organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Vinclozolin: 3-(3,5-di­chloro­phen­yl)-5-ethenyl-5-methyl-1,3-oxazolidine-2,4-dione

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: jekim@gnu.ac.kr, thkim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 30 May 2014; accepted 2 June 2014; online 7 June 2014)

In the title compound, C12H9Cl2NO3, which is the fungicide vinclozolin, the dihedral angle between the oxazolidine ring mean plane [r.m.s. deviation = 0.029 Å] and the benzene ring is 77.55 (8)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains along [010]. The chains are linked by short Cl⋯Cl contacts [3.4439 (3) and 3.5798 (3) Å], resulting in a three-dimensional architecture.

Related literature

For information on the toxicity and fungicidal properties of the title compound, see: van Ravenzwaay et al. (2013[Ravenzwaay, B. van, Kolle, S. N., Ramirez, T. & Kamp, H. G. (2013). Toxicol. Lett. 223, 271-279.]); Pothuluri et al. (2000[Pothuluri, J. V., Freeman, J. P., Heinze, T. M., Beger, R. D. & Cerniglia, C. E. (2000). J. Agric. Food Chem. 48, 6138-6148.]). For a related crystal structure, see: Merino et al. (2010[Merino, O., Santoyo, B. M., Montiel, L. E., Jimenez-Vazquez, H. A., Zepeda, L. G. & Tamariz, J. (2010). Tetrahedron Lett. 51, 3738-3742.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9Cl2NO3

  • Mr = 286.10

  • Monoclinic, P 21 /n

  • a = 15.0727 (12) Å

  • b = 5.2947 (5) Å

  • c = 15.5390 (12) Å

  • β = 100.916 (5)°

  • V = 1217.66 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 173 K

  • 0.26 × 0.21 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.974

  • 7915 measured reflections

  • 2103 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.06

  • 2103 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.59 3.454 (3) 151
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound vinclozolin, C12H9Cl2NO3, is a systemic dicarboximide fungicide used widely for the control of diseases in grapes, fruits, vegetables, ornamental plants, and turfgrass (Pothuluri et al., 2000; van Ravenzwaay et al., 2013), and its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angle between the oxazolidine ring and the phenyl ring is 77.55 (8)°. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Merino et al., 2010).

In the crystal structure (Fig. 2), an intermolecular C—H···O hydrogen bond is observed (Table 1). In addition, short Cl···Cl contacts [Cl1···Cl1ii, 3.4439 (3) Å and Cl2···Cl2iii, 3.5798 (3) Å] are present. [symmetry codes: (ii), -x, y, -z + 1, and (iii), -x - 1/2, y - 1/2, -z + 1/2].

Related literature top

For information on the toxicity and fungicidal properties of the title compound, see: van Ravenzwaay et al. (2013); Pothuluri et al. (2000). For a related crystal structure, see: Merino et al. (2010).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a solution in CH2Cl2 gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for Csp2—H, and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Structure description top

The title compound vinclozolin, C12H9Cl2NO3, is a systemic dicarboximide fungicide used widely for the control of diseases in grapes, fruits, vegetables, ornamental plants, and turfgrass (Pothuluri et al., 2000; van Ravenzwaay et al., 2013), and its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angle between the oxazolidine ring and the phenyl ring is 77.55 (8)°. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Merino et al., 2010).

In the crystal structure (Fig. 2), an intermolecular C—H···O hydrogen bond is observed (Table 1). In addition, short Cl···Cl contacts [Cl1···Cl1ii, 3.4439 (3) Å and Cl2···Cl2iii, 3.5798 (3) Å] are present. [symmetry codes: (ii), -x, y, -z + 1, and (iii), -x - 1/2, y - 1/2, -z + 1/2].

For information on the toxicity and fungicidal properties of the title compound, see: van Ravenzwaay et al. (2013); Pothuluri et al. (2000). For a related crystal structure, see: Merino et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound with C—H···O hydrogen bonds and weak intermolecular Cl···Cl interactions shown as dashed lines.
3-(3,5-Dichlorophenyl)-5-ethenyl-5-methyl-1,3-oxazolidine-2,4-dione top
Crystal data top
C12H9Cl2NO3F(000) = 584
Mr = 286.10Dx = 1.561 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4964 reflections
a = 15.0727 (12) Åθ = 2.7–28.1°
b = 5.2947 (5) ŵ = 0.53 mm1
c = 15.5390 (12) ÅT = 173 K
β = 100.916 (5)°Plate, colourless
V = 1217.66 (18) Å30.26 × 0.21 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2103 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1517
Tmin = 0.874, Tmax = 0.974k = 65
7915 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.9965P]
where P = (Fo2 + 2Fc2)/3
2103 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C12H9Cl2NO3V = 1217.66 (18) Å3
Mr = 286.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0727 (12) ŵ = 0.53 mm1
b = 5.2947 (5) ÅT = 173 K
c = 15.5390 (12) Å0.26 × 0.21 × 0.05 mm
β = 100.916 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2103 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1720 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.974Rint = 0.030
7915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.06Δρmax = 0.87 e Å3
2103 reflectionsΔρmin = 0.30 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01684 (5)0.22311 (15)0.42408 (5)0.0385 (2)
Cl20.16975 (5)0.99394 (15)0.25170 (5)0.0376 (2)
O10.19649 (12)0.9720 (4)0.22124 (12)0.0290 (5)
O20.06758 (13)0.2867 (4)0.06863 (13)0.0359 (5)
O30.23229 (11)0.7650 (3)0.10675 (11)0.0240 (4)
N10.11223 (13)0.6312 (4)0.15799 (13)0.0229 (5)
C10.06127 (17)0.4411 (5)0.28171 (17)0.0255 (6)
H10.10900.32160.28720.031*
C20.00147 (18)0.4404 (5)0.33904 (17)0.0259 (6)
C30.06989 (17)0.6085 (6)0.33076 (17)0.0274 (6)
H30.11100.60390.37020.033*
C40.07979 (17)0.7832 (5)0.26364 (17)0.0271 (6)
C50.02013 (17)0.7960 (5)0.20586 (17)0.0262 (6)
H50.02680.91990.16090.031*
C60.04936 (16)0.6214 (5)0.21620 (16)0.0233 (6)
C70.18216 (17)0.8082 (5)0.16778 (16)0.0224 (6)
C80.11644 (17)0.4631 (5)0.09092 (17)0.0259 (6)
C90.19567 (18)0.5543 (5)0.04975 (17)0.0258 (6)
C100.1611 (2)0.6600 (7)0.04096 (18)0.0392 (8)
H10A0.11450.78720.03800.059*
H10B0.13520.52310.08030.059*
H10C0.21110.73810.06330.059*
C110.26703 (18)0.3557 (6)0.05662 (18)0.0297 (7)
H110.29540.30180.11350.036*
C120.2928 (3)0.2518 (8)0.0106 (2)0.0583 (10)
H12A0.26570.30160.06830.070*
H12B0.33860.12620.00190.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0470 (5)0.0333 (5)0.0372 (4)0.0032 (3)0.0134 (3)0.0124 (3)
Cl20.0288 (4)0.0354 (5)0.0501 (5)0.0108 (3)0.0113 (3)0.0021 (3)
O10.0311 (10)0.0223 (11)0.0338 (10)0.0024 (8)0.0068 (8)0.0051 (9)
O20.0336 (11)0.0318 (13)0.0446 (11)0.0144 (10)0.0132 (9)0.0112 (10)
O30.0245 (9)0.0209 (11)0.0281 (9)0.0056 (8)0.0090 (8)0.0028 (8)
N10.0200 (11)0.0235 (13)0.0260 (11)0.0028 (9)0.0064 (9)0.0023 (9)
C10.0207 (13)0.0237 (16)0.0320 (14)0.0007 (11)0.0048 (11)0.0012 (12)
C20.0298 (14)0.0213 (16)0.0268 (13)0.0023 (12)0.0056 (11)0.0014 (11)
C30.0248 (14)0.0273 (17)0.0323 (14)0.0039 (12)0.0109 (12)0.0039 (12)
C40.0219 (13)0.0246 (16)0.0349 (15)0.0020 (11)0.0055 (11)0.0032 (12)
C50.0256 (14)0.0244 (16)0.0284 (13)0.0020 (12)0.0047 (11)0.0026 (12)
C60.0209 (13)0.0227 (15)0.0271 (13)0.0012 (11)0.0061 (11)0.0034 (11)
C70.0216 (13)0.0190 (15)0.0259 (13)0.0002 (11)0.0023 (11)0.0015 (12)
C80.0220 (13)0.0269 (17)0.0286 (14)0.0010 (12)0.0044 (11)0.0016 (12)
C90.0286 (14)0.0241 (16)0.0265 (13)0.0092 (12)0.0097 (11)0.0052 (11)
C100.0396 (17)0.044 (2)0.0324 (15)0.0095 (15)0.0035 (13)0.0032 (14)
C110.0310 (15)0.0277 (17)0.0342 (14)0.0048 (13)0.0158 (12)0.0030 (12)
C120.060 (2)0.058 (3)0.062 (2)0.006 (2)0.0230 (19)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C21.734 (3)C3—H30.9500
Cl2—C41.739 (3)C4—C51.388 (4)
O1—C71.192 (3)C5—C61.383 (4)
O2—C81.199 (3)C5—H50.9500
O3—C71.340 (3)C8—C91.536 (4)
O3—C91.466 (3)C9—C111.494 (4)
N1—C81.381 (3)C9—C101.515 (4)
N1—C71.397 (3)C10—H10A0.9800
N1—C61.430 (3)C10—H10B0.9800
C1—C21.382 (4)C10—H10C0.9800
C1—C61.382 (4)C11—C121.303 (4)
C1—H10.9500C11—H110.9500
C2—C31.383 (4)C12—H12A0.9500
C3—C41.381 (4)C12—H12B0.9500
C7—O3—C9111.06 (18)O1—C7—N1126.7 (2)
C8—N1—C7111.9 (2)O3—C7—N1108.9 (2)
C8—N1—C6125.8 (2)O2—C8—N1127.3 (2)
C7—N1—C6122.2 (2)O2—C8—C9127.4 (2)
C2—C1—C6117.9 (2)N1—C8—C9105.2 (2)
C2—C1—H1121.1O3—C9—C11108.0 (2)
C6—C1—H1121.1O3—C9—C10107.8 (2)
C1—C2—C3121.9 (2)C11—C9—C10116.3 (2)
C1—C2—Cl1118.9 (2)O3—C9—C8102.78 (19)
C3—C2—Cl1119.2 (2)C11—C9—C8110.8 (2)
C4—C3—C2118.2 (2)C10—C9—C8110.2 (2)
C4—C3—H3120.9C9—C10—H10A109.5
C2—C3—H3120.9C9—C10—H10B109.5
C3—C4—C5122.1 (3)H10A—C10—H10B109.5
C3—C4—Cl2118.8 (2)C9—C10—H10C109.5
C5—C4—Cl2119.2 (2)H10A—C10—H10C109.5
C6—C5—C4117.5 (3)H10B—C10—H10C109.5
C6—C5—H5121.3C12—C11—C9124.0 (3)
C4—C5—H5121.3C12—C11—H11118.0
C1—C6—C5122.5 (2)C9—C11—H11118.0
C1—C6—N1118.8 (2)C11—C12—H12A120.0
C5—C6—N1118.7 (2)C11—C12—H12B120.0
O1—C7—O3124.4 (2)H12A—C12—H12B120.0
C6—C1—C2—C31.8 (4)C6—N1—C7—O12.6 (4)
C6—C1—C2—Cl1177.9 (2)C8—N1—C7—O31.4 (3)
C1—C2—C3—C41.0 (4)C6—N1—C7—O3177.2 (2)
Cl1—C2—C3—C4178.7 (2)C7—N1—C8—O2177.7 (3)
C2—C3—C4—C50.8 (4)C6—N1—C8—O22.1 (4)
C2—C3—C4—Cl2179.4 (2)C7—N1—C8—C93.6 (3)
C3—C4—C5—C61.7 (4)C6—N1—C8—C9179.2 (2)
Cl2—C4—C5—C6178.5 (2)C7—O3—C9—C11120.7 (2)
C2—C1—C6—C50.8 (4)C7—O3—C9—C10112.9 (2)
C2—C1—C6—N1177.9 (2)C7—O3—C9—C83.6 (3)
C4—C5—C6—C10.8 (4)O2—C8—C9—O3177.1 (3)
C4—C5—C6—N1179.6 (2)N1—C8—C9—O34.2 (3)
C8—N1—C6—C174.6 (3)O2—C8—C9—C1161.9 (4)
C7—N1—C6—C1100.6 (3)N1—C8—C9—C11119.3 (2)
C8—N1—C6—C5106.7 (3)O2—C8—C9—C1068.3 (4)
C7—N1—C6—C578.2 (3)N1—C8—C9—C10110.5 (3)
C9—O3—C7—O1178.6 (2)O3—C9—C11—C12129.1 (3)
C9—O3—C7—N11.6 (3)C10—C9—C11—C127.9 (4)
C8—N1—C7—O1178.4 (3)C8—C9—C11—C12119.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.593.454 (3)151
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.593.454 (3)151
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012M2B2A4029305).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMerino, O., Santoyo, B. M., Montiel, L. E., Jimenez-Vazquez, H. A., Zepeda, L. G. & Tamariz, J. (2010). Tetrahedron Lett. 51, 3738–3742.  Web of Science CSD CrossRef CAS Google Scholar
First citationPothuluri, J. V., Freeman, J. P., Heinze, T. M., Beger, R. D. & Cerniglia, C. E. (2000). J. Agric. Food Chem. 48, 6138–6148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRavenzwaay, B. van, Kolle, S. N., Ramirez, T. & Kamp, H. G. (2013). Toxicol. Lett. 223, 271–279.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds