Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structure of 1,3-dibromo­azulene, C10H6Br2, the planar mol­ecule sits on a crystallographic mirror plane. The Br atoms are attached to the five-membered ring adjacent to the ring fusion. Head-to-tail charge-charge inter­actions due to partial positive charges on ring H atoms and partial negative charges within the aromatic ring system attract adjacent 1,3-dibromo­azulene mol­ecules together. This causes them to arrange themselves in a zigzag pattern that allows close packing of the oppositely charged groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805006811/sj6051sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805006811/sj6051Isup2.hkl
Contains datablock I

CCDC reference: 270522

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.016
  • wR factor = 0.046
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Br1 .. 3.55 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

1,3-Dibromoazulene top
Crystal data top
C10H6Br2Dx = 2.093 Mg m3
Mr = 285.97Melting point: 76.5 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4195 reflections
a = 8.3575 (14) Åθ = 2.7–26.0°
b = 15.114 (2) ŵ = 8.87 mm1
c = 7.1840 (12) ÅT = 100 K
V = 907.4 (2) Å3Block, blue
Z = 40.28 × 0.20 × 0.20 mm
F(000) = 544
Data collection top
Bruker APEX
diffractometer
931 independent reflections
Radiation source: fine-focus sealed tube870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.120, Tmax = 0.170k = 1818
7311 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.03P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
931 reflections(Δ/σ)max = 0.001
58 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46263 (2)0.558729 (11)0.79056 (2)0.02160 (10)
C10.4714 (3)0.75000.8153 (3)0.0160 (5)
H10.52040.75000.93470.019*
C20.4286 (2)0.67563 (12)0.7108 (2)0.0157 (4)
C30.36081 (18)0.70040 (10)0.5410 (2)0.0147 (3)
C40.30704 (19)0.64441 (11)0.4015 (2)0.0169 (3)
H40.31530.58290.42720.020*
C50.2426 (2)0.66626 (12)0.2288 (2)0.0202 (4)
H50.21300.61770.15220.024*
C60.2156 (3)0.75000.1533 (3)0.0199 (5)
H60.17190.75000.03120.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02695 (14)0.01187 (13)0.02598 (15)0.00155 (6)0.00326 (7)0.00492 (6)
C10.0167 (12)0.0139 (13)0.0175 (11)0.0000.0004 (9)0.000
C20.0171 (8)0.0100 (8)0.0200 (9)0.0008 (7)0.0018 (6)0.0017 (6)
C30.0133 (7)0.0109 (9)0.0198 (8)0.0012 (6)0.0023 (6)0.0008 (6)
C40.0162 (8)0.0137 (8)0.0208 (8)0.0001 (6)0.0022 (7)0.0005 (6)
C50.0181 (8)0.0201 (10)0.0223 (8)0.0016 (8)0.0012 (7)0.0066 (7)
C60.0159 (11)0.0292 (14)0.0145 (11)0.0000.0005 (10)0.000
Geometric parameters (Å, º) top
Br1—C21.879 (2)C4—C51.392 (2)
C1—C21.399 (2)C4—H40.9500
C1—H10.9500C5—C61.395 (2)
C2—C31.396 (2)C5—H50.9500
C3—C41.386 (2)C6—H60.9500
C3—C3i1.499 (2)
C2i—C1—C2107.0 (2)C3—C4—C5128.65 (16)
C2i—C1—H1126.5C3—C4—H4115.7
C2—C1—H1126.5C5—C4—H4115.7
C3—C2—C1110.9 (2)C4—C5—C6128.62 (18)
C3—C2—Br1125.45 (13)C4—C5—H5115.7
C1—C2—Br1123.59 (13)C6—C5—H5115.7
C4—C3—C2126.81 (15)C5i—C6—C5130.2 (2)
C4—C3—C3i127.6 (1)C5i—C6—H6114.9
C2—C3—C3i105.56 (10)C5—C6—H6114.9
C2i—C1—C2—C30.6 (3)Br1—C2—C3—C3i179.4 (1)
C2i—C1—C2—Br1179.63 (7)C2—C3—C4—C5178.26 (18)
C1—C2—C3—C4178.89 (17)C3i—C3—C4—C50.9 (2)
Br1—C2—C3—C40.1 (2)C3—C4—C5—C60.2 (3)
C1—C2—C3—C3i0.39 (16)C4—C5—C6—C5i1.1 (5)
Symmetry code: (i) x, y+3/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds