research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [μ-1κ2C1,C4:2(1,2,3,4-η)-1,2,3,4-tetra­phenyl­buta-1,3-diene-1,4-di­yl]bis­­(tri­carbonyl­osmium)(OsOs)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Abilene Christian University, Abilene, TX 79699, USA, and bRigaku Oxford Diffraction, The Woodlands, Texas 77381, USA
*Correspondence e-mail:

Edited by J. Simpson, University of Otago, New Zealand (Received 27 July 2018; accepted 6 August 2018; online 14 August 2018)

In the title complex C34H20O6Os2 or (μ-η4-C4Ph4)Os2(CO)6, one Os atom is part of a metalla­cyclo­penta­diene ring, while the second Os atom is π-bonded to the organic portion of this ring. The distance of 2.7494 (2) Å between the two Os atoms is typical of an Os—Os single bond. Three carbonyl ligands are attached to each Os atom and these six carbonyls adopt an eclipsed conformation. There are no bridging or semibridging CO groups. Two carbonyl ligands and all four phenyl groups are disordered over two slightly different positions for which each atom in the minor components is displaced less than 1 Å from the corresponding atom in the major components. The refined occupancies of the major com­ponents of the carbonyl ligands are 0.568 (16) and 0.625 (13), while those for the phenyl rings are 0.50 (3), 0.510 (12), 0.519 (18), and 0.568 (12).

1. Chemical context

Metalla­cyclo­penta­diene complexes, known as metalloles, with the formula (μ-η4-C4R4)M2(CO)6 are typically produced by C—C bond-coupling reactions of alkynes with group 8 metal carbonyls (Mathur et al., 2014[Mathur, P., Rai, D. K., Joshi, R. K., Jha, B. & Mobin, S. M. (2014). Organometallics, 33, 3857-3866.]). These metalloles have been shown to adopt one of two possible geometries in the solid state, i.e. one in which the carbonyl ligands of the M2(CO)6 units are eclipsed in a so-called sawhorse conformation, or one in which the carbonyls are staggered with one CO semibridging the metal–metal bond. Ferroles (M = Fe) almost always adopt the staggered non-sawhorse conformation (Kumar et al., 2014[Kumar, D., Singh, N., Elias, A. J., Malik, P. & Allen, C. W. (2014). Inorg. Chem. 53, 10674-10684.]; Iyoda et al., 1997[Iyoda, M., Yada, T., Tashiro, S., Maeda, H., Yoshida, M. & Kuwatani, Y. (1997). Chem. Lett. 26, 39-40.]; Jeannin et al., 1994[Jeannin, S., Jeannin, Y., Robert, F. & Rosenberger, C. (1994). J. Organomet. Chem. 480, 111-137.]; Heim et al., 1992[Heim, B., Daran, J. C., Jeannin, Y., Eber, B., Huttner, G. & Imhof, W. (1992). J. Organomet. Chem. 441, 81-97.]; Daran & Jeannin, 1984[Daran, J. C. & Jeannin, Y. (1984). Organometallics, 3, 1158-1163.]), while ruthenoles (M = Ru) display an equal propensity to adopt either the sawhorse or the non-sawhorse conformation (Yang, 2014[Yang, J. (2014). CSD Communication, CCDC 1038307. CCDC, Cambridge, England.]; Mathur et al., 2008[Mathur, P., Das, A., Chatterjee, S. & Mobin, S. M. (2008). J. Organomet. Chem. 693, 1919-1926.], 2014[Mathur, P., Rai, D. K., Joshi, R. K., Jha, B. & Mobin, S. M. (2014). Organometallics, 33, 3857-3866.]; Tunik et al., 1997[Tunik, S. P., Grachova, E. V., Denisov, V. R., Starova, G. L., Nikol'skii, A. B., Dolgushin, F. M., Yanovsky, A. I. & Struchkov, Y. T. (1997). J. Organomet. Chem. 536-537, 339-343.]). Only two osmole (M = Os) complexes have been examined by X-ray crystallographic analysis, and both of them exhibit the sawhorse conformation. One of these is (μ-η4-2,3-di­methyl­butadiene)Os2(CO)6 (I) (see Scheme 1), which was prepared by reacting Os3(CO)12 with 2,3-di­methyl­butadiene, and in which the osma­cyclo­penta­diene ring contains H atoms in the 2,5-positions and methyl groups in the 3,4-positions (Dodge et al., 1963[Dodge, R. P., Mills, O. S. & Schomaker, V. (1963). Proc. Chem. Soc. pp. 380-381.]). The other one is (μ-η4-FcC2-C≡CFc)2Os2(CO)6 (II, Fc is ferrocenyl), which was a product of the reaction of Os3(CO)10(NCMe)2 with 1,4-bis­(ferrocen­yl)butadiyne, and in which the osma­cyclo­penta­diene ring is substituted by ferrocen­yl–C≡C– groups in the 2,5-positions and by ferrocenyl groups in the 3,4-positions as a result of head-to-head coupling of the butadiyne starting material (Adams et al., 2002[Adams, R. D., Qu, B., Smith, M. D. & Albright, T. A. (2002). Organometallics, 21, 2970-2978.]).

[Scheme 1]

Our goal was to obtain the crystal structure of the title osmole (μ-η4-C4Ph4)Os2(CO)6 (III) (see Scheme 2) containing a tetra­phenyl­butadiene moiety, which was first reported over 46 years ago but which has never been structurally characterized (Gambino et al., 1971[Gambino, O., Vaglio, G. A., Ferrari, R. P. & Cetini, G. (1971). J. Organomet. Chem. 30, 381-386.]). Gambino et al. prepared III by a three-step process: Os3(CO)12 was heated with di­phenyl­acetyl­ene (tolan) to produce Os3(CO)8(C4Ph4) (IV), which was treated with CO to yield Os3(CO)9(C4Ph4) (V). This was then treated with excess CO to produce III. The overall yield for III based on Os3(CO)12 was not mentioned, but it was clearly less than 4% since the yields for the first two steps were reported to be about 10 and 40%, respectively. In order to obtain a significant qu­antity of III for crystal growing attempts, we sought a higher yield method of preparing this osmole complex. We turned to microwave heating since it had been shown to offer improved efficiency for the preparation of certain other osmium carbonyl complexes (Johnson & Powell, 2008[Johnson, K. D. & Powell, G. L. (2008). J. Organomet. Chem. 693, 1712-1715.]; Leadbeater & Shoemaker, 2008[Leadbeater, N. E. & Shoemaker, K. M. (2008). Organometallics, 27, 1254-1258.]; Jung et al., 2012[Jung, J. Y., Kempe, D. K., Loh, L.-H. J., Shoultz, S. E. & Powell, G. L. (2012). J. Organomet. Chem. 700, 219-222.]; Pyper et al., 2013[Pyper, K. J., Kempe, D. K., Jung, J. Y., Loh, L.-H. J., Gwini, N., Lang, B. D., Newton, B. S., Sims, J. M., Nesterov, V. N. & Powell, G. L. (2013). J. Cluster Sci. 24, 619-634.]).

[Scheme 2]

2. Structural commentary

The mol­ecular structure of compound III is illustrated in Fig. 1[link]. All four phenyl rings are disordered over two slightly different orientations (Fig. 2[link]), and the refined occupancies of the major components are 0.50 (3), 0.510 (12), 0.519 (18), and 0.568 (12). Two of the carbonyl ligands are also disordered over two slightly different positions and the occupancies of the major components are 0.568 (16) and 0.625 (13). Each C or O atom in the minor components is displaced less than 1 Å from its counterpart in the major components. The geometrical features of the central portion of III are quite similar to those of the two (μ-η4-C4R4)Os2(CO)6 osmoles that have been previously characterized by X-ray crystallography, with planar osma­cyclo­penta­diene rings and eclipsed sawhorse conformations of the carbonyls. Thus, there are no bridging or semibridging CO ligands. The R groups (phenyl rings) in III are inter­mediate in size compared to those of the other two osmoles, one of which (i.e. I) had small butadiene substituents of H and Me, while the other (i.e. II) had large substituents of Fc—C≡C— and Fc. The Os—Os bond lengths of 2.74 Å for I, 2.7494 (2) Å for III, and 2.7556 (7) Å for II might reflect an inverse correlation between the strength of the metal–metal bond and the steric bulk of the butadiene substituents, although the rudimentary nature of the crystal structure report for I precludes a definitive conclusion concerning this trend (the only bond length included in the description of the structure of I was the Os—Os distance and no s.u. value was given). The average bond lengths between the Os atoms that lie within the metallacyclpenta­diene rings and the 2,5-C atoms of the rings are 2.09 (1) Å for II and 2.10 (1) Å for III, while the other Os atoms in II and III have an average distance of 2.31 (4) and 2.32 (4) Å, respectively, from the four C atoms in the metallacyclpenta­diene rings. The central C—C distances in the C4R4 groups are 1.48 (1) Å for II and 1.461 (5) Å for III, and these are both longer than the other two C—C distances on either side of them [average of 1.42 (1) Å for II and 1.420 (5) Å for III], supporting the designation of these groups as dienes. There are five unique torsion angles within each metallacyclpenta­diene ring, and the average values of these are 8° for II and 0.7° for III. Thus, the planarity of the metallacyclpenta­diene ring in III is less distorted than it is in II, which is most likely a consequence of the smaller steric bulk of the R groups in III.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the positions of the major phenyl-ring and carbonyl-ligand components, as well as the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A ball-and-stick view of the asymmetric unit of III, with partial atom labeling. All components of the disordered carbonyl ligands and phenyl rings are shown (the minor ones in pale blue).

3. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for metallole complexes of the type (μ-η4-C4R4)M2(CO)6, where M is any transition metal, gave 14 hits. The only hit containing Os atoms was complex II with a sawhorse conformation and no bridging carbonyl ligands. Eight of the hits were for ruthenoles, four with non-sawhorse conformations and semibridging CO ligands and four with sawhorse conformations without bridging carbonyls. The five remaining hits were for ferroles, all of which have semibridging CO ligands.

4. Supra­molecular features

There are only two inter­molecular nonbonding distances in the structure of III that are shorter than the sum of the van der Waals radii. A weak C19A—H19A⋯O2i hydrogen bond (Table 1[link]) and a close O2⋯O5ii contact of 2.941 (9) Å [symmetry code: (ii) −[{1\over 2}] + x, 1 − y, z]. These combine to stack mol­ecules of III along the direction of the b axis of the unit cell (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19A—H19A⋯O2i 0.93 2.60 3.363 (12) 139
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The overall packing of III, viewed along the b-axis direction.

5. Synthesis and crystallization

Dodeca­carbonyl­triosmium(0) (100 mg, 0.110 mmol) and MeCN (8 ml) were placed in a 35 ml glass reaction vessel, then sealed with a PTFE cap and placed in a CEM Discover-SP microwave reactor. The mixture was stirred and heated at 403 K for 8 min to yield a green solution in which the major component was known to be Os3(CO)11(NCMe), as noted in a previous report (Jung et al., 2009[Jung, J. Y., Newton, B. S., Tonkin, M. L., Powell, C. B. & Powell, G. L. (2009). J. Organomet. Chem. 694, 3526-3528.]). The reaction vessel was removed from the microwave reactor and allowed to cool to room temperature. Di­phenyl­acetyl­ene (118 mg, 0.662 mmol) was added to the vessel and it was returned to the microwave reactor. This solution was stirred and heated at 433 K for 6 min. The solvent was removed by rotary evaporation, then the residue was dissolved in CH2Cl2 and subjected to thin-layer chromatography (TLC) using an eluent of 1:1 (v/v) hexa­nes/CH2Cl2. Three yellow bands were collected. The top band consisted of 34.1 mg (22.8% yield) of complex III. IR (νCO, hexa­ne): 2081 (s), 2051 (vs), 2018 (m), 1998 (s), and 1968 (m) cm−1. The second band consisted of a mixture of complex III and an unidentified product. The third band consisted of 4.1 mg (3.2% yield) of complex IV. Crystals of III were grown by slow evaporation of an n-hexane solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C atoms in the four phenyl rings were disordered over two slightly different orientations. Each phenyl ring was split into two components (A and B), which were refined as rigid hexa­gons. H atoms were included in idealized positions and allowed to ride on their parent atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The refined occupancy ratios were C11–C16 0.519 (18):0.481 (18), C17–C22 0.50 (3):0.50 (3), C23–C28 0.568 (12):0.432 (12), and C29–C34 0.510 (12):0.490 (12). Two of the CO ligands were also disordered over two slightly different positions. The refined occupancy ratios for these were C5≡O5 0.625 (13):0.375 (13) and C6≡O6 0.568 (16):0.432 (16). The best data were obtained at room temperature. X-ray data were collected on the same crystal and several other crystals of III at lower temperatures, but as the temperature decreased, the disorder of the phenyl rings and carbonyl ligands became more extensive and increasingly difficult to model.

Table 2
Experimental details

Crystal data
Chemical formula [Os2(C28H20)(CO)6]
Mr 904.90
Crystal system, space group Monoclinic, I2/a
Temperature (K) 298
a, b, c (Å) 15.3471 (1), 21.2919 (2), 18.5565 (1)
β (°) 90.298 (1)
V3) 6063.60 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 15.95
Crystal size (mm) 0.15 × 0.08 × 0.07
 
Data collection
Diffractometer Rigaku OD SuperNova Dual source diffractometer with an AtlasS2 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.296, 0.506
No. of measured, independent and observed [I > 2σ(I)] reflections 27474, 5352, 5118
Rint 0.021
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.05
No. of reflections 5352
No. of parameters 512
No. of restraints 167
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.18, −0.94
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008)'; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[µ-1κ2C1,C4:2(1,2,3,4-η)-1,2,3,4-Tetraphenylbuta-1,3-diene-1,4-diyl]bis(tricarbonylosmium)(OsOs) top
Crystal data top
[Os2(C28H20)(CO)6]F(000) = 3392
Mr = 904.90Dx = 1.982 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 15.3471 (1) ÅCell parameters from 20186 reflections
b = 21.2919 (2) Åθ = 4.7–73.5°
c = 18.5565 (1) ŵ = 15.95 mm1
β = 90.298 (1)°T = 298 K
V = 6063.60 (8) Å3Block, red
Z = 80.14 × 0.08 × 0.07 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an AtlasS2 detector
5118 reflections with I > 2σ(I)
Detector resolution: 5.2387 pixels mm-1Rint = 0.021
ω scansθmax = 66.6°, θmin = 4.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2018)
h = 1818
Tmin = 0.296, Tmax = 0.506k = 2425
27474 measured reflectionsl = 2222
5352 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0207P)2 + 11.4338P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.002
S = 1.05Δρmax = 1.18 e Å3
5352 reflectionsΔρmin = 0.93 e Å3
512 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
167 restraintsExtinction coefficient: 0.000017 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Os10.62389 (2)0.49607 (2)0.15025 (2)0.04580 (5)
Os20.71430 (2)0.58750 (2)0.22382 (2)0.05374 (6)
O20.46073 (18)0.41761 (13)0.13217 (17)0.0730 (7)
O10.6492 (2)0.52162 (16)0.01161 (15)0.0834 (8)
C100.5756 (2)0.58624 (14)0.16889 (17)0.0475 (7)
O30.7493 (2)0.38377 (17)0.1469 (2)0.0934 (9)
C70.6298 (2)0.50278 (15)0.26329 (17)0.0480 (7)
O40.7858 (2)0.64993 (18)0.08904 (19)0.1020 (11)
C90.5694 (2)0.60595 (15)0.24180 (17)0.0495 (7)
C80.5995 (2)0.55959 (15)0.29438 (17)0.0488 (7)
C10.6400 (2)0.51209 (17)0.0480 (2)0.0587 (8)
C20.5222 (2)0.44711 (16)0.13780 (18)0.0529 (8)
C30.7024 (3)0.42495 (19)0.1475 (2)0.0630 (9)
O5A0.8706 (4)0.4947 (4)0.2289 (5)0.0934 (9)0.625 (13)
C40.7605 (3)0.6268 (2)0.1397 (2)0.0697 (10)
C22B0.4324 (10)0.6596 (6)0.2462 (12)0.0648 (18)0.50 (3)
H22B0.4122210.6261760.2184970.078*0.50 (3)
C21B0.3749 (8)0.7060 (8)0.2687 (11)0.078 (4)0.50 (3)
H21B0.3162950.7036230.2560370.094*0.50 (3)
C20B0.4050 (11)0.7559 (7)0.3101 (9)0.081 (4)0.50 (3)
H20B0.3665920.7869770.3251970.098*0.50 (3)
C19B0.4927 (12)0.7595 (6)0.3291 (9)0.088 (3)0.50 (3)
H19B0.5128140.7928850.3568180.106*0.50 (3)
C18B0.5501 (9)0.7131 (6)0.3066 (11)0.072 (3)0.50 (3)
H18B0.6087410.7154390.3192780.086*0.50 (3)
C17B0.5200 (9)0.6631 (6)0.2652 (13)0.0575 (8)0.50 (3)
C16B0.4631 (13)0.6056 (7)0.0780 (10)0.072 (5)0.481 (18)
H16B0.4437880.5653700.0892170.087*0.481 (18)
C15B0.4183 (10)0.6415 (7)0.0274 (8)0.072 (3)0.481 (18)
H15B0.3689090.6253070.0048350.086*0.481 (18)
C14B0.4472 (10)0.7016 (7)0.0106 (7)0.072 (2)0.481 (18)
H14B0.4171980.7255770.0232260.086*0.481 (18)
C13B0.5210 (10)0.7257 (6)0.0443 (8)0.075 (2)0.481 (18)
H13B0.5403660.7659110.0330950.090*0.481 (18)
C12B0.5659 (12)0.6898 (8)0.0949 (10)0.071 (3)0.481 (18)
H12B0.6152450.7059750.1174780.086*0.481 (18)
C11B0.5369 (14)0.6297 (8)0.1117 (11)0.0547 (11)0.481 (18)
C5A0.8115 (4)0.5307 (3)0.2256 (5)0.0632 (9)0.625 (13)
O6A0.8001 (12)0.6787 (5)0.3297 (7)0.114 (4)0.568 (16)
C6A0.7709 (6)0.6429 (5)0.2911 (4)0.0632 (9)0.568 (16)
C34B0.7313 (6)0.4375 (5)0.3494 (7)0.075 (4)0.490 (12)
H34B0.7737660.4686760.3477490.091*0.490 (12)
C33B0.7459 (6)0.3833 (6)0.3894 (7)0.081 (3)0.490 (12)
H33B0.7979980.3781240.4144420.098*0.490 (12)
C32B0.6824 (8)0.3367 (5)0.3919 (7)0.085 (4)0.490 (12)
H32B0.6921440.3004400.4186220.102*0.490 (12)
C31B0.6045 (8)0.3444 (6)0.3544 (8)0.073 (3)0.490 (12)
H31B0.5620580.3133060.3561090.088*0.490 (12)
C30B0.5900 (6)0.3987 (7)0.3145 (8)0.060 (2)0.490 (12)
H30B0.5378250.4038570.2894160.072*0.490 (12)
C29B0.6534 (7)0.4452 (6)0.3120 (7)0.058 (4)0.490 (12)
C6B0.7491 (8)0.6609 (5)0.2770 (6)0.0637 (10)0.432 (16)
O6B0.7851 (18)0.7002 (7)0.3059 (10)0.129 (7)0.432 (16)
C12A0.5787 (11)0.6907 (7)0.1098 (9)0.063 (3)0.519 (18)
H12A0.6243300.7019540.1403240.076*0.519 (18)
C13A0.5446 (9)0.7342 (6)0.0615 (7)0.075 (2)0.519 (18)
H13A0.5674120.7746620.0597360.090*0.519 (18)
C14A0.4763 (9)0.7174 (6)0.0160 (6)0.072 (2)0.519 (18)
H14A0.4535020.7465340.0163460.086*0.519 (18)
C15A0.4422 (10)0.6570 (6)0.0187 (7)0.075 (3)0.519 (18)
H15A0.3965100.6456980.0118400.090*0.519 (18)
C16A0.4763 (12)0.6134 (6)0.0669 (9)0.060 (2)0.519 (18)
H16A0.4534270.5729890.0687480.072*0.519 (18)
C11A0.5445 (13)0.6303 (7)0.1125 (10)0.0547 (11)0.519 (18)
C18A0.5678 (8)0.7125 (6)0.2967 (13)0.092 (6)0.50 (3)
H18A0.6282360.7101860.3001540.111*0.50 (3)
C19A0.5243 (12)0.7650 (5)0.3228 (10)0.088 (3)0.50 (3)
H19A0.5555150.7977450.3436610.106*0.50 (3)
C20A0.4340 (12)0.7685 (5)0.3176 (9)0.074 (4)0.50 (3)
H20A0.4048650.8035550.3350760.089*0.50 (3)
C21A0.3873 (8)0.7195 (7)0.2864 (10)0.069 (3)0.50 (3)
H21A0.3269360.7218070.2829850.083*0.50 (3)
C22A0.4309 (9)0.6670 (6)0.2604 (11)0.0647 (18)0.50 (3)
H22A0.3996560.6342470.2394780.078*0.50 (3)
C17A0.5212 (9)0.6635 (6)0.2655 (13)0.0574 (8)0.50 (3)
C23A0.5812 (6)0.5722 (4)0.37263 (15)0.061 (5)0.568 (12)
C24A0.5003 (6)0.5547 (5)0.3992 (3)0.059 (3)0.568 (12)
H24A0.4597860.5354240.3689550.071*0.568 (12)
C25A0.4798 (6)0.5660 (5)0.4709 (4)0.084 (4)0.568 (12)
H25A0.4256050.5542960.4886520.101*0.568 (12)
C26A0.5403 (7)0.5948 (5)0.51606 (19)0.096 (2)0.568 (12)
H26A0.5265820.6023380.5640400.115*0.568 (12)
C27A0.6213 (6)0.6123 (5)0.4895 (3)0.090 (3)0.568 (12)
H27A0.6617420.6315080.5197290.108*0.568 (12)
C28A0.6417 (5)0.6009 (5)0.4178 (3)0.078 (3)0.568 (12)
H28A0.6959260.6126370.4000320.093*0.568 (12)
C23B0.5893 (7)0.5673 (4)0.37446 (15)0.051 (5)0.432 (12)
C24B0.5044 (6)0.5753 (6)0.3986 (4)0.052 (3)0.432 (12)
H24B0.4582860.5745810.3659260.062*0.432 (12)
C25B0.4886 (7)0.5844 (6)0.4715 (5)0.069 (4)0.432 (12)
H25B0.4317840.5898040.4876540.083*0.432 (12)
C26B0.5576 (9)0.5856 (6)0.5203 (2)0.096 (2)0.432 (12)
H26B0.5469370.5916660.5691200.115*0.432 (12)
C27B0.6424 (8)0.5776 (7)0.4962 (3)0.090 (3)0.432 (12)
H27B0.6885940.5783030.5288600.108*0.432 (12)
C28B0.6583 (6)0.5684 (6)0.4233 (4)0.070 (3)0.432 (12)
H28B0.7150990.5630810.4071330.084*0.432 (12)
C30A0.6142 (7)0.3945 (7)0.3058 (6)0.059 (2)0.510 (12)
H30A0.5715370.3886650.2707330.071*0.510 (12)
C31A0.6356 (9)0.3459 (5)0.3526 (7)0.073 (3)0.510 (12)
H31A0.6071140.3074370.3488510.088*0.510 (12)
C32A0.6994 (8)0.3547 (5)0.4051 (6)0.090 (4)0.510 (12)
H32A0.7136330.3220970.4364140.108*0.510 (12)
C33A0.7419 (6)0.4121 (6)0.4108 (5)0.081 (3)0.510 (12)
H33A0.7845750.4179840.4458590.098*0.510 (12)
C34A0.7206 (7)0.4608 (5)0.3640 (6)0.069 (3)0.510 (12)
H34A0.7489980.4992130.3677430.083*0.510 (12)
C29A0.6567 (7)0.4520 (5)0.3115 (6)0.048 (3)0.510 (12)
C5B0.8208 (5)0.5440 (6)0.2457 (8)0.0632 (9)0.375 (13)
O5B0.8734 (7)0.5156 (7)0.2566 (9)0.0934 (9)0.375 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.04688 (9)0.04677 (9)0.04374 (8)0.00282 (5)0.00123 (6)0.00239 (5)
Os20.04855 (9)0.05941 (10)0.05324 (9)0.01425 (6)0.00124 (6)0.00057 (6)
O20.0593 (16)0.0678 (17)0.092 (2)0.0166 (13)0.0031 (14)0.0063 (14)
O10.098 (2)0.104 (2)0.0482 (15)0.0096 (18)0.0066 (14)0.0067 (14)
C100.0485 (17)0.0462 (17)0.0476 (16)0.0076 (13)0.0044 (13)0.0021 (13)
O30.0727 (14)0.090 (2)0.117 (2)0.0196 (13)0.0055 (15)0.0113 (16)
C70.0424 (16)0.0548 (18)0.0468 (17)0.0099 (13)0.0012 (13)0.0021 (13)
O40.089 (2)0.119 (3)0.098 (2)0.003 (2)0.0261 (19)0.048 (2)
C90.0509 (17)0.0466 (17)0.0511 (17)0.0093 (14)0.0021 (14)0.0054 (13)
C80.0465 (16)0.0533 (18)0.0465 (16)0.0076 (14)0.0010 (13)0.0040 (14)
C10.057 (2)0.060 (2)0.058 (2)0.0059 (16)0.0007 (16)0.0029 (16)
C20.056 (2)0.0510 (18)0.0516 (18)0.0026 (16)0.0015 (15)0.0018 (14)
C30.058 (2)0.065 (2)0.066 (2)0.0062 (18)0.0038 (17)0.0021 (17)
O5A0.0727 (14)0.090 (2)0.117 (2)0.0196 (13)0.0055 (15)0.0113 (16)
C40.056 (2)0.069 (2)0.084 (3)0.0039 (18)0.0023 (19)0.010 (2)
C22B0.079 (2)0.053 (3)0.063 (6)0.010 (2)0.005 (3)0.019 (2)
C21B0.100 (5)0.068 (6)0.067 (9)0.026 (5)0.002 (5)0.029 (5)
C20B0.121 (10)0.053 (6)0.070 (7)0.023 (6)0.005 (8)0.021 (5)
C19B0.103 (9)0.059 (3)0.102 (5)0.009 (5)0.024 (7)0.028 (3)
C18B0.095 (6)0.057 (6)0.062 (5)0.008 (5)0.006 (6)0.016 (4)
C17B0.0798 (19)0.0450 (18)0.0477 (17)0.0004 (16)0.0040 (16)0.0042 (14)
C16B0.083 (7)0.068 (5)0.066 (8)0.003 (4)0.016 (6)0.009 (5)
C15B0.086 (7)0.065 (5)0.064 (6)0.003 (4)0.014 (5)0.005 (4)
C14B0.095 (7)0.062 (5)0.059 (3)0.003 (4)0.015 (4)0.002 (4)
C13B0.100 (7)0.057 (4)0.068 (6)0.000 (3)0.019 (4)0.006 (4)
C12B0.085 (7)0.062 (3)0.067 (7)0.005 (4)0.013 (5)0.011 (4)
C11B0.065 (3)0.0536 (18)0.0453 (17)0.0068 (19)0.0034 (18)0.0023 (13)
C5A0.0470 (15)0.0682 (19)0.074 (3)0.0123 (11)0.0116 (13)0.0018 (15)
O6A0.119 (7)0.123 (7)0.100 (7)0.050 (7)0.026 (6)0.025 (5)
C6A0.0470 (15)0.0682 (19)0.074 (3)0.0123 (11)0.0116 (13)0.0018 (15)
C34B0.063 (4)0.077 (6)0.086 (8)0.002 (4)0.007 (5)0.023 (6)
C33B0.083 (4)0.090 (7)0.071 (6)0.012 (5)0.006 (4)0.023 (4)
C32B0.117 (11)0.074 (7)0.064 (7)0.002 (7)0.014 (7)0.019 (6)
C31B0.083 (8)0.065 (2)0.071 (3)0.002 (4)0.017 (5)0.012 (2)
C30B0.061 (5)0.061 (2)0.057 (3)0.001 (4)0.013 (4)0.002 (2)
C29B0.058 (5)0.061 (5)0.056 (10)0.003 (4)0.005 (5)0.009 (5)
C6B0.0476 (18)0.069 (2)0.075 (3)0.0122 (14)0.0121 (16)0.0012 (17)
O6B0.153 (15)0.131 (10)0.104 (10)0.083 (12)0.013 (8)0.021 (8)
C12A0.081 (7)0.050 (4)0.059 (6)0.002 (4)0.005 (5)0.006 (4)
C13A0.100 (7)0.056 (4)0.068 (6)0.000 (3)0.018 (4)0.005 (4)
C14A0.095 (7)0.061 (5)0.059 (3)0.003 (4)0.015 (4)0.002 (4)
C15A0.098 (9)0.065 (8)0.061 (6)0.007 (6)0.020 (6)0.006 (5)
C16A0.080 (6)0.055 (5)0.045 (5)0.003 (5)0.007 (5)0.003 (4)
C11A0.065 (3)0.0536 (18)0.0453 (17)0.0068 (19)0.0034 (18)0.0023 (13)
C18A0.091 (7)0.072 (9)0.115 (16)0.003 (6)0.013 (8)0.042 (9)
C19A0.103 (9)0.059 (3)0.102 (5)0.008 (5)0.024 (7)0.028 (3)
C20A0.088 (9)0.054 (6)0.081 (8)0.007 (7)0.001 (7)0.019 (5)
C21A0.088 (6)0.057 (7)0.063 (9)0.021 (5)0.007 (5)0.025 (5)
C22A0.079 (2)0.052 (3)0.063 (6)0.010 (2)0.005 (3)0.019 (2)
C17A0.080 (2)0.0450 (18)0.0477 (18)0.0005 (16)0.0039 (16)0.0042 (14)
C23A0.067 (8)0.060 (8)0.057 (8)0.003 (6)0.021 (6)0.008 (6)
C24A0.072 (5)0.040 (7)0.066 (4)0.010 (4)0.017 (3)0.010 (3)
C25A0.108 (8)0.072 (8)0.071 (4)0.000 (5)0.032 (5)0.013 (4)
C26A0.138 (7)0.096 (5)0.053 (3)0.007 (4)0.013 (3)0.010 (3)
C27A0.105 (6)0.111 (8)0.054 (3)0.001 (5)0.008 (3)0.022 (4)
C28A0.078 (5)0.101 (8)0.054 (3)0.002 (5)0.007 (3)0.017 (4)
C23B0.058 (9)0.057 (9)0.040 (9)0.007 (7)0.026 (6)0.003 (6)
C24B0.065 (6)0.031 (7)0.059 (5)0.012 (4)0.005 (4)0.004 (4)
C25B0.076 (8)0.060 (8)0.071 (7)0.003 (5)0.033 (6)0.001 (5)
C26B0.138 (7)0.096 (5)0.053 (3)0.007 (4)0.013 (3)0.010 (3)
C27B0.105 (6)0.111 (8)0.054 (3)0.001 (5)0.009 (3)0.022 (4)
C28B0.075 (7)0.081 (9)0.054 (5)0.015 (6)0.015 (5)0.007 (5)
C30A0.061 (5)0.061 (3)0.057 (3)0.002 (4)0.013 (4)0.002 (2)
C31A0.083 (8)0.065 (2)0.071 (3)0.002 (4)0.017 (5)0.012 (2)
C32A0.096 (9)0.103 (9)0.071 (8)0.035 (8)0.013 (6)0.036 (7)
C33A0.083 (4)0.090 (7)0.071 (6)0.012 (5)0.006 (4)0.023 (4)
C34A0.059 (5)0.089 (8)0.058 (5)0.010 (5)0.002 (4)0.015 (6)
C29A0.052 (5)0.055 (5)0.037 (7)0.005 (4)0.015 (4)0.001 (4)
C5B0.0470 (15)0.0682 (19)0.074 (3)0.0123 (11)0.0116 (13)0.0018 (15)
O5B0.0727 (14)0.090 (2)0.117 (2)0.0196 (13)0.0055 (15)0.0113 (16)
Geometric parameters (Å, º) top
Os1—Os22.7494 (2)C31B—H31B0.9300
Os1—C102.087 (3)C31B—C30B1.3900
Os1—C72.104 (3)C30B—H30B0.9300
Os1—C11.946 (4)C30B—C29B1.3900
Os1—C21.891 (4)C6B—O6B1.136 (6)
Os1—C31.936 (4)C12A—H12A0.9300
Os2—C102.355 (3)C12A—C13A1.3900
Os2—C72.341 (3)C12A—C11A1.3900
Os2—C92.285 (3)C13A—H13A0.9300
Os2—C82.279 (3)C13A—C14A1.3900
Os2—C41.911 (4)C14A—H14A0.9300
Os2—C5A1.920 (5)C14A—C15A1.3900
Os2—C6A1.922 (4)C15A—H15A0.9300
Os2—C6B1.922 (4)C15A—C16A1.3900
Os2—C5B1.920 (5)C16A—H16A0.9300
O2—C21.137 (4)C16A—C11A1.3900
O1—C11.134 (4)C18A—H18A0.9300
C10—C91.420 (4)C18A—C19A1.3900
C10—C11B1.526 (11)C18A—C17A1.3900
C10—C11A1.482 (10)C19A—H19A0.9300
O3—C31.135 (5)C19A—C20A1.3900
C7—C81.419 (5)C20A—H20A0.9300
C7—C29B1.563 (10)C20A—C21A1.3900
C7—C29A1.462 (10)C21A—H21A0.9300
O4—C41.131 (5)C21A—C22A1.3900
C9—C81.461 (5)C22A—H22A0.9300
C9—C17B1.499 (4)C22A—C17A1.3900
C9—C17A1.499 (4)C23A—C24A1.3900
C8—C23A1.504 (4)C23A—C28A1.3900
C8—C23B1.504 (4)C24A—H24A0.9300
O5A—C5A1.190 (8)C24A—C25A1.3900
C22B—H22B0.9300C25A—H25A0.9300
C22B—C21B1.3900C25A—C26A1.3900
C22B—C17B1.3900C26A—H26A0.9300
C21B—H21B0.9300C26A—C27A1.3900
C21B—C20B1.3900C27A—H27A0.9300
C20B—H20B0.9300C27A—C28A1.3900
C20B—C19B1.3900C28A—H28A0.9300
C19B—H19B0.9300C23B—C24B1.3900
C19B—C18B1.3900C23B—C28B1.3900
C18B—H18B0.9300C24B—H24B0.9300
C18B—C17B1.3900C24B—C25B1.3900
C16B—H16B0.9300C25B—H25B0.9300
C16B—C15B1.3900C25B—C26B1.3900
C16B—C11B1.3900C26B—H26B0.9300
C15B—H15B0.9300C26B—C27B1.3900
C15B—C14B1.3900C27B—H27B0.9300
C14B—H14B0.9300C27B—C28B1.3900
C14B—C13B1.3900C28B—H28B0.9300
C13B—H13B0.9300C30A—H30A0.9300
C13B—C12B1.3900C30A—C31A1.3900
C12B—H12B0.9300C30A—C29A1.3900
C12B—C11B1.3900C31A—H31A0.9300
O6A—C6A1.136 (6)C31A—C32A1.3900
C34B—H34B0.9300C32A—H32A0.9300
C34B—C33B1.3900C32A—C33A1.3900
C34B—C29B1.3900C33A—H33A0.9300
C33B—H33B0.9300C33A—C34A1.3900
C33B—C32B1.3900C34A—H34A0.9300
C32B—H32B0.9300C34A—C29A1.3900
C32B—C31B1.3900C5B—O5B1.027 (11)
C10—Os1—Os256.30 (8)C13B—C14B—H14B120.0
C10—Os1—C777.63 (12)C14B—C13B—H13B120.0
C7—Os1—Os255.80 (8)C14B—C13B—C12B120.0
C1—Os1—Os2107.09 (11)C12B—C13B—H13B120.0
C1—Os1—C1092.72 (14)C13B—C12B—H12B120.0
C1—Os1—C7162.88 (14)C11B—C12B—C13B120.0
C2—Os1—Os2149.94 (10)C11B—C12B—H12B120.0
C2—Os1—C10103.52 (13)C16B—C11B—C10113.7 (10)
C2—Os1—C7100.99 (13)C12B—C11B—C10126.2 (10)
C2—Os1—C194.97 (15)C12B—C11B—C16B120.0
C2—Os1—C394.53 (16)O5A—C5A—Os2177.8 (8)
C3—Os1—Os2104.74 (12)O6A—C6A—Os2175.1 (11)
C3—Os1—C10160.96 (15)C33B—C34B—H34B120.0
C3—Os1—C793.18 (15)C33B—C34B—C29B120.0
C3—Os1—C191.69 (16)C29B—C34B—H34B120.0
C10—Os2—Os147.50 (8)C34B—C33B—H33B120.0
C7—Os2—Os148.00 (8)C32B—C33B—C34B120.0
C7—Os2—C1068.03 (11)C32B—C33B—H33B120.0
C9—Os2—Os172.85 (8)C33B—C32B—H32B120.0
C9—Os2—C1035.61 (11)C33B—C32B—C31B120.0
C9—Os2—C762.97 (12)C31B—C32B—H32B120.0
C8—Os2—Os173.20 (8)C32B—C31B—H31B120.0
C8—Os2—C1063.01 (11)C30B—C31B—C32B120.0
C8—Os2—C735.75 (11)C30B—C31B—H31B120.0
C8—Os2—C937.35 (12)C31B—C30B—H30B120.0
C4—Os2—Os195.33 (13)C31B—C30B—C29B120.0
C4—Os2—C1089.41 (15)C29B—C30B—H30B120.0
C4—Os2—C7143.26 (15)C34B—C29B—C7125.3 (8)
C4—Os2—C9114.18 (15)C30B—C29B—C7114.7 (8)
C4—Os2—C8151.01 (15)C30B—C29B—C34B120.0
C4—Os2—C5A89.9 (3)O6B—C6B—Os2167.0 (17)
C4—Os2—C6A95.4 (3)C13A—C12A—H12A120.0
C4—Os2—C6B87.7 (4)C13A—C12A—C11A120.0
C4—Os2—C5B93.7 (5)C11A—C12A—H12A120.0
C5A—Os2—Os187.3 (3)C12A—C13A—H13A120.0
C5A—Os2—C10134.5 (3)C14A—C13A—C12A120.0
C5A—Os2—C786.6 (2)C14A—C13A—H13A120.0
C5A—Os2—C9149.6 (2)C13A—C14A—H14A120.0
C5A—Os2—C8115.4 (3)C13A—C14A—C15A120.0
C5A—Os2—C6A91.5 (4)C15A—C14A—H14A120.0
C6A—Os2—Os1169.2 (3)C14A—C15A—H15A120.0
C6A—Os2—C10133.9 (3)C16A—C15A—C14A120.0
C6A—Os2—C7121.3 (3)C16A—C15A—H15A120.0
C6A—Os2—C9103.7 (3)C15A—C16A—H16A120.0
C6A—Os2—C897.8 (2)C11A—C16A—C15A120.0
C6B—Os2—Os1165.6 (4)C11A—C16A—H16A120.0
C6B—Os2—C10118.6 (4)C12A—C11A—C10119.4 (8)
C6B—Os2—C7128.2 (3)C16A—C11A—C10120.3 (8)
C6B—Os2—C993.0 (4)C16A—C11A—C12A120.0
C6B—Os2—C897.5 (3)C19A—C18A—H18A120.0
C5B—Os2—Os1101.0 (4)C19A—C18A—C17A120.0
C5B—Os2—C10148.5 (4)C17A—C18A—H18A120.0
C5B—Os2—C792.0 (4)C18A—C19A—H19A120.0
C5B—Os2—C9151.7 (4)C18A—C19A—C20A120.0
C5B—Os2—C8114.4 (4)C20A—C19A—H19A120.0
C5B—Os2—C6B92.9 (6)C19A—C20A—H20A120.0
Os1—C10—Os276.20 (11)C19A—C20A—C21A120.0
C9—C10—Os1117.1 (2)C21A—C20A—H20A120.0
C9—C10—Os269.49 (18)C20A—C21A—H21A120.0
C9—C10—C11B117.1 (10)C22A—C21A—C20A120.0
C9—C10—C11A117.5 (9)C22A—C21A—H21A120.0
C11B—C10—Os1125.5 (10)C21A—C22A—H22A120.0
C11B—C10—Os2129.9 (7)C21A—C22A—C17A120.0
C11A—C10—Os1125.3 (9)C17A—C22A—H22A120.0
C11A—C10—Os2125.8 (7)C18A—C17A—C9118.8 (10)
Os1—C7—Os276.20 (10)C22A—C17A—C9121.1 (10)
C8—C7—Os1116.8 (2)C22A—C17A—C18A120.0
C8—C7—Os269.73 (17)C24A—C23A—C8117.8 (5)
C8—C7—C29B120.6 (6)C24A—C23A—C28A120.0
C8—C7—C29A118.3 (5)C28A—C23A—C8122.2 (5)
C29B—C7—Os1122.1 (6)C23A—C24A—H24A120.0
C29B—C7—Os2131.1 (5)C23A—C24A—C25A120.0
C29A—C7—Os1124.8 (5)C25A—C24A—H24A120.0
C29A—C7—Os2127.3 (5)C24A—C25A—H25A120.0
C10—C9—Os274.90 (19)C26A—C25A—C24A120.0
C10—C9—C8114.4 (3)C26A—C25A—H25A120.0
C10—C9—C17B123.5 (10)C25A—C26A—H26A120.0
C10—C9—C17A123.9 (10)C25A—C26A—C27A120.0
C8—C9—Os271.11 (18)C27A—C26A—H26A120.0
C8—C9—C17B120.9 (10)C26A—C27A—H27A120.0
C8—C9—C17A120.8 (10)C28A—C27A—C26A120.0
C17B—C9—Os2132.5 (7)C28A—C27A—H27A120.0
C17A—C9—Os2131.7 (7)C23A—C28A—H28A120.0
C7—C8—Os274.52 (18)C27A—C28A—C23A120.0
C7—C8—C9114.1 (3)C27A—C28A—H28A120.0
C7—C8—C23A127.4 (4)C24B—C23B—C8115.7 (7)
C7—C8—C23B122.0 (4)C24B—C23B—C28B120.0
C9—C8—Os271.54 (18)C28B—C23B—C8124.3 (7)
C9—C8—C23A117.7 (4)C23B—C24B—H24B120.0
C9—C8—C23B123.5 (5)C25B—C24B—C23B120.0
C23A—C8—Os2131.0 (4)C25B—C24B—H24B120.0
C23B—C8—Os2128.6 (4)C24B—C25B—H25B120.0
O1—C1—Os1179.8 (4)C24B—C25B—C26B120.0
O2—C2—Os1178.2 (3)C26B—C25B—H25B120.0
O3—C3—Os1178.7 (4)C25B—C26B—H26B120.0
O4—C4—Os2178.2 (4)C27B—C26B—C25B120.0
C21B—C22B—H22B120.0C27B—C26B—H26B120.0
C21B—C22B—C17B120.0C26B—C27B—H27B120.0
C17B—C22B—H22B120.0C26B—C27B—C28B120.0
C22B—C21B—H21B120.0C28B—C27B—H27B120.0
C22B—C21B—C20B120.0C23B—C28B—H28B120.0
C20B—C21B—H21B120.0C27B—C28B—C23B120.0
C21B—C20B—H20B120.0C27B—C28B—H28B120.0
C19B—C20B—C21B120.0C31A—C30A—H30A120.0
C19B—C20B—H20B120.0C31A—C30A—C29A120.0
C20B—C19B—H19B120.0C29A—C30A—H30A120.0
C20B—C19B—C18B120.0C30A—C31A—H31A120.0
C18B—C19B—H19B120.0C30A—C31A—C32A120.0
C19B—C18B—H18B120.0C32A—C31A—H31A120.0
C19B—C18B—C17B120.0C31A—C32A—H32A120.0
C17B—C18B—H18B120.0C33A—C32A—C31A120.0
C22B—C17B—C9111.9 (10)C33A—C32A—H32A120.0
C18B—C17B—C9127.9 (10)C32A—C33A—H33A120.0
C18B—C17B—C22B120.0C32A—C33A—C34A120.0
C15B—C16B—H16B120.0C34A—C33A—H33A120.0
C15B—C16B—C11B120.0C33A—C34A—H34A120.0
C11B—C16B—H16B120.0C29A—C34A—C33A120.0
C16B—C15B—H15B120.0C29A—C34A—H34A120.0
C16B—C15B—C14B120.0C30A—C29A—C7118.3 (8)
C14B—C15B—H15B120.0C34A—C29A—C7121.7 (8)
C15B—C14B—H14B120.0C34A—C29A—C30A120.0
C13B—C14B—C15B120.0O5B—C5B—Os2172.8 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19A—H19A···O2i0.932.603.363 (12)139
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor M. G. Richmond of the University of North Texas for supplying the Os3(CO)12 starting material.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. R-0021); Abilene Christian University Office of Undergraduate Research; Abilene Christian University Pursuit grant.

References

First citationAdams, R. D., Qu, B., Smith, M. D. & Albright, T. A. (2002). Organometallics, 21, 2970–2978.  Web of Science CrossRef Google Scholar
First citationDaran, J. C. & Jeannin, Y. (1984). Organometallics, 3, 1158–1163.  CrossRef Web of Science Google Scholar
First citationDodge, R. P., Mills, O. S. & Schomaker, V. (1963). Proc. Chem. Soc. pp. 380–381.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGambino, O., Vaglio, G. A., Ferrari, R. P. & Cetini, G. (1971). J. Organomet. Chem. 30, 381–386.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeim, B., Daran, J. C., Jeannin, Y., Eber, B., Huttner, G. & Imhof, W. (1992). J. Organomet. Chem. 441, 81–97.  CrossRef Web of Science Google Scholar
First citationIyoda, M., Yada, T., Tashiro, S., Maeda, H., Yoshida, M. & Kuwatani, Y. (1997). Chem. Lett. 26, 39–40.  CrossRef Web of Science Google Scholar
First citationJeannin, S., Jeannin, Y., Robert, F. & Rosenberger, C. (1994). J. Organomet. Chem. 480, 111–137.  CrossRef Web of Science Google Scholar
First citationJohnson, K. D. & Powell, G. L. (2008). J. Organomet. Chem. 693, 1712–1715.  Web of Science CrossRef Google Scholar
First citationJung, J. Y., Kempe, D. K., Loh, L.-H. J., Shoultz, S. E. & Powell, G. L. (2012). J. Organomet. Chem. 700, 219–222.  Web of Science CrossRef Google Scholar
First citationJung, J. Y., Newton, B. S., Tonkin, M. L., Powell, C. B. & Powell, G. L. (2009). J. Organomet. Chem. 694, 3526–3528.  Web of Science CrossRef Google Scholar
First citationKumar, D., Singh, N., Elias, A. J., Malik, P. & Allen, C. W. (2014). Inorg. Chem. 53, 10674–10684.  CrossRef Google Scholar
First citationLeadbeater, N. E. & Shoemaker, K. M. (2008). Organometallics, 27, 1254–1258.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathur, P., Das, A., Chatterjee, S. & Mobin, S. M. (2008). J. Organomet. Chem. 693, 1919–1926.  Web of Science CrossRef Google Scholar
First citationMathur, P., Rai, D. K., Joshi, R. K., Jha, B. & Mobin, S. M. (2014). Organometallics, 33, 3857–3866.  Web of Science CrossRef Google Scholar
First citationPyper, K. J., Kempe, D. K., Jung, J. Y., Loh, L.-H. J., Gwini, N., Lang, B. D., Newton, B. S., Sims, J. M., Nesterov, V. N. & Powell, G. L. (2013). J. Cluster Sci. 24, 619–634.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTunik, S. P., Grachova, E. V., Denisov, V. R., Starova, G. L., Nikol'skii, A. B., Dolgushin, F. M., Yanovsky, A. I. & Struchkov, Y. T. (1997). J. Organomet. Chem. 536–537, 339–343.  CrossRef Web of Science Google Scholar
First citationYang, J. (2014). CSD Communication, CCDC 1038307. CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds