Download citation
Download citation
link to html
The six-membered cyclo­hexene ring of the title compound, C13H20O4S, exhibits a sofa conformation, and the seven-membered ring displays an irregular chair-like conformation. Only weak inter­molecular C—H...O inter­actions are observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041152/sj6182sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041152/sj6182Isup2.hkl
Contains datablock I

CCDC reference: 296667

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.102
  • Data-to-parameter ratio = 20.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.10 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The background to this study is described in the first paper of this series (Zeller et al., 2006a).

The title compound, (I), crystallizes in the monoclinic space group P21/n with Z = 4 and thus as a racemic mixture of both enantiomers. In line with the six other cycloadducts described previously (Zeller et al., 2004a,b,c,d; Zeller et al., 2006a,b) the six-membered ring of (I) exhibits a sofa conformation expected for cyclohexenes. In the present case, only atom C1 is non-coplanar with the other atoms of the ring. The r.m.s. fit for the plane defined by atoms C2, C3, C4 and C4a is 0.0488 Å, and the deviation for C1 from the least-squares plane is 0.646 (2) Å. For the atoms defining the plane, the largest deviation is 0.0585 (9) Å for C4A. The angles at the unsaturated C atoms are 124.15 (13)° for C4—C3—C2 and 123.39 (13)° for C3—C4—C4A (Fig. 1). The seven-membered ring displays an irregular chair-like conformation. The sterically demanding tert-butyl group at C7 is located in a pseudo-equatorial position.

All intermolecular contacts in (I) are weak, the most pronounced being two C—H···O contacts: C6···O2i with a C···O distance of 3.400 (2) Å and a C—H···O angle of 165.4°, and C9···O3ii with a slightly shorter C···O distance of 3.304 (1) Å but with a C—H···O angle unfavorably small for a strong interaction (96.11°) [symmetry codes: (i) −x, 1 − y, −z; (ii) 1/2 − x, −1/2 + y, 1/2 − z].

Experimental top

The title compound was synthesized following an analogous procedure to that described by Chumachenko et al. (2005) for related compounds. 1-[(E)-Butadienesulfonyl]-3,3-dimethyl-2-butyl acrylate (1.36 g, 5.00 mmol) was heated in toluene (450 ml, 0.011 M) at 400 K for 40 h. Crystallization of the crude reaction mixture from a minimum amount of ethyl acetate gave the title compound as a white crystalline solid (0.83 g, 3.05 mmol, 61%; m.p. 462 K). Column chromatography (dichloromethane) of the mother liquor gave, as the first fraction, an additional 0.13 g (0.48 mmol, 10%) of (I) resulting in a combined yield for (I) of 0.96 g (3.53 mmol, 71%). A small second chromatograpic fraction contained the minor endo-product (II) in about 2% yield, contaminated with traces of (I).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–1.00 Å). They were refined with isotropic displacement parameters of 1.5 (methyl) or 1.2 (all others) times that of the equivalent isotropic displacement parameter of the adjacent C atom. Methyl H atoms were allowed to rotate to best fit the experimental data. The s.u. values of the cell parameters are taken from the software, recognizing that the values are unreasonably small (Herbstein, 2000).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
(4aSR,7SR,9aSR)-7-tert-Butyl-5,5-dioxo-1,2,4a,9a-tetrahydro-8-oxa- 5λ6-thiabenzocycloheptan-9-one top
Crystal data top
C13H20O4SF(000) = 584
Mr = 272.35Dx = 1.333 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.8554 (8) ÅCell parameters from 6071 reflections
b = 5.6653 (4) Åθ = 3.0–30.5°
c = 20.2326 (14) ŵ = 0.24 mm1
β = 92.681 (1)°T = 100 K
V = 1357.42 (16) Å3Block, colourless
Z = 40.45 × 0.38 × 0.36 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3368 independent reflections
Radiation source: fine-focus sealed tube3308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
h = 1515
Tmin = 0.850, Tmax = 0.916k = 77
13221 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.6798P]
where P = (Fo2 + 2Fc2)/3
3368 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H20O4SV = 1357.42 (16) Å3
Mr = 272.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8554 (8) ŵ = 0.24 mm1
b = 5.6653 (4) ÅT = 100 K
c = 20.2326 (14) Å0.45 × 0.38 × 0.36 mm
β = 92.681 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3368 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-Plus; Bruker, 2003)
3308 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.916Rint = 0.021
13221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.15Δρmax = 0.52 e Å3
3368 reflectionsΔρmin = 0.25 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01198 (11)0.5087 (3)0.26033 (7)0.0229 (3)
H1A0.02630.61700.22810.027*
H1B0.06370.60340.28960.027*
O10.11615 (8)0.1872 (2)0.06305 (5)0.0248 (2)
C20.07571 (12)0.3881 (3)0.30145 (7)0.0279 (3)
H2A0.03740.31040.34020.034*
H2B0.12810.50810.31800.034*
O20.01989 (8)0.55452 (17)0.10105 (4)0.0198 (2)
C30.14147 (12)0.2078 (3)0.26138 (8)0.0265 (3)
H30.21140.15580.27720.032*
O30.20304 (8)0.6403 (2)0.19016 (5)0.0250 (2)
C40.10813 (11)0.1162 (3)0.20519 (7)0.0234 (3)
H40.15770.01110.18160.028*
C4A0.00434 (10)0.1704 (2)0.17689 (6)0.0169 (2)
H4A0.04450.01700.17130.020*
S50.01895 (2)0.29984 (6)0.094887 (15)0.01582 (10)
C60.10047 (10)0.2180 (2)0.04937 (6)0.0170 (2)
H6A0.10970.04450.05140.020*
H6B0.08610.26220.00240.020*
C70.20965 (10)0.3344 (2)0.07516 (6)0.0142 (2)
H70.20290.50940.06990.017*
O80.22015 (7)0.27662 (17)0.14540 (4)0.0165 (2)
C90.17296 (10)0.4388 (2)0.18640 (6)0.0180 (3)
C9A0.07954 (10)0.3259 (2)0.22368 (6)0.0181 (3)
H9A0.11610.21920.25770.022*
C100.31605 (10)0.2488 (2)0.04198 (6)0.0148 (2)
C110.33213 (11)0.0176 (2)0.05052 (7)0.0194 (3)
H11A0.32880.05860.09740.029*
H11B0.40570.06360.03450.029*
H11C0.27210.10110.02510.029*
C120.30485 (11)0.3102 (2)0.03199 (6)0.0203 (3)
H12A0.37500.26930.05300.031*
H12B0.29030.47960.03720.031*
H12C0.24210.22080.05290.031*
C130.41877 (10)0.3765 (2)0.07401 (6)0.0183 (3)
H13A0.42440.34100.12150.027*
H13B0.41010.54710.06760.027*
H13C0.48750.32280.05340.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (6)0.0308 (7)0.0170 (6)0.0009 (5)0.0022 (5)0.0053 (5)
O10.0147 (4)0.0328 (6)0.0264 (5)0.0004 (4)0.0037 (4)0.0105 (4)
C20.0208 (6)0.0442 (9)0.0192 (6)0.0029 (6)0.0050 (5)0.0001 (6)
O20.0221 (5)0.0185 (5)0.0186 (4)0.0040 (3)0.0008 (4)0.0006 (3)
C30.0177 (6)0.0320 (8)0.0305 (7)0.0015 (5)0.0070 (5)0.0068 (6)
O30.0231 (5)0.0286 (5)0.0233 (5)0.0082 (4)0.0013 (4)0.0084 (4)
C40.0164 (6)0.0226 (7)0.0315 (7)0.0023 (5)0.0043 (5)0.0039 (6)
C4A0.0144 (5)0.0171 (6)0.0192 (6)0.0006 (4)0.0020 (4)0.0034 (5)
S50.01296 (16)0.01840 (18)0.01586 (16)0.00110 (10)0.00185 (11)0.00239 (11)
C60.0146 (6)0.0209 (6)0.0156 (6)0.0006 (4)0.0004 (4)0.0030 (5)
C70.0155 (5)0.0138 (5)0.0134 (5)0.0003 (4)0.0004 (4)0.0008 (4)
O80.0154 (4)0.0216 (5)0.0125 (4)0.0009 (3)0.0004 (3)0.0016 (3)
C90.0145 (5)0.0262 (7)0.0130 (5)0.0006 (5)0.0021 (4)0.0019 (5)
C9A0.0146 (5)0.0249 (6)0.0147 (6)0.0008 (5)0.0001 (4)0.0028 (5)
C100.0153 (5)0.0128 (5)0.0164 (5)0.0001 (4)0.0023 (4)0.0004 (4)
C110.0182 (6)0.0137 (6)0.0264 (6)0.0010 (5)0.0028 (5)0.0005 (5)
C120.0206 (6)0.0240 (7)0.0168 (6)0.0008 (5)0.0038 (5)0.0004 (5)
C130.0168 (6)0.0171 (6)0.0210 (6)0.0019 (5)0.0015 (5)0.0015 (5)
Geometric parameters (Å, º) top
C1—C9A1.5230 (19)C6—H6B0.9900
C1—C21.524 (2)C7—O81.4580 (14)
C1—H1A0.9900C7—C101.5349 (17)
C1—H1B0.9900C7—H71.0000
O1—S51.4424 (10)O8—C91.3743 (16)
C2—C31.500 (2)C9—C9A1.5108 (18)
C2—H2A0.9900C9A—H9A1.0000
C2—H2B0.9900C10—C111.5297 (17)
O2—S51.4483 (10)C10—C131.5336 (17)
C3—C41.326 (2)C10—C121.5362 (17)
C3—H30.9500C11—H11A0.9800
O3—C91.1970 (18)C11—H11B0.9800
C4—C4A1.5071 (18)C11—H11C0.9800
C4—H40.9500C12—H12A0.9800
C4A—C9A1.5454 (18)C12—H12B0.9800
C4A—S51.8232 (13)C12—H12C0.9800
C4A—H4A1.0000C13—H13A0.9800
S5—C61.7860 (13)C13—H13B0.9800
C6—C71.5227 (17)C13—H13C0.9800
C6—H6A0.9900
C9A—C1—C2110.40 (13)C6—C7—C10114.59 (10)
C9A—C1—H1A109.6O8—C7—H7109.2
C2—C1—H1A109.6C6—C7—H7109.2
C9A—C1—H1B109.6C10—C7—H7109.2
C2—C1—H1B109.6C9—O8—C7114.81 (10)
H1A—C1—H1B108.1O3—C9—O8123.19 (12)
C3—C2—C1111.16 (12)O3—C9—C9A126.50 (12)
C3—C2—H2A109.4O8—C9—C9A110.30 (11)
C1—C2—H2A109.4C9—C9A—C1111.70 (12)
C3—C2—H2B109.4C9—C9A—C4A110.54 (10)
C1—C2—H2B109.4C1—C9A—C4A112.61 (10)
H2A—C2—H2B108.0C9—C9A—H9A107.2
C4—C3—C2124.15 (13)C1—C9A—H9A107.2
C4—C3—H3117.9C4A—C9A—H9A107.2
C2—C3—H3117.9C11—C10—C13108.98 (10)
C3—C4—C4A123.39 (13)C11—C10—C7111.26 (10)
C3—C4—H4118.3C13—C10—C7108.60 (10)
C4A—C4—H4118.3C11—C10—C12109.75 (11)
C4—C4A—C9A112.26 (11)C13—C10—C12109.61 (10)
C4—C4A—S5109.19 (9)C7—C10—C12108.62 (10)
C9A—C4A—S5112.75 (9)C10—C11—H11A109.5
C4—C4A—H4A107.5C10—C11—H11B109.5
C9A—C4A—H4A107.5H11A—C11—H11B109.5
S5—C4A—H4A107.5C10—C11—H11C109.5
O1—S5—O2118.03 (6)H11A—C11—H11C109.5
O1—S5—C6106.92 (6)H11B—C11—H11C109.5
O2—S5—C6108.20 (6)C10—C12—H12A109.5
O1—S5—C4A108.21 (6)C10—C12—H12B109.5
O2—S5—C4A108.89 (6)H12A—C12—H12B109.5
C6—S5—C4A105.96 (6)C10—C12—H12C109.5
C7—C6—S5113.12 (9)H12A—C12—H12C109.5
C7—C6—H6A109.0H12B—C12—H12C109.5
S5—C6—H6A109.0C10—C13—H13A109.5
C7—C6—H6B109.0C10—C13—H13B109.5
S5—C6—H6B109.0H13A—C13—H13B109.5
H6A—C6—H6B107.8C10—C13—H13C109.5
O8—C7—C6105.63 (9)H13A—C13—H13C109.5
O8—C7—C10108.72 (9)H13B—C13—H13C109.5
C9A—C1—C2—C348.40 (16)C7—O8—C9—O360.85 (16)
C1—C2—C3—C418.1 (2)C7—O8—C9—C9A118.40 (11)
C2—C3—C4—C4A4.3 (2)O3—C9—C9A—C19.12 (18)
C3—C4—C4A—C9A5.03 (19)O8—C9—C9A—C1170.10 (10)
C3—C4—C4A—S5120.76 (14)O3—C9—C9A—C4A135.34 (14)
C4—C4A—S5—O136.02 (11)O8—C9—C9A—C4A43.88 (14)
C9A—C4A—S5—O1161.53 (9)C2—C1—C9A—C9175.80 (11)
C4—C4A—S5—O293.42 (10)C2—C1—C9A—C4A59.12 (14)
C9A—C4A—S5—O232.08 (10)C4—C4A—C9A—C9162.21 (11)
C4—C4A—S5—C6150.39 (9)S5—C4A—C9A—C938.39 (13)
C9A—C4A—S5—C684.10 (10)C4—C4A—C9A—C136.50 (15)
O1—S5—C6—C7177.08 (9)S5—C4A—C9A—C187.33 (12)
O2—S5—C6—C748.98 (10)O8—C7—C10—C1159.17 (13)
C4A—S5—C6—C767.67 (10)C6—C7—C10—C1158.74 (14)
S5—C6—C7—O854.32 (12)O8—C7—C10—C1360.77 (12)
S5—C6—C7—C10173.96 (8)C6—C7—C10—C13178.68 (10)
C6—C7—O8—C991.29 (12)O8—C7—C10—C12179.91 (10)
C10—C7—O8—C9145.27 (10)C6—C7—C10—C1262.18 (13)

Experimental details

Crystal data
Chemical formulaC13H20O4S
Mr272.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.8554 (8), 5.6653 (4), 20.2326 (14)
β (°) 92.681 (1)
V3)1357.42 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.45 × 0.38 × 0.36
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-Plus; Bruker, 2003)
Tmin, Tmax0.850, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
13221, 3368, 3308
Rint0.021
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.15
No. of reflections3368
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.25

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SAINT-Plus, SHELXTL (Bruker, 2000), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds