Download citation
Download citation
link to html
The title compound, [Pd2(C8H4N6)2(C3H9P)4], was prepared by treating Pd(PMe3)2(N3)2 with 1,4-phenyl­ene diisocyanide [C6H4(NC)2]. This compound, a cyclic dimer, was formed by concomitant N—C coupling and [2 + 3]-cyclo­addition. Around the square-planar Pd atom, the carbodi­imide moiety and the tetrazolate ring are mutually trans. The N atom of the carbodi­imide moiety is bonded to the Pd center, and the five-membered tetrazolate ring is coordinated to the Pd atoms through the C atom. The molecule is located on a center of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804028260/sj6022sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804028260/sj6022Isup2.hkl
Contains datablock I

CCDC reference: 258659

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.035
  • wR factor = 0.094
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT242_ALERT_2_A Check Low U(eq) as Compared to Neighbors for P2
Author Response: One trimethylphospine ligand is slightly disordered. Anisotropic refinements applying several possible site occupation fators were unstable, and that is why the thermal parameters of the carbon atoms (C12--C14) in that phosphine ligand are relatively large compared with those in the other phosphine ligand.

Alert level B PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.99 Deg.
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.12 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pd1 - C1 .. 5.02 su PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors for C4 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors for P1
Author Response: One trimethylphospine ligand is slightly disordered. Anisotropic refinements applying several possible site occupation fators were unstable, and that is why the thermal parameters of the carbon atoms (C12--C14) in that phosphine ligand are relatively large compared with those in the other phosphine ligand.

1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

bis{µ-1-[4-(carbodiimido)phenyl]tetrazolato-κ2N:C5} bis[bis(trimethylphosphine-κP)palladium(II)] top
Crystal data top
[Pd2(C8H4N6)2(C3H9P)4]Z = 1
Mr = 885.43F(000) = 448
Triclinic, P1Dx = 1.518 Mg m3
a = 8.842 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.519 (3) ÅCell parameters from 26 reflections
c = 11.996 (3) Åθ = 5.1–12.5°
α = 99.095 (19)°µ = 1.13 mm1
β = 103.42 (2)°T = 293 K
γ = 90.85 (2)°Block, orange
V = 968.5 (5) Å30.50 × 0.42 × 0.20 mm
Data collection top
Siemens P4
diffractometer
3039 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω scansh = 010
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 1111
Tmin = 0.574, Tmax = 0.798l = 1413
3615 measured reflections3 standard reflections every 97 reflections
3374 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.2618P]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.69364 (3)0.89012 (2)0.684937 (19)0.03877 (12)
P10.86814 (11)0.71478 (10)0.65981 (8)0.0497 (2)
P20.52022 (11)1.06752 (10)0.71136 (8)0.0493 (2)
N10.4193 (4)0.6818 (3)0.6233 (3)0.0593 (8)
N20.3520 (4)0.5830 (4)0.6699 (3)0.0675 (9)
N30.4299 (4)0.5816 (4)0.7766 (3)0.0672 (9)
N40.5512 (3)0.6819 (3)0.7991 (3)0.0494 (7)
N50.8589 (4)1.0376 (3)0.6725 (3)0.0571 (7)
N61.0090 (5)1.2573 (4)0.7705 (3)0.0735 (10)
C10.5439 (4)0.7435 (3)0.7030 (3)0.0464 (7)
C20.6636 (4)0.7005 (3)0.9077 (3)0.0474 (8)
C30.6839 (5)0.5913 (4)0.9737 (4)0.0711 (12)
H30.62370.50650.94670.085*
C40.7915 (6)0.6077 (4)1.0776 (4)0.0794 (14)
H40.80320.53291.11980.095*
C50.8845 (5)0.7330 (4)1.1226 (3)0.0553 (9)
C60.8630 (5)0.8417 (4)1.0558 (3)0.0535 (9)
H60.92400.92611.08170.064*
C70.7528 (5)0.8257 (4)0.9522 (3)0.0553 (9)
H70.73800.90140.91110.066*
C80.9326 (4)1.1400 (4)0.7241 (3)0.0525 (8)
C90.8030 (6)0.5303 (4)0.6480 (5)0.0768 (13)
H9A0.76090.51950.71330.092*
H9B0.88950.47070.64710.092*
H9C0.72420.50300.57740.092*
C101.0392 (5)0.7415 (6)0.7802 (4)0.0756 (12)
H10A1.00840.73880.85150.091*
H10B1.09040.83230.78390.091*
H10C1.10930.66740.76880.091*
C110.9429 (6)0.7205 (5)0.5329 (4)0.0775 (13)
H11A0.98060.81590.53390.093*
H11B0.86140.69120.46430.093*
H11C1.02660.65740.53300.093*
C120.5553 (9)1.1560 (9)0.8590 (5)0.145 (3)
H12A0.54241.08830.90790.174*
H12B0.48271.22920.86490.174*
H12C0.65961.19790.88320.174*
C130.3158 (6)1.0171 (6)0.6672 (7)0.111 (2)
H13A0.28980.97290.58700.133*
H13B0.25701.10030.67680.133*
H13C0.29140.95110.71410.133*
C140.5331 (7)1.2117 (6)0.6326 (7)0.106 (2)
H14A0.51381.17490.55110.128*
H14B0.63531.25780.65890.128*
H14C0.45701.27920.64600.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04284 (17)0.03285 (16)0.04123 (16)0.00057 (10)0.01206 (11)0.00502 (10)
P10.0526 (5)0.0447 (5)0.0551 (5)0.0115 (4)0.0182 (4)0.0091 (4)
P20.0540 (5)0.0398 (5)0.0564 (5)0.0080 (4)0.0198 (4)0.0043 (4)
N10.0543 (18)0.0523 (18)0.0639 (19)0.0095 (14)0.0049 (15)0.0022 (14)
N20.0559 (19)0.060 (2)0.080 (2)0.0145 (16)0.0080 (17)0.0046 (17)
N30.062 (2)0.0547 (19)0.086 (2)0.0179 (16)0.0230 (19)0.0092 (17)
N40.0505 (16)0.0377 (14)0.0610 (17)0.0099 (12)0.0195 (13)0.0026 (12)
N50.0537 (18)0.0533 (18)0.0681 (19)0.0030 (15)0.0147 (15)0.0213 (15)
N60.085 (2)0.0473 (18)0.080 (2)0.0100 (17)0.0055 (19)0.0271 (16)
C10.0496 (19)0.0374 (17)0.0515 (18)0.0020 (14)0.0132 (15)0.0034 (14)
C20.0559 (19)0.0378 (17)0.0537 (19)0.0017 (14)0.0226 (16)0.0086 (14)
C30.081 (3)0.0355 (19)0.091 (3)0.0127 (18)0.007 (2)0.0181 (19)
C40.097 (3)0.040 (2)0.096 (3)0.009 (2)0.002 (3)0.033 (2)
C50.066 (2)0.0402 (18)0.063 (2)0.0005 (16)0.0146 (18)0.0165 (16)
C60.076 (2)0.0349 (17)0.0507 (19)0.0119 (16)0.0169 (17)0.0079 (14)
C70.082 (3)0.0371 (17)0.0500 (19)0.0074 (17)0.0200 (18)0.0117 (14)
C80.051 (2)0.053 (2)0.061 (2)0.0070 (17)0.0156 (17)0.0279 (17)
C90.096 (3)0.043 (2)0.097 (3)0.015 (2)0.037 (3)0.005 (2)
C100.057 (2)0.092 (3)0.075 (3)0.021 (2)0.007 (2)0.016 (2)
C110.085 (3)0.087 (3)0.076 (3)0.028 (3)0.044 (3)0.021 (2)
C120.169 (7)0.174 (7)0.072 (4)0.095 (6)0.017 (4)0.028 (4)
C130.060 (3)0.074 (3)0.198 (7)0.011 (3)0.034 (4)0.017 (4)
C140.102 (4)0.069 (3)0.174 (6)0.032 (3)0.059 (4)0.057 (4)
Geometric parameters (Å, º) top
Pd1—C11.980 (3)C4—H40.9300
Pd1—N52.058 (3)C5—N6i1.393 (5)
Pd1—P12.3219 (11)C5—C61.395 (5)
Pd1—P22.3318 (11)C6—C71.375 (5)
P1—C111.802 (4)C6—H60.9300
P1—C91.814 (4)C7—H70.9300
P1—C101.816 (4)C9—H9A0.9600
P2—C121.791 (5)C9—H9B0.9600
P2—C131.797 (5)C9—H9C0.9600
P2—C141.801 (5)C10—H10A0.9600
N1—C11.336 (5)C10—H10B0.9600
N1—N21.361 (5)C10—H10C0.9600
N2—N31.308 (5)C11—H11A0.9600
N3—N41.375 (4)C11—H11B0.9600
N4—C11.362 (4)C11—H11C0.9600
N4—C21.428 (5)C12—H12A0.9600
N5—C81.166 (5)C12—H12B0.9600
N6—C81.272 (5)C12—H12C0.9600
N6—C5i1.393 (5)C13—H13A0.9600
C2—C71.380 (5)C13—H13B0.9600
C2—C31.392 (5)C13—H13C0.9600
C3—C41.367 (6)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.397 (5)C14—H14C0.9600
C1—Pd1—N5176.78 (13)C7—C6—H6119.5
C1—Pd1—P189.50 (10)C5—C6—H6119.5
N5—Pd1—P188.28 (10)C6—C7—C2121.8 (3)
C1—Pd1—P290.86 (10)C6—C7—H7119.1
N5—Pd1—P291.35 (10)C2—C7—H7119.1
P1—Pd1—P2179.48 (3)N5—C8—N6173.9 (4)
C11—P1—C9105.0 (2)P1—C9—H9A109.5
C11—P1—C10104.6 (2)P1—C9—H9B109.5
C9—P1—C10104.6 (2)H9A—C9—H9B109.5
C11—P1—Pd1112.42 (15)P1—C9—H9C109.5
C9—P1—Pd1118.37 (16)H9A—C9—H9C109.5
C10—P1—Pd1110.68 (16)H9B—C9—H9C109.5
C12—P2—C13106.1 (4)P1—C10—H10A109.5
C12—P2—C14103.0 (4)P1—C10—H10B109.5
C13—P2—C14101.9 (3)H10A—C10—H10B109.5
C12—P2—Pd1112.7 (2)P1—C10—H10C109.5
C13—P2—Pd1117.55 (19)H10A—C10—H10C109.5
C14—P2—Pd1114.05 (19)H10B—C10—H10C109.5
C1—N1—N2108.4 (3)P1—C11—H11A109.5
N3—N2—N1109.9 (3)P1—C11—H11B109.5
N2—N3—N4106.4 (3)H11A—C11—H11B109.5
C1—N4—N3109.1 (3)P1—C11—H11C109.5
C1—N4—C2130.9 (3)H11A—C11—H11C109.5
N3—N4—C2119.9 (3)H11B—C11—H11C109.5
C8—N5—Pd1142.0 (3)P2—C12—H12A109.5
C8—N6—C5i119.7 (3)P2—C12—H12B109.5
N1—C1—N4106.2 (3)H12A—C12—H12B109.5
N1—C1—Pd1127.4 (3)P2—C12—H12C109.5
N4—C1—Pd1126.3 (3)H12A—C12—H12C109.5
C7—C2—C3117.7 (4)H12B—C12—H12C109.5
C7—C2—N4122.2 (3)P2—C13—H13A109.5
C3—C2—N4120.1 (3)P2—C13—H13B109.5
C4—C3—C2120.6 (4)H13A—C13—H13B109.5
C4—C3—H3119.7P2—C13—H13C109.5
C2—C3—H3119.7H13A—C13—H13C109.5
C3—C4—C5122.2 (3)H13B—C13—H13C109.5
C3—C4—H4118.9P2—C14—H14A109.5
C5—C4—H4118.9P2—C14—H14B109.5
N6i—C5—C6124.2 (3)H14A—C14—H14B109.5
N6i—C5—C4119.1 (3)P2—C14—H14C109.5
C6—C5—C4116.7 (4)H14A—C14—H14C109.5
C7—C6—C5121.0 (3)H14B—C14—H14C109.5
Symmetry code: (i) x+2, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds