research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 312-314

Crystal structure of the di-Mannich base 4,4′-di­chloro-3,3′,5,5′-tetra­methyl-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cra 30 No. 45-03, Bogotá, Colombia, and bInstitut für Anorganische Chemie, Goethe-Universität, Max-von-Laue-Strasse 7, Frankfurt/Main D-60438, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 29 January 2015; accepted 2 February 2015; online 25 February 2015)

The title compound, C21H26Cl2N2O2, was prepared in a solvent-free microwave-assisted synthesis, and crystallizes in the ortho­rhom­bic space group Pna21. The imidazolidine ring adopts an envelope conformation and its mean plane is almost perpendicular to the two pendant aromatic rings [dihedral angles = 84.61 (9) and 86.54 (9)°]. The mol­ecular structure shows the presence of two intra­molecular O—H⋯N hydrogen bonds between the phenolic hy­droxy groups and imidazolidine N atoms. The two 3-chloro-6-hy­droxy-2,4-di­methyl­benzyl groups are located in a cis orientation with respect to the imidazolidine fragment. As a result, the lone pairs of electrons on the N atoms are presumed to be disposed in a syn conformation. This is therefore the first example of an exception to the `rabbit-ears' effect in such 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol derivatives.

1. Chemical context

As a continuation of our investigations of the Mannich reaction, we have synthesized a family of compounds of the type 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]di(hydroxyar­yl), from reactions between 1,3,6,8-tetra­zatri­cyclo­[4.4.1.13,8]dodecane (TATD) and phenols or naphthols (Rivera et al., 1993[Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921-2929.], 2005[Rivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Col. Quím. 34, 105-115.]; Rivera & Quevedo, 2013[Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416-1420.]). Such compounds are known to be valuable in homogeneous catalysis (Kober et al., 2012[Kober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41, 5188-5191.]) and for the preparation of tetra­hydro­salens (Rivera et al., 2004[Rivera, A., Quevedo, R., Navarro, M. A. & Maldonado, M. (2004). Synth. Commun. 34, 2479-2485.]) and heterocalixarenes (Rivera & Quevedo, 2004[Rivera, A. & Quevedo, R. (2004). Tetrahedron Lett. 45, 8335-8338.]). Mannich bases are also convenient models for studying the nature of hydrogen bonding and other weak non-covalent inter­actions, as they contain at least one phenolic or naphtho­lic hy­droxy group as a proton donor, as well as an ortho-amino­methyl­group as a proton acceptor in the same mol­ecule (Koll et al., 2006[Koll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55-64.]). Herein, as part of our systematic investigations of di-Mannich bases as convenient model systems for the study of intra­molecular proton-transfer processes, we report the mol­ecular and crystal structure of the title di-Mannich base, 4,4′-di­chloro-3,3′,5,5′-tetra­methyl-2,2′- [imidazolidine-1,3-diylbis(methyl­ene)]diphenol (I)[link].

[Scheme 1]

In a previous report (Rivera & Quevedo, 2013[Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416-1420.]), the title compound (I)[link] was obtained under solvent-free conditions by heating a 1:4 mixture of TATD and 4-chloro-3,5-di­methyl­phenol in an oil bath with stirring at 423 K for 20 min. Drawbacks of this synthesis include the long reaction time and a requirement of considerable effort to optimize the reaction conditions and temperature control. We therefore subsequently explored this reaction under solvent-free, microwave-assisted conditions. The reaction was found to proceed smoothly under microwave irradiation in only 3 min at 403 K, in modest yield.

2. Structural commentary

In the title mol­ecule (I)[link], Fig. 1[link], the imidazolidine ring adopts an envelope conformation, with atom C1 at the flap. The mol­ecular structure shows two intra­molecular O—H⋯N hydrogen bonds (Table 1[link]) with S(6) graph-set motifs between the hy­droxy groups of the substituted phenol rings and the two imidazolidine N atoms. The benzyl groups are located in an unexpected 1,3-diequatorial syn arrangement on the heterocyclic ring with dihedral angles between the mean plane through the N1/C2/C3/N2 atoms of the imidazolidine ring and the C11–C16 and C21–C26 aromatic rings of 84.61 (9) and 88.54 (9)°, respectively. The non-bonding electron pairs on the imidazolidine N atoms that are involved in both intra- and inter­molecular hydrogen-bonding inter­actions adopt an unusual syn arrangement. As such, this mol­ecule defies the well known `rabbit-ears' effect (Hutchins et al., 1968[Hutchins, R. O., Kopp, L. D. & Eliel, E. L. (1968). J. Am. Chem. Soc. 90, 7174-7175.]) in which N–CH2–N systems adopt anti conformations to avoid repulsions between the nitro­gen lone pairs. Although in the very similar structure of meso-4,4′-di­fluoro-2,2′-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-octa­hydro-1H-1,3-benzimidazole-1,3-di­yl]bis(methyl­ene)}diphenol (Rivera et al., 2013[Rivera, A., Quiroga, D., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2013). Acta Cryst. E69, o217.]) the N-atom lone pairs are syn, mol­ecule (I)[link] is the first reported exception to the `rabbit-ears' effect in compounds of the 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol type (Rivera et al., 2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.], 2012a[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170-o171.],b[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043-o3044.],c[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.], 2013[Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.], 2014[Rivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.99 (5) 1.66 (5) 2.606 (3) 158 (4)
O2—H2⋯N2 0.86 (4) 1.83 (4) 2.619 (3) 152 (3)
C13—H13⋯O2i 0.95 2.59 3.464 (4) 152
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

With both hy­droxy groups of (I)[link] involved in intra­molecular hydrogen bonds, the only directional interaction in the crystal is a C13—H13⋯O2i bond (Table 1[link] and Fig. 2[link]), which links adjacent mol­ecules in a head-to-tail fashion into zigzag chains, extending along the c-axis direction (Fig. 2[link]).

[Figure 2]
Figure 2
A perspective view along the a axis of the crystal packing of the title compound,. The C—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (Groom & Allen 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed previous reports of six structures of related 2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol compounds (Rivera et al., 2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.], 2012a[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170-o171.],b[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043-o3044.],c[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.], 2013[Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.], 2014[Rivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243.]). Each of these also shows intra­molecular O—H⋯N hydrogen bonds between the two imidazolidine N atoms and the hy­droxy groups. In addition, the DA distances in these compounds compare well with those observed in the title compound. As with (I)[link], the imidazolidine ring in the p-tert-butyl­phenol derivative (Rivera et al., 2013[Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.]), adopts an envelope conformation whereas, in the other five the ring adopts a twist conformation. Furthermore, unlike the title compound, the nitro­gen lone pairs in all six of the related derivatives are oriented in an anti disposition.

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­zatri­cyclo­[4.4.1.13,8]dodecane (0.100 g, 0.6 mmol) and 4-chloro-3,5-di­methyl­phenol (0.375 g, 2.4 mmol) without any solvent was exposed to microwave irradiation in a CEM Discover reactor (with 250 W as the maximum power) for 3 min at a temperature of 403 K. Once cooled to room temperature, the reaction mixture was dissolved with CHCl3 which was removed under reduced pressure to yield the crude product. This was further purified by column chromatography on silica gel using a mixture of benzene:ethyl acetate (80:20) as eluent (yield 21%, m.p. = 421–422 K). Single crystals in the form of needles shorter than 1 mm were obtained from a chloro­form:ethanol (50:50) solution by slow evaporation of the solvent at room temperature over a period of one week.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms were located in difference electron density maps. The hy­droxy H atoms were freely refined. C-bound H atoms were fixed geometrically (C—H = 0.95 to 0.99 Å) and refined using a riding model, with Uiso(H) set to 1.2Ueq (1.5Ueq for methyl groups) of the parent atoms. The methyl groups were allowed to rotate but not to tip.

Table 2
Experimental details

Crystal data
Chemical formula C21H26Cl2N2O2
Mr 409.34
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 173
a, b, c (Å) 20.1594 (11), 17.8088 (12), 5.6120 (3)
V3) 2014.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.22 × 0.11 × 0.09
 
Data collection
Diffractometer Stoe IPDS II two circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.891, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 17730, 3708, 3280
Rint 0.080
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.00
No. of reflections 3708
No. of parameters 256
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.20
Absolute structure Flack x determined using 1338 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (4)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS87 and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Chemical context top

As a continuation of our investigations of the Mannich reaction, we have synthesized a family of compounds of the type 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]di(hy­droxy­aryl), from reactions between 1,3,6,8-tetraza­tri­cyclo­[4.4.1.13,8]do­decane (TATD) and phenols or naphthols (Rivera et al., 1993, 2005; Rivera & Quevedo, 2013). Such compounds are known to be valuable in homogeneous catalysis (Kober et al., 2012) and for the preparation of tetra­hydro­salens (Rivera et al., 2004) and heterocalixarenes (Rivera & Quevedo, 2004). Mannich bases are also convenient models for studying the nature of hydrogen bonding and other weak non-covalent inter­actions, as they contain at least one phenolic or naphtho­lic hy­droxy group as a proton donor, as well as an ortho-amino­methyl­group as a proton acceptor in the same molecule (Koll et al., 2006). Herein, as part of our systematic investigations of di-Mannich bases as convenient model systems for the study of intra­molecular proton-transfer processes, we report the molecular and crystal structure of the title di-Mannich base, 4,4'-di­chloro-3,3',5,5'-tetra­methyl-2,2'- [imidazolidine-1,3-diylbis(methyl­ene)]diphenol (I).

In a previous report (Rivera & Quevedo, 2013), title compound (I) was obtained under solvent-free conditions by heating a 1:4 mixture of TATD and 4-chloro-3,5-di­methyl­phenol in an oil bath with stirring at 423 K for 20 min. Drawbacks of this synthesis include the long reaction time and a requirement of considerable effort to optimize the reaction conditions and temperature control. We therefore subsequently explored this reaction under solvent-free, microwave-assisted conditions. The reaction was found to proceed smoothly under microwave irradiation in only 3 min at 403 K, in modest yield.

Structural commentary top

The title molecule (I) with its atom-numbering scheme is shown in Fig 1. The imidazolidine ring adopts an envelope conformation, with C1 at the flap. The molecular structure shows two intra­molecular O—H···N hydrogen bonds (Table 1) with S(6) graph-set motifs (Bernstein et al., 1995) between the hy­droxy groups of the substituted phenol rings and the two imidazolidine N atoms. The benzyl groups are located in an unexpected 1,3-diequatorial syn arrangement on the heterocyclic ring with dihedral angles between the mean plane through the N1/C2/C3/N2 atoms of the imidazolidine ring and the C11–C16 and C21–C26 aromatic rings of 84.61 (9) and 88.54 (9)°, respectively. The non-bonding electron pairs on the imidazolidine N atoms that are involved in both intra- and inter­molecular hydrogen-bonding inter­actions adopt an unusual syn arrangement. As such, this molecule defies the well known `rabbit-ears' effect (Hutchins et al., 1968) in which N–CH2–N systems adopt anti conformations to avoid repulsions between the nitro­gen lone pairs. Although in the very similar structure of meso-4,4'-di­fluoro-2,2'-{[(3aR,7aS)-2,3,3a,4,5,6,7,7a-o­cta­hydro-1H-1,3-benzimidazole-1,3-diyl]bis­(methyl­ene)}diphenol (Rivera et al., 2013) the N-atom lone pairs are syn, molecule (I) is the first reported exception to the `rabbit-ears' effect in 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol-type compounds (Rivera et al., 2011, 2012a,b,c, 2013, 2014).

Supra­molecular features top

With both hy­droxy groups of (I) involved in intra­molecular hydrogen bonds, the packing in the crystal is stabilized solely by C13—H13···O2i inter­actions, Table 1 that link adjacent molecules in a head-to-tail fashion into zigzag chains, extending along the c-axis direction (Fig. 2).

Database survey top

A search in the Cambridge database (Groom & Allen 2014) reveals previous reports of six structures of related 2,2'-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol compounds (Rivera et al., 2011, 2012a,b,c, 2013, 2014). Each of these also shows intra­molecular O—H···N hydrogen bonds between the two imidazolidine N atoms and the hy­droxy groups. In addition, the D···A distances in these compounds compare well with those observed in the title compound. As with (I), the imidazolidine ring in the p-tert-butyl­phenol derivative (Rivera et al., 2013), adopts an envelope conformation whereas, in the other five the ring adopts a twist conformation. Furthermore, unlike the title compound, the nitro­gen lone pairs in all six of the related derivatives are oriented in an anti disposition.

Synthesis and crystallization top

A mixture of 1,3,6,8-tetraza­tri­cyclo­[4.4.1.13,8]do­decane (0.100 g, 0.6 mmol) and 4-chloro-3,5-di­methyl­phenol (0.375 g, 2.4 mmol) without any solvent was exposed to microwave irradiation in a CEM Discover reactor (with 250 W as the maximum power) for 3 min at a temperature of 403 K. Once cooled to room temperature, the reaction mixture was dissolved with CHCl3 which was removed under reduced pressure to yield the crude product. This was further purified by column chromatography on silica gel using a mixture of benzene:ethyl acetate (80:20) as eluent (yield 21%, m.p. = 421–422 K). Single crystals in the form of needles shorter than 1 mm were obtained from a chloro­form:ethanol (50:50) solution by slow evaporation of the solvent at room temperature over a period of one week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in difference electron density maps. The hy­droxy H atoms were refined freely; however, C-bound H atoms were fixed geometrically (C—H = 0.95 to 0.99 Å) and refined using a riding model, with Uiso(H) set to 1.2Ueq (1.5Ueq for methyl groups) of the parent atoms. The methyl groups were allowed to rotate but not to tip.

Related literature top

For related literature, see: Bernstein et al. (1995); Groom & Allen (2014); Hutchins et al. (1968); Kober et al. (2012); Koll et al. (2006); Rivera & Quevedo (2004, 2013); Rivera et al. (1993, 2005, 2011, 2012a, 2012b, 2012c, 2014); Rivera, Nerio & Bolte (2013); Rivera, Quevedo, Navarro & Maldonado (2004).

Computing details top

Data collection: X-AREA and X-RED32 (Stoe & Cie, 2001); cell refinement: X-AREA and X-RED32 (Stoe & Cie, 2001); data reduction: X-AREA and X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS87 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A perspective view along the a axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines.
4,4'-Dichloro-3,3',5,5'-tetramethyl-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol top
Crystal data top
C21H26Cl2N2O2Dx = 1.349 Mg m3
Mr = 409.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 16491 reflections
a = 20.1594 (11) Åθ = 2.1–25.9°
b = 17.8088 (12) ŵ = 0.34 mm1
c = 5.6120 (3) ÅT = 173 K
V = 2014.8 (2) Å3Needle, colourless
Z = 40.22 × 0.11 × 0.09 mm
F(000) = 864
Data collection top
Stoe IPDS II two-circle
diffractometer
3280 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.080
ω scansθmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2424
Tmin = 0.891, Tmax = 0.946k = 2121
17730 measured reflectionsl = 66
3708 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.16 e Å3
3708 reflectionsΔρmin = 0.20 e Å3
256 parametersAbsolute structure: Flack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.00 (4)
Crystal data top
C21H26Cl2N2O2V = 2014.8 (2) Å3
Mr = 409.34Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.1594 (11) ŵ = 0.34 mm1
b = 17.8088 (12) ÅT = 173 K
c = 5.6120 (3) Å0.22 × 0.11 × 0.09 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3280 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.946Rint = 0.080
17730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.16 e Å3
S = 1.00Δρmin = 0.20 e Å3
3708 reflectionsAbsolute structure: Flack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
256 parametersAbsolute structure parameter: 0.00 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71322 (3)0.87262 (4)0.49746 (17)0.04042 (19)
Cl20.63887 (4)0.04441 (4)0.5199 (2)0.0535 (2)
O10.55382 (11)0.60445 (11)0.6973 (4)0.0383 (5)
H10.574 (2)0.565 (3)0.595 (9)0.074 (13)*
O20.52557 (10)0.34212 (11)0.6988 (4)0.0368 (5)
H20.5460 (19)0.3744 (19)0.611 (7)0.044 (10)*
N10.62589 (11)0.52659 (13)0.4013 (5)0.0304 (5)
N20.61125 (12)0.40126 (13)0.4025 (5)0.0308 (5)
C10.60746 (16)0.46539 (14)0.2433 (5)0.0326 (6)
H1A0.56200.47210.17970.039*
H1B0.63900.46050.10900.039*
C20.68434 (15)0.49812 (15)0.5313 (7)0.0394 (7)
H2A0.68720.52040.69250.047*
H2B0.72580.50920.44350.047*
C30.67177 (14)0.41297 (15)0.5448 (6)0.0341 (7)
H3A0.70960.38460.47680.041*
H3B0.66490.39680.71180.041*
C40.63685 (15)0.59859 (15)0.2782 (6)0.0337 (6)
H4A0.60200.60560.15580.040*
H4B0.68030.59710.19590.040*
C50.60838 (15)0.32829 (16)0.2813 (6)0.0337 (6)
H5A0.65080.31950.19690.040*
H5B0.57250.32940.16080.040*
C110.63568 (13)0.66441 (15)0.4475 (5)0.0290 (6)
C120.59219 (13)0.66519 (15)0.6419 (6)0.0304 (6)
C130.58553 (14)0.72820 (15)0.7842 (6)0.0332 (6)
H130.55580.72690.91540.040*
C140.62147 (14)0.79335 (15)0.7393 (6)0.0326 (7)
C150.66605 (13)0.79115 (14)0.5501 (6)0.0308 (6)
C160.67502 (13)0.72850 (15)0.4053 (5)0.0296 (6)
C170.61244 (17)0.86156 (17)0.8953 (7)0.0429 (8)
H17A0.57900.85091.01750.064*
H17B0.59770.90400.79760.064*
H17C0.65470.87410.97200.064*
C180.72556 (15)0.72805 (16)0.2061 (6)0.0387 (7)
H18A0.75300.77330.21630.058*
H18B0.70260.72700.05220.058*
H18C0.75380.68350.22080.058*
C210.59596 (13)0.26437 (14)0.4523 (5)0.0299 (6)
C220.55305 (14)0.27410 (15)0.6465 (6)0.0317 (6)
C230.53458 (15)0.21404 (16)0.7892 (6)0.0351 (6)
H230.50450.22210.91690.042*
C240.55924 (16)0.14239 (16)0.7492 (6)0.0385 (7)
C250.60474 (15)0.13394 (15)0.5636 (6)0.0359 (7)
C260.62373 (14)0.19245 (16)0.4129 (6)0.0334 (7)
C270.67213 (16)0.18022 (16)0.2127 (6)0.0405 (7)
H27A0.68720.12790.21410.061*
H27B0.71030.21370.23330.061*
H27C0.65040.19110.06040.061*
C280.5373 (2)0.07780 (19)0.9026 (7)0.0534 (9)
H28A0.51610.03950.80290.080*
H28B0.50560.09581.02200.080*
H28C0.57590.05600.98290.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0421 (4)0.0336 (3)0.0456 (4)0.0080 (3)0.0053 (4)0.0003 (4)
Cl20.0674 (5)0.0306 (3)0.0625 (6)0.0073 (3)0.0007 (6)0.0026 (4)
O10.0401 (11)0.0349 (10)0.0400 (14)0.0082 (9)0.0115 (10)0.0021 (9)
O20.0379 (11)0.0373 (11)0.0353 (13)0.0040 (9)0.0028 (10)0.0014 (10)
N10.0329 (12)0.0293 (11)0.0289 (13)0.0008 (9)0.0042 (11)0.0015 (10)
N20.0352 (13)0.0284 (11)0.0287 (13)0.0008 (9)0.0056 (11)0.0000 (10)
C10.0389 (15)0.0314 (14)0.0276 (17)0.0011 (11)0.0055 (13)0.0012 (12)
C20.0415 (15)0.0360 (14)0.041 (2)0.0018 (12)0.0137 (17)0.0032 (15)
C30.0362 (15)0.0345 (13)0.0316 (18)0.0020 (11)0.0093 (13)0.0026 (13)
C40.0397 (16)0.0294 (14)0.0319 (17)0.0007 (11)0.0015 (14)0.0043 (12)
C50.0385 (15)0.0328 (14)0.0297 (17)0.0006 (12)0.0014 (13)0.0034 (13)
C110.0294 (14)0.0299 (13)0.0278 (18)0.0023 (10)0.0001 (12)0.0028 (11)
C120.0277 (14)0.0317 (13)0.0316 (17)0.0003 (11)0.0017 (12)0.0036 (12)
C130.0314 (14)0.0368 (14)0.0314 (17)0.0021 (12)0.0052 (13)0.0011 (12)
C140.0320 (14)0.0318 (14)0.0342 (19)0.0028 (10)0.0001 (13)0.0008 (13)
C150.0286 (13)0.0298 (13)0.0341 (18)0.0021 (10)0.0026 (12)0.0020 (12)
C160.0268 (13)0.0325 (14)0.0294 (16)0.0033 (11)0.0004 (12)0.0048 (11)
C170.0484 (18)0.0375 (16)0.043 (2)0.0007 (13)0.0080 (16)0.0055 (14)
C180.0394 (16)0.0375 (15)0.0392 (19)0.0023 (12)0.0099 (15)0.0007 (13)
C210.0295 (13)0.0308 (13)0.0294 (18)0.0022 (11)0.0035 (12)0.0018 (11)
C220.0309 (14)0.0345 (14)0.0297 (17)0.0005 (11)0.0053 (12)0.0020 (12)
C230.0337 (15)0.0418 (16)0.0297 (16)0.0032 (12)0.0003 (13)0.0006 (13)
C240.0450 (17)0.0352 (15)0.0352 (19)0.0093 (12)0.0069 (15)0.0043 (13)
C250.0403 (15)0.0295 (13)0.038 (2)0.0003 (11)0.0085 (13)0.0005 (12)
C260.0309 (14)0.0346 (15)0.0347 (17)0.0020 (11)0.0047 (13)0.0045 (12)
C270.0421 (17)0.0390 (16)0.040 (2)0.0014 (13)0.0049 (15)0.0065 (14)
C280.065 (2)0.0424 (18)0.053 (2)0.0127 (16)0.0006 (19)0.0101 (16)
Geometric parameters (Å, º) top
Cl1—C151.760 (3)C13—C141.391 (4)
Cl2—C251.754 (3)C13—H130.9500
O1—C121.366 (3)C14—C151.392 (4)
O1—H10.99 (5)C14—C171.508 (4)
O2—C221.364 (3)C15—C161.392 (4)
O2—H20.86 (4)C16—C181.513 (4)
N1—C11.453 (4)C17—H17A0.9800
N1—C41.473 (4)C17—H17B0.9800
N1—C21.476 (4)C17—H17C0.9800
N2—C11.452 (3)C18—H18A0.9800
N2—C51.468 (4)C18—H18B0.9800
N2—C31.473 (4)C18—H18C0.9800
C1—H1A0.9900C21—C221.402 (4)
C1—H1B0.9900C21—C261.415 (4)
C2—C31.539 (4)C22—C231.387 (4)
C2—H2A0.9900C23—C241.388 (4)
C2—H2B0.9900C23—H230.9500
C3—H3A0.9900C24—C251.396 (5)
C3—H3B0.9900C24—C281.503 (4)
C4—C111.509 (4)C25—C261.396 (4)
C4—H4A0.9900C26—C271.504 (5)
C4—H4B0.9900C27—H27A0.9800
C5—C211.510 (4)C27—H27B0.9800
C5—H5A0.9900C27—H27C0.9800
C5—H5B0.9900C28—H28A0.9800
C11—C121.399 (4)C28—H28B0.9800
C11—C161.410 (4)C28—H28C0.9800
C12—C131.384 (4)
C12—O1—H1101 (3)C15—C14—C17122.9 (3)
C22—O2—H2106 (2)C14—C15—C16123.5 (2)
C1—N1—C4113.9 (2)C14—C15—Cl1117.0 (2)
C1—N1—C2104.4 (2)C16—C15—Cl1119.5 (2)
C4—N1—C2114.3 (2)C15—C16—C11118.5 (3)
C1—N2—C5114.2 (2)C15—C16—C18121.5 (3)
C1—N2—C3105.4 (2)C11—C16—C18119.9 (3)
C5—N2—C3114.2 (2)C14—C17—H17A109.5
N2—C1—N1101.6 (2)C14—C17—H17B109.5
N2—C1—H1A111.5H17A—C17—H17B109.5
N1—C1—H1A111.5C14—C17—H17C109.5
N2—C1—H1B111.5H17A—C17—H17C109.5
N1—C1—H1B111.5H17B—C17—H17C109.5
H1A—C1—H1B109.3C16—C18—H18A109.5
N1—C2—C3103.4 (2)C16—C18—H18B109.5
N1—C2—H2A111.1H18A—C18—H18B109.5
C3—C2—H2A111.1C16—C18—H18C109.5
N1—C2—H2B111.1H18A—C18—H18C109.5
C3—C2—H2B111.1H18B—C18—H18C109.5
H2A—C2—H2B109.1C22—C21—C26118.5 (3)
N2—C3—C2104.4 (2)C22—C21—C5120.2 (2)
N2—C3—H3A110.9C26—C21—C5121.2 (3)
C2—C3—H3A110.9O2—C22—C23116.8 (3)
N2—C3—H3B110.9O2—C22—C21121.9 (3)
C2—C3—H3B110.9C23—C22—C21121.3 (3)
H3A—C3—H3B108.9C22—C23—C24121.3 (3)
N1—C4—C11112.2 (3)C22—C23—H23119.4
N1—C4—H4A109.2C24—C23—H23119.4
C11—C4—H4A109.2C23—C24—C25117.1 (3)
N1—C4—H4B109.2C23—C24—C28120.4 (3)
C11—C4—H4B109.2C25—C24—C28122.6 (3)
H4A—C4—H4B107.9C26—C25—C24123.5 (3)
N2—C5—C21112.3 (2)C26—C25—Cl2119.1 (2)
N2—C5—H5A109.1C24—C25—Cl2117.4 (2)
C21—C5—H5A109.1C25—C26—C21118.2 (3)
N2—C5—H5B109.1C25—C26—C27121.5 (3)
C21—C5—H5B109.1C21—C26—C27120.3 (3)
H5A—C5—H5B107.9C26—C27—H27A109.5
C12—C11—C16118.4 (3)C26—C27—H27B109.5
C12—C11—C4120.6 (2)H27A—C27—H27B109.5
C16—C11—C4120.9 (3)C26—C27—H27C109.5
O1—C12—C13117.1 (3)H27A—C27—H27C109.5
O1—C12—C11121.6 (3)H27B—C27—H27C109.5
C13—C12—C11121.2 (3)C24—C28—H28A109.5
C12—C13—C14121.4 (3)C24—C28—H28B109.5
C12—C13—H13119.3H28A—C28—H28B109.5
C14—C13—H13119.3C24—C28—H28C109.5
C13—C14—C15116.8 (3)H28A—C28—H28C109.5
C13—C14—C17120.3 (3)H28B—C28—H28C109.5
C5—N2—C1—N1168.1 (2)C14—C15—C16—C18178.2 (3)
C3—N2—C1—N142.0 (3)Cl1—C15—C16—C181.3 (4)
C4—N1—C1—N2170.7 (2)C12—C11—C16—C153.7 (4)
C2—N1—C1—N245.4 (3)C4—C11—C16—C15172.2 (3)
C1—N1—C2—C331.0 (3)C12—C11—C16—C18176.3 (3)
C4—N1—C2—C3156.0 (2)C4—C11—C16—C187.8 (4)
C1—N2—C3—C222.5 (3)N2—C5—C21—C2237.3 (4)
C5—N2—C3—C2148.6 (3)N2—C5—C21—C26146.7 (3)
N1—C2—C3—N25.2 (3)C26—C21—C22—O2178.5 (3)
C1—N1—C4—C11163.0 (2)C5—C21—C22—O25.4 (4)
C2—N1—C4—C1177.2 (3)C26—C21—C22—C234.0 (4)
C1—N2—C5—C21166.3 (2)C5—C21—C22—C23172.1 (3)
C3—N2—C5—C2172.3 (3)O2—C22—C23—C24179.3 (3)
N1—C4—C11—C1236.2 (4)C21—C22—C23—C241.7 (5)
N1—C4—C11—C16148.0 (2)C22—C23—C24—C251.7 (4)
C16—C11—C12—O1178.3 (3)C22—C23—C24—C28178.6 (3)
C4—C11—C12—O15.8 (4)C23—C24—C25—C263.0 (5)
C16—C11—C12—C132.7 (4)C28—C24—C25—C26177.3 (3)
C4—C11—C12—C13173.2 (3)C23—C24—C25—Cl2177.3 (2)
O1—C12—C13—C14178.7 (3)C28—C24—C25—Cl22.4 (4)
C11—C12—C13—C140.3 (5)C24—C25—C26—C210.8 (5)
C12—C13—C14—C152.2 (4)Cl2—C25—C26—C21179.5 (2)
C12—C13—C14—C17179.1 (3)C24—C25—C26—C27179.0 (3)
C13—C14—C15—C161.2 (4)Cl2—C25—C26—C270.7 (4)
C17—C14—C15—C16179.8 (3)C22—C21—C26—C252.7 (4)
C13—C14—C15—Cl1178.4 (2)C5—C21—C26—C25173.4 (3)
C17—C14—C15—Cl10.3 (4)C22—C21—C26—C27177.5 (3)
C14—C15—C16—C111.8 (4)C5—C21—C26—C276.4 (4)
Cl1—C15—C16—C11178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.99 (5)1.66 (5)2.606 (3)158 (4)
O2—H2···N20.86 (4)1.83 (4)2.619 (3)152 (3)
C13—H13···O2i0.952.593.464 (4)152
Symmetry code: (i) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.99 (5)1.66 (5)2.606 (3)158 (4)
O2—H2···N20.86 (4)1.83 (4)2.619 (3)152 (3)
C13—H13···O2i0.952.593.464 (4)152
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H26Cl2N2O2
Mr409.34
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)20.1594 (11), 17.8088 (12), 5.6120 (3)
V3)2014.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.11 × 0.09
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.891, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
17730, 3708, 3280
Rint0.080
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.00
No. of reflections3708
No. of parameters256
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20
Absolute structureFlack x determined using 1338 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.00 (4)

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2001), SHELXS87 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work. LSN acknowledges COLCIENCIAS for a fellowship.

References

First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHutchins, R. O., Kopp, L. D. & Eliel, E. L. (1968). J. Am. Chem. Soc. 90, 7174–7175.  CrossRef CAS Web of Science Google Scholar
First citationKober, E., Nerkowski, T., Janas, Z. & Jerzykiewicz, L. B. (2012). Dalton Trans. 41, 5188–5191.  CSD CrossRef CAS PubMed Google Scholar
First citationKoll, A., Karpfen, A. & Wolschann, P. (2006). J. Mol. Struct. 790, 55–64.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S. & Bolte, M. (2014). Acta Cryst. E70, o243.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170–o171.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043–o3044.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A. & Quevedo, R. (2004). Tetrahedron Lett. 45, 8335–8338.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416–1420.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Quevedo, R., Navarro, M. A. & Maldonado, M. (2004). Synth. Commun. 34, 2479–2485.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2013). Acta Cryst. E69, o217.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Col. Quím. 34, 105–115.  CAS Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 312-314
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds