 (1)
N5—Zn1—N2179.77 (4)N1—Zn1—N3158.48 (5)
N5—Zn1—N679.68 (5)N5—Zn1—N478.58 (4)
N2—Zn1—N6100.55 (4)N2—Zn1—N4101.20 (4)
N5—Zn1—N1100.07 (4)N6—Zn1—N4158.04 (5)
N2—Zn1—N179.91 (4)N1—Zn1—N494.03 (5)
N6—Zn1—N192.75 (5)N3—Zn1—N487.92 (4)
N5—Zn1—N3101.32 (4)C9—Fe1—C1092.83 (5)
N2—Zn1—N378.70 (4)C9—Fe1—C1190.74 (5)
N6—Zn1—N393.36 (5)C10—Fe1—C1190.12 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3D···N80.902.333.119 (2)146
N4—H4D···N80.902.223.084 (2)162
N4—H4C···N9i0.902.323.155 (2)153
N1—H1D···O1Wii0.902.413.205 (2)148
N5—H5C···N7iii0.912.153.054 (2)172
N2—H2C···N7iv0.912.203.081 (2)163
N3—H3C···N9iv0.902.403.283 (2)167
N6—H6C···N9iv0.902.563.351 (2)147
O1W—H1W1···O2W0.91 (2)1.95 (2)2.814 (2)157
O2W—H1W2···N8iii0.96 (2)2.06 (2)3.011 (2)173
O1W—H2W1···N9v0.92 (2)2.07 (2)2.980 (2)170
O2W—H2W2···N7i0.92 (2)2.10 (2)2.980 (2)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds