research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 650-653

Crystal structure of trans-bis­­(ethane-1,2-di­amine-κ2N,N′)bis­­(thio­cyanato-κN)chromium(III) perchlorate from synchrotron data

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 6 May 2015; accepted 14 May 2015; online 20 May 2015)

The structure of the title compound, [Cr(NCS)2(C2H8N2)2]ClO4, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric CrIII complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The CrIII ion is coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound thio­cyanate (NCS) anions in a trans-axial arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) bond lengths are in the range 2.053 (16)–2.09 (2) Å, while the Cr—N(thio­cyanate) bond length is 1.983 (2) Å. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each ClO4 anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 groups as donors and perchlorate O and thio­cyanate S atoms as acceptors.

1. Chemical context

Considerable attention has been focussed for some time on metal complexes containing thio­cyanate ligands because of their ability to coordinate through either the N or S atoms. Ethane-1,2-di­amine (en) can coordinate to a central metal ion as a bidentate ligand via the two N atoms, forming a five-membered chelate ring. The [Cr(NCS)2(en)2]+ cation can form either trans or cis geometric isomers. Trans and cis isomers of the complex cation with SCN or ClO4 counter-anions have been prepared and their IR spectral properties reported (House, 1973[House, D. A. (1973). J. Inorg. Nucl. Chem. 53, 662-671.]; Sandrini et al., 1978[Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463-1468.]; De et al., 1987[De, G., Szuki, M. & Uehara, A. (1987). Bull. Chem. Soc. Jpn, 60, 2871-2874.]). IR and electronic spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000[Choi, J.-H. (2000). Chem. Phys. 256, 29-35.]; Choi et al., 2004[Choi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.]; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]). However, it should be noted that the geometric assignments based on spectroscopic studies are not always definitive.

[Scheme 1]

In a recent publication, we described the synthesis and crystal structure of trans-[Cr(NCS)2(en)2]2[ZnCl4] (Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100-103.]). The asymmetric unit of this complex contained four halves of centrosymmetric [Cr(NCS)2(en)2]+ complex cations and one [ZnCl4]2− anion. To compare and contrast this structure with a complex of this cation with a different counter-anion we report here the structure of trans-[Cr(NCS)2(en)2]ClO4, (I)[link].

2. Structural commentary

Fig. 1[link] shows an ellipsoid plot of trans-[Cr(NCS)2(en)2]ClO4, (I)[link], with the atom-numbering scheme. In the structure of (I)[link], there is a centrosymmetric CrIII complex cation with two en ligands bound through their N atoms in equatorial sites and the two axial N-bound thio­cyanate anions in a trans configuration. The asymmetric unit is composed of half of one complex cation and half a ClO4 anion. The CrIII atom is located on a crystallographic centre of symmetry, so this complex cation has mol­ecular Ci symmetry, while the the Cl atom of the perchlorate anion lies on a twofold rotation axis. The bidentate en ligand adopts a stable gauche conformation similar to that observed in related compounds (Brenčič & Leban, 1981[Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]; Choi et al., 2010[Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.]). The Cr—N bond lengths for the en ligand range from 2.053 (16) to 2.09 (2) Å, and these bond lengths are in good agreement with those observed in trans-[CrF2(en)2]ClO4 (Brenčič & Leban, 1981[Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010[Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.]), trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine; Choi et al., 2011[Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194-1198.]) and trans-[CrF2(2,2,3-tet)]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undecane; Choi & Moon, 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]). The Cr—N(thio­cyanate) bond length is 1.983 (2) Å and is similar to the average values of 1.985 (2), 1.995 (6), 1.983 (2) and 1.996 (15) Å found in trans-[Cr(NCS)2(en)2]2ZnCl4 (Moon & Choi, 2015[Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100-103.]), trans-[Cr(NCS)2(cyclam)]2ZnCl4 (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane (Moon et al., 2015[Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540-543.]), trans-[Cr(NCS)2(Me2tn)2]NCS (Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]) and cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]), respectively. The N-coordinated iso­thio­cyanate group is almost linear, with an N—C—S angle of 179.3 (3)°. The ClO4 counter-anion lies well outside the coordination sphere of the complex and, because of significant disorder, the tetra­hedral geometry of this anion is severely distorted.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], drawn with 20% probability displacement ellipsoids. Atoms of the minor disorder components have been omitted for clarity.

3. Supra­molecular features

In the crystal, an N—H⋯S hydrogen bond links neighbouring cations, while a series of N—H⋯O contacts link the cations to neighbouring anions (Table 1[link]). An extensive array of these contacts generate a three-dimensional network of mol­ecules stacked along the b-axis direction (Fig. 2[link]). These hydrogen-bonded networks help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A1⋯S1i 0.89 2.45 3.324 (17) 167
N2A—H2A2⋯O2Bii 0.89 2.41 3.187 (19) 146
N3A—H3A1⋯O1Biii 0.89 2.58 3.282 (16) 136
N2B—H2B1⋯S1i 0.89 2.77 3.459 (17) 135
N3B—H3B1⋯O2Ciii 0.89 2.45 3.22 (2) 145
N3B—H3B2⋯S1iv 0.89 2.38 3.255 (18) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal packing of (I)[link], viewed perpendicular to the ac plane. Dashed lines represent N—H⋯O (red) and N—H⋯S (blue) hydrogen-bonding inter­actions, respectively. The minor disorder components and C-bound H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 35, 3103-3111.]) indicates a total of 13 hits for CrIII complexes with a [CrL2(en)2]+ unit. The crystal structures of trans-[CrCl2(en)2]Cl·HCl·2H2O (Ooi et al., 1960[Ooi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354-357.]), trans-[CrF2(en)2]X (X = ClO4, Cl, Br) (Brenčič & Leban, 1981[Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213-219.]), cis-[CrF2(en)2]ClO4 (Brenčič et al., 1987[Brenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885-887.]), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010[Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.]) have been reported previously. Recently, we have also reported the closely related crystal structure of [Cr(NCS)2(en)2]2[ZnCl4], in which there are four crystallographically independent CrIII complex cations that also adopt a trans configuration. However, a crystal structure of [Cr(NCS)2(en)2]+ with a ClO4 anion has not been reported previously.

5. Synthesis and crystallization

All chemicals were reagent grade materials and were used without further purification. The title compound, trans-[Cr(NCS)2(en)2]ClO4 was prepared according to the literature method (Sandrini et al., 1978[Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463-1468.]). The crude perchlorate salt (0.33 g) was dissolved in 20 mL of 0.1 M HCl at 333 K. The filtrate was added to 6 mL of 60% HClO4. The resulting solution was allowed to stand at room temperature for 2 d to give orange block-like crystals suitable for X-ray structural analysis. IR spectrum (KBr, cm−1) : 3247 (vs), 3208 (vs), 3131 (vs) and 3097 (vs) (ν NH), 2966 (s), 2955 (s) and 2893 (s) (ν CH), 2077 (vs) (νa CN), 1586 (vs) (δ NH2), 1459 (s) (δ CH2), 1365 (m) (ν CN), 1326 (s) (ω NH2), 1290 (vs) (ω CH2), 1146 (vs) (γ NH2), 1117 (vs) (ν CN), 1088 (vs) (νa Cl—O), 1047 (vs) (γ CH2), 1007 (s), 983 (s), 873 (m) (ρ CH2), 849 (w) (ρ NH2), 729 (vs), 636 (s) and 626 (vs) (δ OClO), 558 (vs), 559 (s) (δ CCC), 501 (vs), 478 (s) (δ NCS), 444 (m) and 419 (m) (ν Cr—N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the title compound, the ethane-1,2-di­amine group is disordered with atoms N2A/N2B, C2A/C2B, C3A/C3B and N3A/N3B positionally disordered over two sets of sites with a refined occupancy ratio of 0.522 (16):0.478 (16). The half mol­ecules of each distorted perchlorate anion are disordered over two sites of equal occupancy, with atoms Cl1B/Cl1C and O2B/O1C refined using EXYZ/EADP constraints. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.89 Å, and with Uiso(H) values of 1.2 of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(NCS)2(C2H8N2)2]ClO4
Mr 387.82
Crystal system, space group Monoclinic, C2/c
Temperature (K) 260
a, b, c (Å) 15.599 (3), 7.4440 (15), 13.792 (3)
β (°) 105.83 (3)
V3) 1540.8 (6)
Z 4
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.86
Crystal size (mm) 0.14 × 0.13 × 0.13
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.893, 0.897
No. of measured, independent and observed [I > 2σ(I)] reflections 8172, 2121, 2019
Rint 0.015
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.178, 1.09
No. of reflections 2121
No. of parameters 140
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −1.12
Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Considerable attention has been focussed for some time on metal complexes containing thio­cyanate ligands because of their ability to coordinate through either the N or S atoms. Ethane-1,2-di­amine (en) can coordinate to a central metal ion as a bidentate ligand via the two N atoms, forming a five-membered chelate ring. The [Cr(NCS)2(en)2]+ cation can form either trans or cis geometric isomers. Trans and cis isomers of the complex cation with SCN- or ClO4- counter-anions have been prepared and their IR spectral properties reported (House, 1973; Sandrini et al., 1978; De et al., 1987). IR and electronic spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000; Choi et al., 2004; Choi & Moon, 2014). However, it should be noted that the geometric assignments based on spectroscopic studies are not always definitive. In a recent publication, we described the synthesis and crystal structure of trans-[Cr(NCS)2(en)2]2[ZnCl4] (Moon & Choi, 2015). The asymmetric unit of this complex contained four halves of centrosymmetric [Cr(NCS)2(en)2]+ complex cations and one [ZnCl4]2- anion. To compare and contrast this structure with a complex of this cation with a different counter-anion we report here the structure of trans-[Cr(NCS)2(en)2]ClO4, (I).

Structural commentary top

Fig. 1 shows an ellipsoid plot of trans-[Cr(NCS)2(en)2]ClO4, (I), with the atom-numbering scheme. In the structure of (I), there is a centrosymmetric CrIII complex cation with two en ligands bound through their N atoms in equatorial sites and the two axial N-bound thio­cyanate anions in a trans configuration. The asymmetric unit is composed of half of one complex cation and half a ClO4- anion. The Cr atom is located on crystallographic centres of symmetry, so this complex cation has molecular Ci symmetry, while the the Cl atom of the perchlorate anion lies on a twofold rotation axis. The bidentate en ligand adopts a stable gauche conformation similar to that observed in related compounds (Brencic & Leban, 1981; Choi et al., 2010). The Cr—N bond distances for the en ligand range from 2.037 (17) to 2.109 (19) Å [2.053 (16) to 2.09 (2) Å ?], and these bond lengths are in good agreement with those observed in trans-[CrF2(en)2]ClO4 (Brencic & Leban, 1981), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010), trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine; Choi et al., 2011) and trans-[CrF2(2,2,3-tet)]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undecane; Choi & Moon, 2014). The Cr—N(thio­cyanate) bond distance is 1.983 (2) Å and is similar to the average values of 1.985 (2), 1.995 (6), 1.983 (2) and 1.996 (15) Å found in trans-[Cr(NCS)2(en)2]2ZnCl4 (Moon & Choi, 2015), trans-[Cr(NCS)2(cyclam)]2ZnCl4 (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane (Moon et al., 2015), trans-[Cr(NCS)2(Me2tn)2]NCS (Choi & Lee, 2009) and cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013), respectively. The N-coordinated iso­thio­cyanate group is almost linear, with an N—C—S angle 179.3 (3)°. The ClO4- counter-anion lies well outside the coordination sphere of the complex and, because of significant disorder, the tetra­hedral geometry of this anion is severely distorted.

Supra­molecular features top

In the crystal, an N—H···S hydrogen bond links neighbouring cations, while a series of N—H···O contacts link the cations to neighbouring anions (Table 1). An extensive array of these contacts generate a three-dimensional network of molecules stacked along the b-axis direction (Fig. 2). These hydrogen-bonded networks help to stabilize the crystal structure.

Database survey top

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) indicates a total of 13 hits for CrIII complexes with a [CrL2(en)2]+ unit. The crystal structures of trans-[CrCl2(en)2]Cl.HCl.2H2O (Ooi et al., 1960), trans-[CrF2(en)2]X (X = ClO4, Cl, Br) (Brencic & Leban, 1981), cis-[CrF2(en)2]ClO4 (Brencic et al., 1987), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010) have been reported previously. Recently, we have also reported the closely related crystal structure of Cr(NCS)2(en)2]2ZnCl4, in which there are four crystallographically independent CrIII complex cations that also adopt a trans configuration. However, crystal structure of [Cr(NCS)2(en)2]+ with a ClO4 anion has not been reported previously.

Synthesis and crystallization top

All chemicals were reagent grade materials and were used without further purification. The title compound, trans-[Cr(NCS)2(en)2]ClO4 was prepared according to the literature method of Sandrini et al. (1978). The crude perchlorate salt (0.33 g) was dissolved in 20 ml of 0.1 M HCl at 333 K. The filtrate was added to 6 ml of 60% HClO4. The resulting solution was allowed to stand at room temperature for 2 d to give orange block-like crystals suitable for X-ray structural analysis. IR spectrum (KBr, cm-1 ): 3247 (vs), 3208 (vs), 3131 (vs) and 3097 (vs) (ν NH), 2966 (s), 2955 (s) and 2893 (s) (ν CH), 2077 (vs) (νa CN), 1586 (vs) (δ NH2), 1459 (s) (δ CH2), 1365 (m) (ν CN), 1326 (s) (ω NH2), 1290 (vs) (ω CH2), 1146 (vs) (γ NH2), 1117 (vs) (ν CN), 1088 (vs) (νa Cl—O), 1047 (vs) (γ CH2), 1007 (s), 983 (s), 873 (m) (ρ CH2), 849 (w) (ρ NH2), 729 (vs), 636 (s) and 626 (vs) (δ OClO), 558 (vs), 559 (s) (δ CCC), 501 (vs), 478 (s) (δ NCS), 444 (m) and 419 (m) (ν Cr—N).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. In the title compound, the ethane-1,2-di­amine group is disordered with atoms N2A/N2B, C2A/C2B, C3A/C3B and N3A/N3B positionally disordered over two sets of sites with a refined occupancy ratio of 0.522 (16):0.478 (16). The half molecules of each distorted perchlorate anion are disordered over two sites of equal occupancy, with atoms Cl1B/Cl1C and O2B/O1C refined using EXYZ/EADP constraints. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.89 Å, and with Uiso(H) values of 1.2 of the parent atoms.

Computing details top

Data collection: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor,1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 20% probability displacement ellipsoids. Atoms of the minor disorder components have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed perpendicular to the ac plane. H atoms on C atoms have been omitted. Dashed lines represent N—H···O (red) and N—H···S (blue) hydrogen-bonding interactions, respectively. The minor disorder components have been omitted for clarity.
trans-Bis(ethane-1,2-diamine-κ2N,N')bis(thiocyanato-κN)chromium(III) perchlorate top
Crystal data top
[Cr(NCS)2(C2H8N2)2]ClO4F(000) = 796
Mr = 387.82Dx = 1.672 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.630 Å
a = 15.599 (3) ÅCell parameters from 46962 reflections
b = 7.4440 (15) Åθ = 0.4–33.6°
c = 13.792 (3) ŵ = 0.86 mm1
β = 105.83 (3)°T = 260 K
V = 1540.8 (6) Å3Block, orange
Z = 40.14 × 0.13 × 0.13 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
2019 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.015
ω scanθmax = 26.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997)
h = 2121
Tmin = 0.893, Tmax = 0.897k = 1010
8172 measured reflectionsl = 1919
2121 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1146P)2 + 2.4721P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.178(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.74 e Å3
2121 reflectionsΔρmin = 1.12 e Å3
140 parametersExtinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.045 (12)
Crystal data top
[Cr(NCS)2(C2H8N2)2]ClO4V = 1540.8 (6) Å3
Mr = 387.82Z = 4
Monoclinic, C2/cSynchrotron radiation, λ = 0.630 Å
a = 15.599 (3) ŵ = 0.86 mm1
b = 7.4440 (15) ÅT = 260 K
c = 13.792 (3) Å0.14 × 0.13 × 0.13 mm
β = 105.83 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
2121 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997)
2019 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.897Rint = 0.015
8172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.09Δρmax = 0.74 e Å3
2121 reflectionsΔρmin = 1.12 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.25000.25000.50000.0273 (3)
S10.21080 (8)0.77661 (11)0.67477 (8)0.0586 (3)
N10.24831 (15)0.4775 (3)0.57426 (17)0.0433 (5)
C10.23290 (16)0.6026 (3)0.61573 (17)0.0363 (5)
N2A0.3423 (12)0.1308 (19)0.6213 (13)0.036 (2)0.522 (16)
H2A10.32720.15030.67810.043*0.522 (16)
H2A20.34420.01270.61180.043*0.522 (16)
N3A0.3624 (11)0.337 (2)0.4641 (10)0.043 (3)0.522 (16)
H3A10.35530.32660.39810.052*0.522 (16)
H3A20.37220.45250.48070.052*0.522 (16)
C2A0.4311 (5)0.2126 (10)0.6277 (8)0.057 (2)0.522 (16)
H2A30.47840.13750.66780.068*0.522 (16)
H2A40.43550.33050.65870.068*0.522 (16)
C3A0.4385 (5)0.2274 (14)0.5199 (10)0.066 (3)0.522 (16)
H3A30.49430.28420.51910.079*0.522 (16)
H3A40.43620.10920.48970.079*0.522 (16)
N2B0.3570 (13)0.164 (2)0.6143 (14)0.041 (3)0.478 (16)
H2B10.36540.23820.66670.049*0.478 (16)
H2B20.34640.05480.63420.049*0.478 (16)
N3B0.3502 (13)0.341 (3)0.4378 (9)0.040 (2)0.478 (16)
H3B10.35270.27320.38560.048*0.478 (16)
H3B20.33960.45430.41670.048*0.478 (16)
C2B0.4369 (4)0.1614 (15)0.5773 (8)0.056 (2)0.478 (16)
H2B30.43550.05820.53390.067*0.478 (16)
H2B40.49020.15410.63340.067*0.478 (16)
C3B0.4370 (5)0.3297 (19)0.5203 (7)0.060 (3)0.478 (16)
H3B30.48690.33030.49110.072*0.478 (16)
H3B40.44270.43220.56510.072*0.478 (16)
Cl1B0.50000.7072 (3)0.75000.0989 (7)0.5
O1B0.4393 (4)0.5672 (9)0.7711 (5)0.0762 (16)0.5
O2B0.4350 (6)0.7462 (8)0.6376 (6)0.159 (3)0.5
Cl1C0.50000.7072 (3)0.75000.0989 (7)0.5
O1C0.4350 (6)0.7462 (8)0.6376 (6)0.159 (3)0.5
O2C0.4488 (11)0.8416 (15)0.7860 (8)0.152 (5)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0366 (4)0.0229 (3)0.0251 (3)0.00353 (14)0.0128 (2)0.00135 (14)
S10.0988 (7)0.0298 (4)0.0630 (6)0.0072 (3)0.0492 (5)0.0070 (3)
N10.0553 (12)0.0327 (11)0.0427 (10)0.0052 (9)0.0145 (9)0.0097 (8)
C10.0472 (12)0.0289 (10)0.0356 (10)0.0012 (9)0.0163 (9)0.0012 (8)
N2A0.050 (5)0.024 (3)0.034 (3)0.001 (2)0.011 (3)0.004 (2)
N3A0.047 (5)0.036 (3)0.056 (7)0.006 (3)0.028 (5)0.017 (5)
C2A0.048 (3)0.044 (3)0.065 (5)0.003 (2)0.006 (3)0.001 (3)
C3A0.038 (3)0.044 (4)0.121 (8)0.008 (3)0.031 (4)0.026 (5)
N2B0.048 (6)0.044 (8)0.031 (3)0.012 (5)0.014 (3)0.005 (4)
N3B0.050 (5)0.043 (4)0.031 (4)0.005 (3)0.019 (4)0.002 (3)
C2B0.041 (3)0.073 (5)0.051 (5)0.017 (3)0.007 (3)0.003 (4)
C3B0.045 (3)0.068 (7)0.070 (4)0.014 (4)0.023 (3)0.013 (4)
Cl1B0.1112 (15)0.0671 (10)0.1316 (18)0.0000.0553 (13)0.000
O1B0.074 (3)0.073 (4)0.083 (4)0.009 (3)0.024 (3)0.029 (3)
O2B0.152 (6)0.199 (8)0.130 (5)0.028 (4)0.045 (5)0.035 (4)
Cl1C0.1112 (15)0.0671 (10)0.1316 (18)0.0000.0553 (13)0.000
O1C0.152 (6)0.199 (8)0.130 (5)0.028 (4)0.045 (5)0.035 (4)
O2C0.255 (15)0.095 (7)0.121 (8)0.038 (9)0.076 (9)0.014 (6)
Geometric parameters (Å, º) top
Cr1—N11.983 (2)C3A—H3A30.9700
Cr1—N1i1.983 (2)C3A—H3A40.9700
Cr1—N3Ai2.053 (16)N2B—C2B1.471 (18)
Cr1—N3A2.053 (16)N2B—H2B10.8900
Cr1—N2B2.06 (2)N2B—H2B20.8900
Cr1—N2Bi2.06 (2)N3B—C3B1.514 (17)
Cr1—N2Ai2.085 (19)N3B—H3B10.8900
Cr1—N2A2.085 (19)N3B—H3B20.8900
Cr1—N3Bi2.09 (2)C2B—C3B1.479 (17)
Cr1—N3B2.09 (2)C2B—H2B30.9700
S1—C11.617 (3)C2B—H2B40.9700
N1—C11.152 (3)C3B—H3B30.9700
N2A—C2A1.493 (15)C3B—H3B40.9700
N2A—H2A10.8900Cl1B—O1Bii1.489 (6)
N2A—H2A20.8900Cl1B—O1B1.489 (6)
N3A—C3A1.475 (16)Cl1B—O2Bii1.630 (8)
N3A—H3A10.8900Cl1B—O2B1.630 (8)
N3A—H3A20.8900Cl1C—O2Cii1.450 (13)
C2A—C3A1.527 (17)Cl1C—O2C1.450 (13)
C2A—H2A30.9700Cl1C—O1Cii1.630 (8)
C2A—H2A40.9700Cl1C—O1C1.630 (8)
N1—Cr1—N1i180.0N2A—C2A—H2A4110.4
N1—Cr1—N3Ai90.8 (5)C3A—C2A—H2A4110.4
N1i—Cr1—N3Ai89.2 (5)H2A3—C2A—H2A4108.6
N1—Cr1—N3A89.2 (5)N3A—C3A—C2A106.5 (10)
N1i—Cr1—N3A90.8 (5)N3A—C3A—H3A3110.4
N3Ai—Cr1—N3A180.0C2A—C3A—H3A3110.4
N1—Cr1—N2B89.5 (5)N3A—C3A—H3A4110.4
N1i—Cr1—N2B90.5 (5)C2A—C3A—H3A4110.4
N1—Cr1—N2Bi90.5 (5)H3A3—C3A—H3A4108.6
N1i—Cr1—N2Bi89.5 (5)C2B—N2B—Cr1109.0 (9)
N2B—Cr1—N2Bi180.0 (9)C2B—N2B—H2B1109.9
N1—Cr1—N2Ai87.0 (4)Cr1—N2B—H2B1109.9
N1i—Cr1—N2Ai93.0 (5)C2B—N2B—H2B2109.9
N3Ai—Cr1—N2Ai83.1 (5)Cr1—N2B—H2B2109.9
N3A—Cr1—N2Ai96.9 (5)H2B1—N2B—H2B2108.3
N1—Cr1—N2A93.0 (4)C3B—N3B—Cr1106.7 (8)
N1i—Cr1—N2A87.0 (4)C3B—N3B—H3B1110.4
N3Ai—Cr1—N2A96.9 (5)Cr1—N3B—H3B1110.4
N3A—Cr1—N2A83.1 (5)C3B—N3B—H3B2110.4
N2Ai—Cr1—N2A180.0Cr1—N3B—H3B2110.4
N1—Cr1—N3Bi87.1 (5)H3B1—N3B—H3B2108.6
N1i—Cr1—N3Bi92.9 (5)N2B—C2B—C3B107.1 (10)
N2B—Cr1—N3Bi97.2 (5)N2B—C2B—H2B3110.3
N2Bi—Cr1—N3Bi82.8 (5)C3B—C2B—H2B3110.3
N1—Cr1—N3B92.9 (5)N2B—C2B—H2B4110.3
N1i—Cr1—N3B87.1 (5)C3B—C2B—H2B4110.3
N2B—Cr1—N3B82.8 (5)H2B3—C2B—H2B4108.5
N2Bi—Cr1—N3B97.2 (5)C2B—C3B—N3B108.6 (10)
N3Bi—Cr1—N3B180.0C2B—C3B—H3B3110.0
C1—N1—Cr1168.7 (2)N3B—C3B—H3B3110.0
N1—C1—S1179.3 (3)C2B—C3B—H3B4110.0
C2A—N2A—Cr1107.5 (7)N3B—C3B—H3B4110.0
C2A—N2A—H2A1110.2H3B3—C3B—H3B4108.4
Cr1—N2A—H2A1110.2O1Bii—Cl1B—O1B91.2 (5)
C2A—N2A—H2A2110.2O1Bii—Cl1B—O2Bii92.7 (4)
Cr1—N2A—H2A2110.2O1B—Cl1B—O2Bii101.7 (3)
H2A1—N2A—H2A2108.5O1Bii—Cl1B—O2B101.7 (3)
C3A—N3A—Cr1108.5 (8)O1B—Cl1B—O2B92.7 (4)
C3A—N3A—H3A1110.0O2Bii—Cl1B—O2B159.4 (5)
Cr1—N3A—H3A1110.0O2Cii—Cl1C—O2C92.7 (9)
C3A—N3A—H3A2110.0O2Cii—Cl1C—O1Cii86.8 (6)
Cr1—N3A—H3A2110.0O2C—Cl1C—O1Cii79.0 (6)
H3A1—N3A—H3A2108.4O2Cii—Cl1C—O1C79.0 (6)
N2A—C2A—C3A106.7 (9)O2C—Cl1C—O1C86.8 (6)
N2A—C2A—H2A3110.4O1Cii—Cl1C—O1C159.4 (5)
C3A—C2A—H2A3110.4
Cr1—N2A—C2A—C3A42.0 (11)Cr1—N2B—C2B—C3B44.2 (13)
Cr1—N3A—C3A—C2A44.8 (13)N2B—C2B—C3B—N3B56.3 (15)
N2A—C2A—C3A—N3A57.9 (14)Cr1—N3B—C3B—C2B40.2 (12)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···S1iii0.892.453.324 (17)167
N2A—H2A2···O2Biv0.892.413.187 (19)146
N3A—H3A1···O1Bv0.892.583.282 (16)136
N2B—H2B1···S1iii0.892.773.459 (17)135
N3B—H3B1···O2Cv0.892.453.22 (2)145
N3B—H3B2···S1vi0.892.383.255 (18)166
Symmetry codes: (iii) x+1/2, y1/2, z+3/2; (iv) x, y1, z; (v) x, y+1, z1/2; (vi) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···S1i0.892.453.324 (17)166.9
N2A—H2A2···O2Bii0.892.413.187 (19)146.4
N3A—H3A1···O1Biii0.892.583.282 (16)136.2
N2B—H2B1···S1i0.892.773.459 (17)134.8
N3B—H3B1···O2Ciii0.892.453.22 (2)145.2
N3B—H3B2···S1iv0.892.383.255 (18)166.3
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1, z1/2; (iv) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cr(NCS)2(C2H8N2)2]ClO4
Mr387.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)260
a, b, c (Å)15.599 (3), 7.4440 (15), 13.792 (3)
β (°) 105.83 (3)
V3)1540.8 (6)
Z4
Radiation typeSynchrotron, λ = 0.630 Å
µ (mm1)0.86
Crystal size (mm)0.14 × 0.13 × 0.13
Data collection
DiffractometerADSC Q210 CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997)
Tmin, Tmax0.893, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
8172, 2121, 2019
Rint0.015
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.178, 1.09
No. of reflections2121
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 1.12

Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), HKL3000sm (Otwinowski & Minor,1997), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2014), publCIF (Westrip, 2010).

 

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MISP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBrenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219.  Google Scholar
First citationBrenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885–887.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationChoi, J.-H. (2000). Chem. Phys. 256, 29–35.  CrossRef CAS Google Scholar
First citationChoi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.  CSD CrossRef CAS Google Scholar
First citationDe, G., Szuki, M. & Uehara, A. (1987). Bull. Chem. Soc. Jpn, 60, 2871-2874.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 35, 3103-3111.  Google Scholar
First citationHouse, D. A. (1973). J. Inorg. Nucl. Chem. 53, 662–671.  Google Scholar
First citationMoon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100–103.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543.  CSD CrossRef IUCr Journals Google Scholar
First citationOoi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354–357.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc. 100, 1463–1468.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 650-653
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds