research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a one-dimensional looped-chain silver(I) coordination polymer: catena-poly[[silver(I)-bis­­{μ-4-[1-(5′-iso­propyl-[1,1′:3′,1′′-terphen­yl]-2′-yl)-1H-imidazol-2-yl]pyridine-κ2N:N′}] nitrate methanol monosolvate monohydrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea, and cDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, kangy@kangwon.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 9 June 2016; accepted 12 June 2016; online 17 June 2016)

In the title compound, {[Ag(C29H25N3)2]NO3·CH3OH·H2O}n, the AgI cation is four-coordinated by two pyridine N atoms and two imidazole N atoms from four individual 4-(1-(5′-isopropyl-[1,1′:3′,1′′-terphen­yl]-2′-yl)-1H-imidazol-2-yl)pyridine (i-pro-pyim) ligands. This gives rise to a highly distorted tetra­hedral geometry with bond angles falling in the range 100.33 (19)–122.76 (19)°. Two crystallographically independent i-pro-pyim ligands (A and B) adopt very similar conformations to one another, such that the dihedral angles between the pyridyl and imidazolyl rings in the two ligands are 40.7 (3) and 42.2 (3)°, respectively. Each i-pro-pyim ligand binds two symmetry-related Ag+ cations, leading to the formation of 14-membered cyclic dimers, in which the AgI atoms are separated by 6.963 (2) Å for the Ag–A2–Ag dimer and 7.020 (2) Å for Ag–B2–Ag. These cyclic dimers are alternately connected to each other by sharing AgI atoms, resulting in the formation of a looped-chain structure extending along the [100] direction. Moreover, adjacent looped chains are connected by inter­molecular ππ inter­actions [centroid-to-centroid distance = 3.689 (4) Å], giving rise to the formation of a two-dimensional supra­molecular network propagating parallel to (110). Several inter­molecular C—H⋯O and O—H⋯O hydrogen bonds further contribute to the stabilization of the crystal structure.

1. Chemical context

Group-9 metal complexes bearing phenyl­imidazole-based ligands are considered to be suitable triplet emitters for use in phospho­rescent organic light-emitting diodes (PHOLEDs) because of their high efficiency and long-term stability (Cho et al., 2016[Cho, H., Lee, J., Lee, J.-I., Cho, N. S., Park, J. H., Lee, J. Y. & Kang, Y. (2016). Org. Electron. 34, 91-96.]). However, there are relatively few reports of the structures of metal complexes that exhibit coordination of pyridyl­imidazole (pyim) ligands with an L-type coordination sphere, which is similar to a phenyl­imidazole system. Recently, AgI coordination polymers built from pyim ligands have attracted much attention due to their structural diversity and photoluminescence properties which have been shown to depend on the nature of the counter-anion (Lee et al., 2016[Lee, J., Kang, Y., Cho, N. S. & Park, K. (2016). Cryst. Growth Des. 16, 996-1004.]). The structural topology of AgI is quite sensitive to both the counter-anion and solvent mol­ecules (Durá et al., 2014[Durá, G., Carrión, M. C., Jalón, F. A., Rodríguez, A. M. & Manzano, B. R. (2014). Cryst. Growth Des. 14, 3510-3529.]). Herein, we describe the structure of an AgI compound with 4-(1-(5′-isopropyl-[1,1′:3′,1′′-terphen­yl]-2′-yl)-1H-imidazol-2-yl)pyridine, i-pro-pyim, as the pyim ligand. The coordination polymer is obtained by addition of the ligand to AgNO3 in methanol/aceto­nitrile. The title nitrate salt is closely related to the perchlorate salt (Lee et al., 2016[Lee, J., Kang, Y., Cho, N. S. & Park, K. (2016). Cryst. Growth Des. 16, 996-1004.]).

[Scheme 1]

2. Structural commentary

The title compound crystallizes with one AgI atom, two pyim ligands (A and B), one nitrate anion, one methanol solvent mol­ecule, and two water solvent mol­ecules, each with an occupancy factor of 0.5, in the asymmetric unit. As shown in Fig. 1[link], the AgI atom is coordinated by two pyridine N atoms and two imidazole N atoms from four individual i-pro-pyim ligands, giving rise to a highly distorted tetra­hedral geometry with bond angles falling in the range of 100.33 (19)–122.76 (19)° (Table 1[link]). The average Ag—N distance is 2.31 Å, similar to that found in the related perchlorate salt (Lee et al., 2016[Lee, J., Kang, Y., Cho, N. S. & Park, K. (2016). Cryst. Growth Des. 16, 996-1004.]).

Table 1
Selected geometric parameters (Å, °)

Ag1—N1i 2.279 (5) Ag1—N3 2.306 (5)
Ag1—N4ii 2.293 (5) Ag1—N6 2.330 (6)
       
N1i—Ag1—N4ii 109.11 (19) N1i—Ag1—N6 100.96 (19)
N1i—Ag1—N3 122.76 (19) N4ii—Ag1—N6 121.95 (19)
N4ii—Ag1—N3 100.33 (19) N3—Ag1—N6 103.27 (19)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound with the atom-numbering scheme. The nitrate anion and the lattice solvent mol­ecules have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level and red dashed lines represent the intra­molecular ππ inter­actions in the pyim ligand. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + 1, −z + 1.]

In the title compound there are two crystallographically independent ligands, A and B, and their conformations are very similar, such that the dihedral angles between the pyridyl and imidazolyl rings in the two ligands are 40.7 (3) and 42.2 (3)°, respectively. Moreover, there are intra­molecular ππ inter­actions between the pyridyl and phenyl rings of both ligand types, N3,C4–C8 and C21–C26 [centroid-to-centroid distance = 3.760 (4) Å] for A and N6,C33–C37 and C51–C56 [centroid-to-centroid distance = 3.716 (4) Å] for B.

Two symmetry-related A ligands link two AgI atoms, resulting in the formation of a 14-membered cyclic dimer with an Ag⋯Ag distance of 6.963 (2) Å and a ππ inter­action [centroid-to-centroid distance = 3.890 (4) Å] between N3-containing pyridine rings (Fig. 2[link]). Similarly, two symmetry-related B ligands also connect two AgI atoms to form another 14-membered cyclic dimer with an Ag⋯Ag separation of 7.020 (2) Å and a ππ inter­action [centroid-to-centroid distance = 3.922 (4) Å] between N6-containing pyridine rings. The two cyclic dimers are connected alternately by sharing AgI atoms, leading to the formation of a looped-chain structure extending along the a axis (Fig. 2[link]).

[Figure 2]
Figure 2
The looped-chain structure of the title compound extending along the a axis. The Ag1⋯Ag1i and Ag1⋯Ag1ii distances are 6.963 (2) and 7.020 (2) Å, respectively. Dashed lines represent intra­molecular ππ inter­actions in the looped chain. H atoms and the lattice solvent mol­ecules are omitted for clarity. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 2, −y + 1, −z + 1.]

3. Supra­molecular features

Adjacent looped chains in the structure are connected by inter­molecular ππ inter­actions [centroid-to-centroid distance = 3.689 (4) Å] between the C50–C55 and C50v–C55v phenyl rings [symmetry code: (v) −x + 2, −y, −z + 1], resulting in the formation of a two-dimensional supra­molecular network propagating parallel to (110) (Fig. 3[link]). No notable inter­actions are found between the two-dimensional networks. The nitrate anions and lattice solvent mol­ecules occupy the void volume between the layers. The crystal structure of the title compound is further stabilized by weak C—H⋯O hydrogen bonds between the looped chains and the lattice solvent mol­ecules/nitrate anions, and by O—H⋯O hydrogen bonds between the lattice methanol/water mol­ecules or the nitrate anions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2W 0.95 2.49 3.434 (19) 174
C30—H30⋯O2iii 0.95 2.47 3.350 (12) 154
C31—H31⋯O4iii 0.95 2.36 3.239 (9) 154
O4—H4⋯O3 0.84 2.27 2.846 (16) 126
O4—H4⋯O1Wiv 0.84 2.30 2.778 (13) 117
Symmetry codes: (iii) x+1, y, z; (iv) x, y-1, z.
[Figure 3]
Figure 3
The two-dimensional supra­molecular network formed through inter­molecular ππ inter­actions (dashed lines). H atoms, nitrate anion and the lattice solvent mol­ecules have been omitted for clarity.

4. Synthesis and crystallization

The i-pro-pyim ligand was synthesized according to literature procedures (Lee et al., 2016[Lee, J., Kang, Y., Cho, N. S. & Park, K. (2016). Cryst. Growth Des. 16, 996-1004.]). Crystals of the title compound were obtained by combining AgNO3 with the i-pro-pyim ligand in a 1:1 molar ratio in a mixture of methanol/aceto­nitrile (1:1) and allowing the solution to evaporate slowly at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The anisotropic displacement ellipsoids of some atoms (C53, N7, O1, O2, and O3) were very elongated which indicates static disorder. For these atoms, ISOR restraints were applied (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). Two crystallographically independent water O atoms (O1W and O2W) were refined with site-occupancy factors of 0.5, and their H atoms were not included in the model. All H atoms except those of the water mol­ecules were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H, 1.00 Å for methine, C—H, 0.98 Å for methyl, and O—H 0.84 Å for hydroxyl H atoms. For all H atoms, Uiso(H) = 1.2–1.5Ueq of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C29H25N3)2]NO3·CH4O·H2O
Mr 1050.97
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 13.301 (3), 13.797 (3), 16.527 (3)
α, β, γ (°) 75.919 (13), 71.129 (12), 69.383 (12)
V3) 2657.3 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.13 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.598, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 38791, 9965, 6302
Rint 0.117
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.208, 1.07
No. of reflections 9965
No. of parameters 658
No. of restraints 30
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −0.88
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[silver(I)-bis{µ-4-[1-(5'-isopropyl-[1,1':3',1''-terphenyl]-2'-yl)-1H-imidazol-2-yl]pyridine-κ2N:N'}] nitrate methanol monosolvate monohydrate] top
Crystal data top
[Ag(C29H25N3)2]NO3·CH4O·H2OZ = 2
Mr = 1050.97F(000) = 1092
Triclinic, P1Dx = 1.314 Mg m3
a = 13.301 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.797 (3) ÅCell parameters from 5559 reflections
c = 16.527 (3) Åθ = 2.4–24.4°
α = 75.919 (13)°µ = 0.44 mm1
β = 71.129 (12)°T = 173 K
γ = 69.383 (12)°Block, colourless
V = 2657.3 (10) Å30.13 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
6302 reflections with I > 2σ(I)
φ and ω scansRint = 0.117
Absorption correction: multi-scan
(SADABS; Bruker 2013)
θmax = 26.0°, θmin = 1.3°
Tmin = 0.598, Tmax = 0.746h = 1616
38791 measured reflectionsk = 1716
9965 independent reflectionsl = 2020
Refinement top
Refinement on F230 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.0873P)2 + 5.0611P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
9965 reflectionsΔρmax = 1.39 e Å3
658 parametersΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.71139 (4)0.57116 (4)0.52858 (3)0.03240 (18)
N10.3957 (4)0.4105 (4)0.3338 (3)0.0331 (13)
N20.4907 (4)0.4700 (4)0.2062 (3)0.0265 (12)
N30.6602 (4)0.5156 (4)0.4312 (3)0.0321 (13)
C10.3570 (5)0.3989 (5)0.2695 (4)0.0345 (16)
H10.29840.36990.27900.041*
C20.4143 (5)0.4346 (5)0.1920 (4)0.0347 (16)
H20.40410.43530.13750.042*
C30.4762 (5)0.4539 (5)0.2935 (4)0.0253 (14)
C40.5408 (5)0.4770 (5)0.3385 (4)0.0276 (14)
C50.5718 (5)0.5678 (5)0.3150 (4)0.0311 (15)
H50.55350.61740.26690.037*
C60.6300 (6)0.5842 (5)0.3635 (4)0.0353 (16)
H60.64980.64730.34840.042*
C70.6311 (5)0.4286 (5)0.4517 (4)0.0301 (15)
H70.65230.37930.49900.036*
C80.5718 (5)0.4058 (5)0.4082 (4)0.0289 (15)
H80.55230.34250.42540.035*
C90.5755 (5)0.5037 (5)0.1370 (4)0.0251 (14)
C100.6864 (5)0.4467 (5)0.1271 (4)0.0263 (14)
C110.7635 (5)0.4756 (5)0.0540 (4)0.0327 (16)
H110.84000.43780.04730.039*
C120.7329 (5)0.5578 (5)0.0100 (4)0.0311 (15)
C130.6231 (5)0.6146 (5)0.0038 (4)0.0299 (15)
H130.60160.67260.03820.036*
C140.5417 (5)0.5917 (5)0.0760 (4)0.0278 (14)
C150.4242 (5)0.6556 (5)0.0871 (4)0.0321 (16)
C160.3730 (6)0.6716 (6)0.0228 (5)0.046 (2)
H160.41420.64200.02870.055*
C170.2634 (7)0.7296 (7)0.0319 (6)0.060 (2)
H170.22900.73940.01290.072*
C180.2035 (6)0.7735 (6)0.1058 (5)0.049 (2)
H180.12760.81370.11230.059*
C190.2533 (7)0.7591 (6)0.1696 (5)0.052 (2)
H190.21160.78950.22070.062*
C200.3635 (6)0.7012 (6)0.1613 (4)0.0422 (18)
H200.39770.69260.20600.051*
C210.7238 (5)0.3561 (5)0.1921 (4)0.0300 (15)
C220.6830 (6)0.2708 (5)0.2178 (4)0.0384 (17)
H220.63000.26710.19250.046*
C230.7198 (6)0.1903 (5)0.2808 (5)0.0437 (19)
H230.69190.13170.29820.052*
C240.7957 (7)0.1952 (6)0.3178 (5)0.049 (2)
H240.81900.14110.36200.059*
C250.8386 (6)0.2790 (6)0.2910 (5)0.0428 (18)
H250.89260.28160.31580.051*
C260.8034 (5)0.3584 (5)0.2288 (4)0.0331 (16)
H260.83370.41540.21050.040*
C270.8183 (6)0.5811 (6)0.0920 (5)0.047 (2)
H270.77740.64080.12880.057*
C280.9017 (8)0.6172 (9)0.0742 (6)0.082 (3)
H28A0.86280.67550.04060.124*
H28B0.94710.55930.04120.124*
H28C0.94980.64040.12900.124*
C290.8737 (8)0.4911 (8)0.1437 (6)0.075 (3)
H29A0.81670.46960.15410.112*
H29B0.92150.51320.19910.112*
H29C0.91890.43210.11140.112*
N41.2737 (5)0.2683 (4)0.5446 (4)0.0344 (13)
N51.2046 (4)0.1589 (4)0.6505 (3)0.0280 (12)
N60.8659 (5)0.4337 (4)0.5544 (4)0.0349 (13)
C301.3587 (6)0.1915 (5)0.5721 (4)0.0362 (17)
H301.43530.18680.54920.043*
C311.3177 (5)0.1237 (5)0.6365 (4)0.0324 (15)
H311.35940.06300.66640.039*
C321.1813 (5)0.2470 (5)0.5931 (4)0.0287 (15)
C331.0702 (5)0.3098 (5)0.5830 (4)0.0281 (15)
C341.0579 (5)0.3465 (5)0.4996 (4)0.0311 (15)
H341.11960.32990.45100.037*
C350.9558 (6)0.4067 (5)0.4890 (4)0.0356 (17)
H350.94800.43080.43170.043*
C360.8792 (6)0.3971 (5)0.6346 (4)0.0367 (17)
H360.81630.41460.68230.044*
C370.9780 (5)0.3363 (5)0.6512 (4)0.0337 (16)
H370.98330.31240.70900.040*
C381.1304 (5)0.1053 (5)0.7122 (4)0.0281 (15)
C391.0600 (5)0.0720 (5)0.6869 (4)0.0280 (15)
C400.9917 (5)0.0189 (5)0.7494 (4)0.0292 (15)
H400.93960.00010.73300.035*
C410.9963 (5)0.0081 (5)0.8356 (4)0.0326 (16)
C421.0678 (5)0.0260 (5)0.8584 (4)0.0330 (16)
H421.07220.00900.91660.040*
C431.1335 (5)0.0842 (5)0.7994 (4)0.0332 (16)
C441.2032 (6)0.1244 (7)0.8286 (4)0.0449 (19)
C451.2835 (8)0.0553 (9)0.8681 (6)0.071 (3)
H451.29300.01770.87690.086*
C461.3503 (10)0.0920 (12)0.8949 (7)0.104 (4)
H461.40770.04350.91940.125*
C471.3352 (12)0.1956 (15)0.8867 (8)0.113 (5)
H471.38060.21990.90630.136*
C481.2547 (12)0.2647 (10)0.8505 (6)0.092 (4)
H481.24380.33750.84520.110*
C491.1866 (8)0.2310 (7)0.8203 (5)0.061 (2)
H491.13060.28030.79480.074*
C501.0550 (5)0.0902 (5)0.5951 (4)0.0276 (14)
C511.1497 (6)0.0635 (5)0.5277 (4)0.0314 (15)
H511.22080.03460.53930.038*
C521.1414 (6)0.0786 (5)0.4438 (4)0.0380 (17)
H521.20640.05850.39820.046*
C531.0395 (6)0.1226 (5)0.4269 (5)0.0412 (18)
H531.03410.13510.36910.049*
C540.9447 (6)0.1488 (5)0.4930 (5)0.0381 (17)
H540.87390.17840.48110.046*
C550.9528 (6)0.1321 (5)0.5764 (4)0.0329 (16)
H550.88710.14960.62200.039*
C560.9249 (6)0.0709 (6)0.9032 (5)0.0447 (19)
H560.88190.02640.95000.054*
C570.9958 (6)0.1685 (6)0.9451 (5)0.0470 (19)
H57A1.04990.15090.96300.071*
H57B0.94850.19990.99580.071*
H57C1.03540.21850.90370.071*
C580.8412 (8)0.0886 (9)0.8739 (6)0.084 (3)
H58A0.79830.02190.84740.126*
H58B0.87810.13710.83130.126*
H58C0.79120.11850.92340.126*
N70.6365 (10)0.1663 (11)0.6358 (9)0.111 (4)
O10.6669 (6)0.2327 (6)0.6388 (5)0.092 (2)
O20.6229 (8)0.1637 (9)0.5617 (8)0.155 (4)
O30.6181 (12)0.1000 (10)0.6888 (9)0.203 (5)
O40.5246 (6)0.0588 (6)0.6947 (4)0.093 (2)
H40.57850.05250.70670.139*
C590.5631 (9)0.1052 (9)0.6195 (7)0.092 (3)
H59A0.56760.05100.56880.138*
H59B0.51160.14150.61970.138*
H59C0.63700.15560.61750.138*
O1W0.6345 (13)0.8346 (9)0.8223 (9)0.100 (5)0.5
O2W0.1582 (18)0.2821 (16)0.2921 (13)0.147 (7)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0315 (3)0.0367 (3)0.0290 (3)0.0147 (2)0.0060 (2)0.0007 (2)
N10.031 (3)0.039 (3)0.032 (3)0.018 (3)0.003 (2)0.006 (3)
N20.024 (3)0.029 (3)0.024 (3)0.007 (2)0.003 (2)0.006 (2)
N30.034 (3)0.035 (3)0.029 (3)0.013 (3)0.008 (2)0.002 (2)
C10.031 (4)0.041 (4)0.038 (4)0.015 (3)0.004 (3)0.016 (3)
C20.029 (4)0.043 (4)0.036 (4)0.010 (3)0.008 (3)0.015 (3)
C30.025 (3)0.024 (3)0.027 (3)0.006 (3)0.004 (3)0.008 (3)
C40.027 (4)0.031 (4)0.022 (3)0.010 (3)0.000 (3)0.005 (3)
C50.036 (4)0.035 (4)0.022 (3)0.014 (3)0.003 (3)0.005 (3)
C60.042 (4)0.037 (4)0.029 (4)0.018 (4)0.006 (3)0.003 (3)
C70.027 (4)0.036 (4)0.027 (3)0.007 (3)0.007 (3)0.006 (3)
C80.026 (4)0.025 (4)0.029 (3)0.008 (3)0.000 (3)0.002 (3)
C90.023 (3)0.034 (4)0.020 (3)0.009 (3)0.004 (3)0.008 (3)
C100.027 (4)0.028 (4)0.024 (3)0.007 (3)0.006 (3)0.006 (3)
C110.020 (3)0.036 (4)0.036 (4)0.002 (3)0.005 (3)0.006 (3)
C120.029 (4)0.036 (4)0.025 (3)0.012 (3)0.002 (3)0.001 (3)
C130.034 (4)0.027 (4)0.030 (3)0.006 (3)0.011 (3)0.005 (3)
C140.026 (4)0.033 (4)0.026 (3)0.009 (3)0.004 (3)0.010 (3)
C150.027 (4)0.031 (4)0.035 (4)0.002 (3)0.010 (3)0.007 (3)
C160.030 (4)0.054 (5)0.051 (5)0.005 (4)0.014 (4)0.025 (4)
C170.039 (5)0.074 (6)0.070 (6)0.007 (5)0.026 (4)0.035 (5)
C180.030 (4)0.046 (5)0.068 (6)0.003 (4)0.012 (4)0.023 (4)
C190.044 (5)0.048 (5)0.044 (5)0.005 (4)0.002 (4)0.017 (4)
C200.044 (5)0.042 (4)0.034 (4)0.001 (4)0.009 (3)0.013 (3)
C210.024 (4)0.032 (4)0.024 (3)0.000 (3)0.000 (3)0.009 (3)
C220.040 (4)0.033 (4)0.039 (4)0.008 (4)0.005 (3)0.011 (3)
C230.053 (5)0.026 (4)0.045 (4)0.008 (4)0.006 (4)0.007 (3)
C240.052 (5)0.038 (5)0.038 (4)0.005 (4)0.011 (4)0.001 (3)
C250.037 (4)0.046 (5)0.039 (4)0.001 (4)0.016 (3)0.006 (3)
C260.025 (4)0.030 (4)0.037 (4)0.001 (3)0.007 (3)0.006 (3)
C270.041 (5)0.045 (5)0.040 (4)0.009 (4)0.001 (4)0.002 (4)
C280.080 (7)0.108 (8)0.071 (7)0.068 (7)0.008 (5)0.013 (6)
C290.070 (6)0.086 (7)0.048 (5)0.026 (6)0.023 (5)0.021 (5)
N40.032 (3)0.031 (3)0.041 (3)0.013 (3)0.006 (3)0.006 (3)
N50.030 (3)0.023 (3)0.029 (3)0.009 (3)0.007 (2)0.000 (2)
N60.038 (3)0.032 (3)0.035 (3)0.012 (3)0.009 (3)0.003 (3)
C300.025 (4)0.033 (4)0.046 (4)0.008 (3)0.007 (3)0.005 (3)
C310.022 (4)0.030 (4)0.044 (4)0.005 (3)0.009 (3)0.008 (3)
C320.031 (4)0.026 (4)0.030 (3)0.011 (3)0.004 (3)0.006 (3)
C330.034 (4)0.019 (3)0.032 (4)0.010 (3)0.008 (3)0.003 (3)
C340.027 (4)0.027 (4)0.035 (4)0.007 (3)0.002 (3)0.006 (3)
C350.051 (5)0.030 (4)0.031 (4)0.021 (4)0.011 (3)0.000 (3)
C360.033 (4)0.031 (4)0.035 (4)0.007 (3)0.001 (3)0.003 (3)
C370.031 (4)0.030 (4)0.033 (4)0.005 (3)0.006 (3)0.001 (3)
C380.026 (4)0.021 (3)0.034 (4)0.006 (3)0.002 (3)0.006 (3)
C390.024 (3)0.023 (3)0.031 (3)0.002 (3)0.003 (3)0.006 (3)
C400.028 (4)0.023 (3)0.037 (4)0.008 (3)0.009 (3)0.005 (3)
C410.032 (4)0.028 (4)0.032 (4)0.009 (3)0.001 (3)0.003 (3)
C420.037 (4)0.028 (4)0.029 (4)0.008 (3)0.006 (3)0.001 (3)
C430.032 (4)0.029 (4)0.038 (4)0.006 (3)0.010 (3)0.008 (3)
C440.051 (5)0.062 (5)0.029 (4)0.030 (4)0.004 (4)0.008 (4)
C450.076 (7)0.094 (8)0.065 (6)0.039 (6)0.030 (5)0.012 (5)
C460.111 (10)0.151 (13)0.095 (9)0.065 (10)0.056 (8)0.018 (8)
C470.131 (12)0.192 (16)0.077 (8)0.122 (12)0.015 (8)0.034 (9)
C480.155 (12)0.113 (10)0.045 (6)0.104 (9)0.010 (6)0.030 (6)
C490.094 (7)0.065 (6)0.041 (5)0.052 (6)0.002 (5)0.013 (4)
C500.036 (4)0.019 (3)0.029 (3)0.011 (3)0.012 (3)0.002 (3)
C510.032 (4)0.023 (4)0.036 (4)0.010 (3)0.007 (3)0.001 (3)
C520.040 (4)0.034 (4)0.038 (4)0.008 (4)0.006 (3)0.012 (3)
C530.049 (4)0.039 (3)0.038 (3)0.011 (3)0.016 (3)0.008 (3)
C540.041 (4)0.029 (4)0.051 (4)0.008 (3)0.023 (4)0.007 (3)
C550.036 (4)0.030 (4)0.037 (4)0.015 (3)0.009 (3)0.004 (3)
C560.046 (5)0.054 (5)0.034 (4)0.025 (4)0.004 (3)0.000 (3)
C570.055 (5)0.036 (4)0.041 (4)0.017 (4)0.002 (4)0.001 (3)
C580.086 (7)0.118 (9)0.068 (6)0.075 (7)0.023 (6)0.022 (6)
N70.104 (5)0.109 (5)0.110 (5)0.023 (4)0.015 (4)0.028 (4)
O10.085 (5)0.083 (5)0.115 (5)0.018 (4)0.032 (4)0.027 (4)
O20.124 (6)0.170 (8)0.183 (8)0.016 (6)0.060 (6)0.062 (6)
O30.243 (9)0.132 (7)0.177 (8)0.079 (7)0.045 (7)0.023 (6)
O40.080 (5)0.106 (6)0.076 (5)0.004 (4)0.031 (4)0.015 (4)
C590.075 (7)0.115 (9)0.073 (7)0.010 (7)0.006 (6)0.036 (7)
O1W0.152 (14)0.049 (8)0.112 (11)0.005 (8)0.106 (11)0.011 (7)
O2W0.20 (2)0.142 (16)0.138 (16)0.106 (16)0.062 (15)0.020 (13)
Geometric parameters (Å, º) top
Ag1—N1i2.279 (5)N4—Ag1ii2.293 (5)
Ag1—N4ii2.293 (5)N5—C321.355 (8)
Ag1—N32.306 (5)N5—C311.367 (8)
Ag1—N62.330 (6)N5—C381.434 (8)
N1—C31.321 (8)N6—C351.336 (8)
N1—C11.384 (8)N6—C361.345 (8)
N1—Ag1i2.279 (5)C30—C311.343 (9)
N2—C31.366 (7)C30—H300.9500
N2—C21.373 (8)C31—H310.9500
N2—C91.440 (7)C32—C331.466 (9)
N3—C71.323 (8)C33—C371.379 (9)
N3—C61.348 (8)C33—C341.389 (9)
C1—C21.338 (9)C34—C351.362 (9)
C1—H10.9500C34—H340.9500
C2—H20.9500C35—H350.9500
C3—C41.454 (8)C36—C371.359 (9)
C4—C51.383 (9)C36—H360.9500
C4—C81.389 (8)C37—H370.9500
C5—C61.381 (9)C38—C391.384 (9)
C5—H50.9500C38—C431.411 (9)
C6—H60.9500C39—C401.387 (8)
C7—C81.375 (9)C39—C501.496 (8)
C7—H70.9500C40—C411.398 (9)
C8—H80.9500C40—H400.9500
C9—C101.382 (8)C41—C421.379 (9)
C9—C141.417 (8)C41—C561.525 (9)
C10—C111.385 (8)C42—C431.385 (9)
C10—C211.490 (9)C42—H420.9500
C11—C121.393 (9)C43—C441.477 (10)
C11—H110.9500C44—C451.380 (12)
C12—C131.365 (9)C44—C491.387 (11)
C12—C271.510 (9)C45—C461.388 (13)
C13—C141.385 (8)C45—H450.9500
C13—H130.9500C46—C471.350 (18)
C14—C151.475 (9)C46—H460.9500
C15—C161.375 (9)C47—C481.354 (18)
C15—C201.388 (9)C47—H470.9500
C16—C171.373 (10)C48—C491.409 (13)
C16—H160.9500C48—H480.9500
C17—C181.372 (10)C49—H490.9500
C17—H170.9500C50—C551.380 (9)
C18—C191.360 (11)C50—C511.388 (9)
C18—H180.9500C51—C521.386 (9)
C19—C201.380 (10)C51—H510.9500
C19—H190.9500C52—C531.367 (10)
C20—H200.9500C52—H520.9500
C21—C221.386 (9)C53—C541.377 (10)
C21—C261.391 (9)C53—H530.9500
C22—C231.393 (10)C54—C551.375 (9)
C22—H220.9500C54—H540.9500
C23—C241.367 (11)C55—H550.9500
C23—H230.9500C56—C581.458 (11)
C24—C251.381 (11)C56—C571.503 (10)
C24—H240.9500C56—H561.0000
C25—C261.371 (9)C57—H57A0.9800
C25—H250.9500C57—H57B0.9800
C26—H260.9500C57—H57C0.9800
C27—C281.496 (11)C58—H58A0.9800
C27—C291.509 (11)C58—H58B0.9800
C27—H271.0000C58—H58C0.9800
C28—H28A0.9800N7—O31.137 (14)
C28—H28B0.9800N7—O11.141 (13)
C28—H28C0.9800N7—O21.304 (14)
C29—H29A0.9800O4—C591.400 (11)
C29—H29B0.9800O4—H40.8400
C29—H29C0.9800C59—H59A0.9800
N4—C321.320 (8)C59—H59B0.9800
N4—C301.364 (8)C59—H59C0.9800
N1i—Ag1—N4ii109.11 (19)C30—N4—Ag1ii123.4 (4)
N1i—Ag1—N3122.76 (19)C32—N5—C31106.8 (5)
N4ii—Ag1—N3100.33 (19)C32—N5—C38129.2 (5)
N1i—Ag1—N6100.96 (19)C31—N5—C38123.9 (5)
N4ii—Ag1—N6121.95 (19)C35—N6—C36116.6 (6)
N3—Ag1—N6103.27 (19)C35—N6—Ag1119.7 (4)
C3—N1—C1105.7 (5)C36—N6—Ag1121.7 (4)
C3—N1—Ag1i124.6 (4)C31—C30—N4109.8 (6)
C1—N1—Ag1i123.3 (4)C31—C30—H30125.1
C3—N2—C2106.8 (5)N4—C30—H30125.1
C3—N2—C9130.1 (5)C30—C31—N5106.8 (6)
C2—N2—C9122.6 (5)C30—C31—H31126.6
C7—N3—C6117.3 (6)N5—C31—H31126.6
C7—N3—Ag1120.8 (4)N4—C32—N5110.6 (6)
C6—N3—Ag1119.4 (4)N4—C32—C33123.5 (6)
C2—C1—N1110.0 (6)N5—C32—C33125.9 (6)
C2—C1—H1125.0C37—C33—C34118.1 (6)
N1—C1—H1125.0C37—C33—C32123.9 (6)
C1—C2—N2106.9 (6)C34—C33—C32118.0 (6)
C1—C2—H2126.6C35—C34—C33118.8 (6)
N2—C2—H2126.6C35—C34—H34120.6
N1—C3—N2110.7 (5)C33—C34—H34120.6
N1—C3—C4123.0 (5)N6—C35—C34123.8 (6)
N2—C3—C4126.3 (5)N6—C35—H35118.1
C5—C4—C8118.7 (6)C34—C35—H35118.1
C5—C4—C3122.4 (6)N6—C36—C37123.5 (6)
C8—C4—C3118.9 (6)N6—C36—H36118.3
C6—C5—C4118.0 (6)C37—C36—H36118.3
C6—C5—H5121.0C36—C37—C33119.2 (6)
C4—C5—H5121.0C36—C37—H37120.4
N3—C6—C5123.6 (6)C33—C37—H37120.4
N3—C6—H6118.2C39—C38—C43120.6 (6)
C5—C6—H6118.2C39—C38—N5121.1 (6)
N3—C7—C8123.5 (6)C43—C38—N5118.2 (6)
N3—C7—H7118.3C38—C39—C40118.4 (6)
C8—C7—H7118.3C38—C39—C50122.9 (6)
C7—C8—C4118.9 (6)C40—C39—C50118.7 (6)
C7—C8—H8120.6C39—C40—C41122.7 (6)
C4—C8—H8120.6C39—C40—H40118.7
C10—C9—C14121.1 (6)C41—C40—H40118.7
C10—C9—N2120.5 (5)C42—C41—C40117.2 (6)
C14—C9—N2118.2 (5)C42—C41—C56120.3 (6)
C9—C10—C11118.2 (6)C40—C41—C56122.5 (6)
C9—C10—C21121.7 (5)C41—C42—C43122.4 (6)
C11—C10—C21120.1 (6)C41—C42—H42118.8
C10—C11—C12122.5 (6)C43—C42—H42118.8
C10—C11—H11118.7C42—C43—C38118.6 (6)
C12—C11—H11118.7C42—C43—C44120.1 (6)
C13—C12—C11117.4 (6)C38—C43—C44121.3 (6)
C13—C12—C27121.7 (6)C45—C44—C49119.0 (8)
C11—C12—C27120.8 (6)C45—C44—C43119.7 (7)
C12—C13—C14123.3 (6)C49—C44—C43121.2 (8)
C12—C13—H13118.4C44—C45—C46120.3 (11)
C14—C13—H13118.4C44—C45—H45119.9
C13—C14—C9117.4 (6)C46—C45—H45119.9
C13—C14—C15120.8 (6)C47—C46—C45121.1 (13)
C9—C14—C15121.8 (6)C47—C46—H46119.5
C16—C15—C20118.8 (6)C45—C46—H46119.5
C16—C15—C14119.8 (6)C46—C47—C48119.4 (11)
C20—C15—C14121.4 (6)C46—C47—H47120.3
C17—C16—C15121.1 (7)C48—C47—H47120.3
C17—C16—H16119.5C47—C48—C49121.6 (11)
C15—C16—H16119.5C47—C48—H48119.2
C18—C17—C16119.9 (8)C49—C48—H48119.2
C18—C17—H17120.0C44—C49—C48118.6 (10)
C16—C17—H17120.0C44—C49—H49120.7
C19—C18—C17119.7 (7)C48—C49—H49120.7
C19—C18—H18120.2C55—C50—C51118.5 (6)
C17—C18—H18120.2C55—C50—C39119.3 (6)
C18—C19—C20121.1 (7)C51—C50—C39122.1 (6)
C18—C19—H19119.5C52—C51—C50120.5 (6)
C20—C19—H19119.5C52—C51—H51119.8
C19—C20—C15119.5 (7)C50—C51—H51119.8
C19—C20—H20120.2C53—C52—C51119.8 (7)
C15—C20—H20120.2C53—C52—H52120.1
C22—C21—C26118.8 (6)C51—C52—H52120.1
C22—C21—C10123.3 (6)C52—C53—C54120.4 (7)
C26—C21—C10117.8 (6)C52—C53—H53119.8
C21—C22—C23120.0 (7)C54—C53—H53119.8
C21—C22—H22120.0C55—C54—C53119.8 (7)
C23—C22—H22120.0C55—C54—H54120.1
C24—C23—C22120.3 (7)C53—C54—H54120.1
C24—C23—H23119.9C54—C55—C50121.0 (6)
C22—C23—H23119.9C54—C55—H55119.5
C23—C24—C25119.9 (7)C50—C55—H55119.5
C23—C24—H24120.0C58—C56—C57113.9 (7)
C25—C24—H24120.0C58—C56—C41114.8 (6)
C26—C25—C24120.3 (7)C57—C56—C41111.0 (6)
C26—C25—H25119.9C58—C56—H56105.4
C24—C25—H25119.9C57—C56—H56105.4
C25—C26—C21120.6 (7)C41—C56—H56105.4
C25—C26—H26119.7C56—C57—H57A109.5
C21—C26—H26119.7C56—C57—H57B109.5
C28—C27—C29111.8 (7)H57A—C57—H57B109.5
C28—C27—C12111.4 (7)C56—C57—H57C109.5
C29—C27—C12113.0 (6)H57A—C57—H57C109.5
C28—C27—H27106.7H57B—C57—H57C109.5
C29—C27—H27106.7C56—C58—H58A109.5
C12—C27—H27106.7C56—C58—H58B109.5
C27—C28—H28A109.5H58A—C58—H58B109.5
C27—C28—H28B109.5C56—C58—H58C109.5
H28A—C28—H28B109.5H58A—C58—H58C109.5
C27—C28—H28C109.5H58B—C58—H58C109.5
H28A—C28—H28C109.5O3—N7—O1128.4 (17)
H28B—C28—H28C109.5O3—N7—O2115.0 (16)
C27—C29—H29A109.5O1—N7—O2116.6 (14)
C27—C29—H29B109.5C59—O4—H4109.5
H29A—C29—H29B109.5O4—C59—H59A109.5
C27—C29—H29C109.5O4—C59—H59B109.5
H29A—C29—H29C109.5H59A—C59—H59B109.5
H29B—C29—H29C109.5O4—C59—H59C109.5
C32—N4—C30106.1 (5)H59A—C59—H59C109.5
C32—N4—Ag1ii126.3 (4)H59B—C59—H59C109.5
C3—N1—C1—C20.3 (8)C32—N4—C30—C310.5 (8)
Ag1i—N1—C1—C2153.2 (5)Ag1ii—N4—C30—C31158.6 (5)
N1—C1—C2—N20.2 (8)N4—C30—C31—N50.6 (8)
C3—N2—C2—C10.0 (7)C32—N5—C31—C300.5 (7)
C9—N2—C2—C1173.1 (6)C38—N5—C31—C30177.4 (6)
C1—N1—C3—N20.2 (7)C30—N4—C32—N50.2 (7)
Ag1i—N1—C3—N2152.7 (4)Ag1ii—N4—C32—N5157.5 (4)
C1—N1—C3—C4178.5 (6)C30—N4—C32—C33178.6 (6)
Ag1i—N1—C3—C429.0 (8)Ag1ii—N4—C32—C3324.2 (9)
C2—N2—C3—N10.1 (7)C31—N5—C32—N40.2 (7)
C9—N2—C3—N1172.2 (6)C38—N5—C32—N4176.9 (6)
C2—N2—C3—C4178.3 (6)C31—N5—C32—C33178.1 (6)
C9—N2—C3—C46.0 (10)C38—N5—C32—C331.4 (10)
N1—C3—C4—C5140.1 (6)N4—C32—C33—C37138.1 (7)
N2—C3—C4—C541.9 (9)N5—C32—C33—C3743.8 (10)
N1—C3—C4—C839.3 (9)N4—C32—C33—C3440.6 (9)
N2—C3—C4—C8138.7 (6)N5—C32—C33—C34137.5 (6)
C8—C4—C5—C61.5 (9)C37—C33—C34—C350.0 (9)
C3—C4—C5—C6177.9 (6)C32—C33—C34—C35178.8 (6)
C7—N3—C6—C50.5 (10)C36—N6—C35—C340.9 (9)
Ag1—N3—C6—C5162.8 (5)Ag1—N6—C35—C34163.4 (5)
C4—C5—C6—N31.5 (10)C33—C34—C35—N60.6 (10)
C6—N3—C7—C80.4 (9)C35—N6—C36—C370.7 (10)
Ag1—N3—C7—C8161.5 (5)Ag1—N6—C36—C37163.3 (5)
N3—C7—C8—C40.4 (9)N6—C36—C37—C330.1 (10)
C5—C4—C8—C70.6 (9)C34—C33—C37—C360.2 (9)
C3—C4—C8—C7178.8 (5)C32—C33—C37—C36178.5 (6)
C3—N2—C9—C1058.9 (9)C32—N5—C38—C3955.6 (9)
C2—N2—C9—C10112.3 (7)C31—N5—C38—C39120.6 (7)
C3—N2—C9—C14125.8 (7)C32—N5—C38—C43126.5 (7)
C2—N2—C9—C1463.0 (8)C31—N5—C38—C4357.3 (8)
C14—C9—C10—C112.4 (9)C43—C38—C39—C401.0 (9)
N2—C9—C10—C11172.7 (6)N5—C38—C39—C40178.8 (5)
C14—C9—C10—C21177.9 (6)C43—C38—C39—C50178.7 (6)
N2—C9—C10—C216.9 (9)N5—C38—C39—C500.8 (9)
C9—C10—C11—C121.3 (10)C38—C39—C40—C414.3 (9)
C21—C10—C11—C12178.3 (6)C50—C39—C40—C41175.4 (6)
C10—C11—C12—C133.7 (10)C39—C40—C41—C424.0 (9)
C10—C11—C12—C27174.9 (6)C39—C40—C41—C56177.1 (6)
C11—C12—C13—C142.4 (10)C40—C41—C42—C430.4 (10)
C27—C12—C13—C14176.2 (6)C56—C41—C42—C43179.3 (6)
C12—C13—C14—C91.1 (9)C41—C42—C43—C382.8 (10)
C12—C13—C14—C15179.7 (6)C41—C42—C43—C44176.1 (6)
C10—C9—C14—C133.6 (9)C39—C38—C43—C422.4 (9)
N2—C9—C14—C13171.7 (5)N5—C38—C43—C42175.5 (5)
C10—C9—C14—C15177.8 (6)C39—C38—C43—C44176.4 (6)
N2—C9—C14—C156.9 (9)N5—C38—C43—C445.7 (9)
C13—C14—C15—C1653.8 (9)C42—C43—C44—C4559.3 (10)
C9—C14—C15—C16124.8 (7)C38—C43—C44—C45121.9 (8)
C13—C14—C15—C20125.6 (7)C42—C43—C44—C49118.0 (8)
C9—C14—C15—C2055.8 (9)C38—C43—C44—C4960.8 (9)
C20—C15—C16—C171.4 (12)C49—C44—C45—C463.3 (13)
C14—C15—C16—C17179.2 (7)C43—C44—C45—C46179.3 (9)
C15—C16—C17—C180.6 (13)C44—C45—C46—C473.1 (17)
C16—C17—C18—C190.0 (13)C45—C46—C47—C481.1 (19)
C17—C18—C19—C200.2 (13)C46—C47—C48—C490.5 (18)
C18—C19—C20—C150.9 (12)C45—C44—C49—C481.7 (11)
C16—C15—C20—C191.5 (11)C43—C44—C49—C48179.0 (7)
C14—C15—C20—C19179.1 (7)C47—C48—C49—C440.2 (14)
C9—C10—C21—C2255.9 (9)C38—C39—C50—C55130.6 (7)
C11—C10—C21—C22123.7 (7)C40—C39—C50—C5549.8 (8)
C9—C10—C21—C26123.8 (7)C38—C39—C50—C5151.3 (9)
C11—C10—C21—C2656.6 (8)C40—C39—C50—C51128.3 (7)
C26—C21—C22—C231.5 (9)C55—C50—C51—C520.1 (9)
C10—C21—C22—C23178.2 (6)C39—C50—C51—C52178.0 (6)
C21—C22—C23—C240.3 (10)C50—C51—C52—C531.6 (10)
C22—C23—C24—C251.8 (11)C51—C52—C53—C542.1 (10)
C23—C24—C25—C261.4 (11)C52—C53—C54—C551.0 (10)
C24—C25—C26—C210.4 (10)C53—C54—C55—C500.7 (10)
C22—C21—C26—C251.8 (9)C51—C50—C55—C541.1 (9)
C10—C21—C26—C25177.9 (6)C39—C50—C55—C54179.2 (6)
C13—C12—C27—C28115.4 (8)C42—C41—C56—C58171.2 (8)
C11—C12—C27—C2866.0 (9)C40—C41—C56—C587.7 (11)
C13—C12—C27—C29117.7 (8)C42—C41—C56—C5757.8 (9)
C11—C12—C27—C2960.8 (10)C40—C41—C56—C57123.3 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2W0.952.493.434 (19)174
C30—H30···O2iii0.952.473.350 (12)154
C31—H31···O4iii0.952.363.239 (9)154
O4—H4···O30.842.272.846 (16)126
O4—H4···O1Wiv0.842.302.778 (13)117
Symmetry codes: (iii) x+1, y, z; (iv) x, y1, z.
 

Acknowledgements

This study was supported by a 2015 Research Grant from Kangwon National University (No. 520150194).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, H., Lee, J., Lee, J.-I., Cho, N. S., Park, J. H., Lee, J. Y. & Kang, Y. (2016). Org. Electron. 34, 91–96.  CrossRef CAS Google Scholar
First citationDurá, G., Carrión, M. C., Jalón, F. A., Rodríguez, A. M. & Manzano, B. R. (2014). Cryst. Growth Des. 14, 3510–3529.  Google Scholar
First citationLee, J., Kang, Y., Cho, N. S. & Park, K. (2016). Cryst. Growth Des. 16, 996–1004.  CSD CrossRef CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds