organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{[(Z)-Cyclo­pentyl­­idene]amino}-3-phenyl­thio­urea

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 27 March 2014; accepted 29 March 2014; online 5 April 2014)

The sample of the title compound, C12H15N3S, chosen for study consisted of triclinic crystals twinned by a 180° rotation about the a axis. The five-membered ring adopts a twisted conformation. The dihedral angle between the phenyl ring and the mean plane of the thio­urea unit is 78.22 (8)°. In the crystal, molecules are linked via pairs of N—H⋯S hydrogen bonds forming inversion dimers.

Related literature

For the use of thio­urea as a building-block in the synthesis of heterocycles, see: Yin et al. (2008[Yin, B., Liu, Zh., Yi, M. & Zhang, J. (2008). Tetrahedron Lett. 49, 3687-3690.]). For the diverse biological properties of thio­urea-containing compounds and their metal complexes, see: Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]); Solomon et al. (2010[Solomon, V. R., Haq, W., Smilkstein, M., Srivastava, K., Puri, S. K. & Katti, S. B. (2010). Eur. J. Med. Chem. 45, 4990-4996.]); Karakuş & Rollas (2002[Karakuş, S. & Rollas, S. (2002). Il Farmaco, 57, 577-581.]); Abdullah & Salh (2010[Abdullah, B. H. & Salh, Y. M. (2010). Orient. J. Chem. 26, 763-773.]). For the synthesis of the title compound, see: Akkurt et al. (2014[Akkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o359.]). For structural studies on thio­urea derivatives, see: Struga et al. (2009[Struga, M., Kossakowski, J. E., Koziol, A. & La Colla, P. (2009). Eur. J. Med. Chem. 44, 4960-4969.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3S

  • Mr = 233.33

  • Triclinic, [P \overline 1]

  • a = 7.3997 (2) Å

  • b = 7.5790 (1) Å

  • c = 11.4657 (2) Å

  • α = 93.0220 (9)°

  • β = 105.4530 (9)°

  • γ = 104.7070 (8)°

  • V = 594.45 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.21 mm−1

  • T = 100 K

  • 0.21 × 0.10 × 0.04 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.]) Tmin = 0.65, Tmax = 0.92

  • 11363 measured reflections

  • 11360 independent reflections

  • 9454 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.03

  • 11360 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.91 2.56 3.4636 (18) 172
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

For the past few decades, thiourea derivatives have attracted great attention not only because they are important building blocks in the synthesis of heterocycles and organo-metal complexes (Yin et al., 2008) but also due to their broad spectrum of biological activities such as anti-bacterial, anti-cancer (Saeed et al., 2010), anti-malarial (Solomon et al., 2010), anti-tuberculosis (Karakuş & Rollas 2002) anti-convulsion, analgesic and HDL-elevating properties. In addition, metal complex of thiourea derivatives exhibit anti-inflammatory, anti-cancer and anti-fungal activities (Abdullah & Salh, 2010). Furthermore, the thiourea structure contains a central hydrophilic part and two hydrophobic moieties forming a butterfly-like conformation. This conformation is a part of the structure of an anti-HIV agent (Struga et al., 2009).

Fig. 1 shows a perspective view of the title compound (I). The five-membered ring (C1–C5) adopts a twisted conformation, [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.316 (2) Å and ϕ(2) = 85.7 (4)°]. The dihedral angle between the phenyl ring and the least-squares plane of the thiourea moiety is 78.22 (8)°.

In the crystal structure, the molecules are connected by weak N—H···S interactions (Fig. 2 and Table 1).

Related literature top

For the use of thiourea as a building-block in the synthesis of heterocycles, see: Yin et al. (2008). For the diverse biological properties of thiourea-containing compounds and their metal complexes, see: Saeed et al. (2010); Solomon et al. (2010); Karakuş & Rollas (2002); Abdullah & Salh (2010). For the synthesis of the title compound, see: Akkurt et al. (2014). For structural studies on thiourea derivatives, see: Struga et al. (2009). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared according to our previously reported method (Akkurt et al., 2014). Colourless crystals suitable for X-ray diffraction were obtained by crystallization of (I) from ethanol.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The crystal used proved to be twinned by a 180° rotation about a, CELL_NOW, (Sheldrick, 2008a) and the final structure was refined as a 2-component twin with a refined value for the minor twin fraction of 0.23070 (18).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013) and CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008a); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Perspective view of I with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis and showing N—H···S interactions.
1-{[(Z)-Cyclopentylidene]amino}-3-phenylthiourea top
Crystal data top
C12H15N3SZ = 2
Mr = 233.33F(000) = 248
Triclinic, P1Dx = 1.304 Mg m3
a = 7.3997 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.5790 (1) ÅCell parameters from 8773 reflections
c = 11.4657 (2) Åθ = 4.0–70.0°
α = 93.0220 (9)°µ = 2.21 mm1
β = 105.4530 (9)°T = 100 K
γ = 104.7070 (8)°Plate, colourless
V = 594.45 (2) Å30.21 × 0.10 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
11360 independent reflections
Radiation source: INCOATEC IµS micro–focus source9454 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4167 pixels mm-1θmax = 70.0°, θmin = 4.0°
ω scansh = 88
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 99
Tmin = 0.65, Tmax = 0.92l = 1313
11363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.039P)2 + 0.1956P]
where P = (Fo2 + 2Fc2)/3
11360 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H15N3Sγ = 104.7070 (8)°
Mr = 233.33V = 594.45 (2) Å3
Triclinic, P1Z = 2
a = 7.3997 (2) ÅCu Kα radiation
b = 7.5790 (1) ŵ = 2.21 mm1
c = 11.4657 (2) ÅT = 100 K
α = 93.0220 (9)°0.21 × 0.10 × 0.04 mm
β = 105.4530 (9)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
11360 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
9454 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.92Rint = 0.026
11363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
11360 reflectionsΔρmin = 0.20 e Å3
146 parameters
Special details top

Experimental. Analysis of 985 reflections having I/σ(I) > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008a) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89113 (8)1.01459 (7)0.81488 (4)0.02372 (18)
N10.7313 (2)0.5215 (2)0.90890 (15)0.0216 (4)
N20.8223 (3)0.7082 (2)0.91604 (15)0.0213 (4)
H20.88590.78240.98800.026*
N30.7179 (2)0.6693 (2)0.70759 (14)0.0226 (4)
H30.66680.54830.71260.027*
C10.7350 (3)0.4552 (3)1.01002 (18)0.0201 (5)
C20.8303 (3)0.5512 (3)1.13816 (17)0.0221 (5)
H2A0.79890.66951.14800.027*
H2B0.97390.57491.16000.027*
C30.7435 (3)0.4160 (3)1.21708 (19)0.0274 (5)
H3A0.84000.42441.29730.033*
H3B0.62580.44241.23060.033*
C40.6913 (3)0.2257 (3)1.14529 (19)0.0280 (5)
H4A0.58200.13991.16560.034*
H4B0.80490.17481.16350.034*
C50.6317 (3)0.2559 (3)1.01077 (19)0.0242 (5)
H5A0.67420.17360.96040.029*
H5B0.48850.23260.97910.029*
C60.8052 (3)0.7858 (3)0.81110 (18)0.0201 (5)
C70.6780 (3)0.7262 (3)0.58782 (18)0.0240 (5)
C80.8249 (4)0.7674 (3)0.5318 (2)0.0358 (6)
H80.95270.76190.57290.043*
C90.7831 (5)0.8171 (4)0.4146 (2)0.0453 (7)
H90.88270.84580.37510.054*
C100.5971 (5)0.8248 (3)0.3557 (2)0.0448 (7)
H100.56900.85820.27550.054*
C110.4526 (4)0.7845 (3)0.4123 (2)0.0410 (7)
H110.32490.79060.37140.049*
C120.4930 (4)0.7346 (3)0.5295 (2)0.0309 (5)
H120.39330.70660.56900.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0326 (3)0.0182 (3)0.0185 (3)0.0051 (2)0.0058 (2)0.0045 (2)
N10.0248 (10)0.0173 (9)0.0231 (9)0.0043 (8)0.0089 (8)0.0044 (7)
N20.0278 (10)0.0178 (9)0.0159 (9)0.0025 (7)0.0058 (7)0.0029 (7)
N30.0303 (10)0.0178 (9)0.0165 (9)0.0016 (8)0.0056 (8)0.0036 (7)
C10.0203 (11)0.0204 (11)0.0229 (11)0.0082 (9)0.0091 (9)0.0057 (9)
C20.0244 (11)0.0220 (11)0.0208 (11)0.0067 (9)0.0070 (9)0.0062 (9)
C30.0293 (12)0.0298 (12)0.0225 (11)0.0056 (10)0.0078 (10)0.0104 (9)
C40.0264 (12)0.0257 (12)0.0333 (13)0.0064 (10)0.0097 (10)0.0135 (10)
C50.0263 (12)0.0198 (11)0.0276 (12)0.0053 (9)0.0104 (10)0.0053 (9)
C60.0197 (11)0.0235 (11)0.0196 (10)0.0076 (9)0.0076 (9)0.0062 (9)
C70.0369 (13)0.0156 (10)0.0161 (10)0.0031 (10)0.0064 (10)0.0015 (8)
C80.0437 (15)0.0386 (14)0.0242 (12)0.0061 (12)0.0133 (11)0.0051 (10)
C90.073 (2)0.0360 (14)0.0241 (13)0.0004 (14)0.0238 (14)0.0033 (11)
C100.088 (2)0.0192 (12)0.0158 (12)0.0041 (13)0.0058 (14)0.0039 (9)
C110.0595 (18)0.0246 (13)0.0279 (13)0.0113 (12)0.0054 (13)0.0043 (10)
C120.0402 (15)0.0224 (11)0.0269 (12)0.0075 (11)0.0054 (11)0.0040 (9)
Geometric parameters (Å, º) top
S1—C61.682 (2)C4—C51.533 (3)
N1—C11.284 (2)C4—H4A0.9900
N1—N21.392 (2)C4—H4B0.9900
N2—C61.357 (2)C5—H5A0.9900
N2—H20.9098C5—H5B0.9900
N3—C61.341 (3)C7—C121.373 (3)
N3—C71.439 (2)C7—C81.382 (3)
N3—H30.9098C8—C91.391 (3)
C1—C21.503 (3)C8—H80.9500
C1—C51.512 (3)C9—C101.379 (4)
C2—C31.535 (3)C9—H90.9500
C2—H2A0.9900C10—C111.373 (4)
C2—H2B0.9900C10—H100.9500
C3—C41.526 (3)C11—C121.391 (3)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C12—H120.9500
C1—N1—N2117.12 (17)C1—C5—C4104.55 (17)
C6—N2—N1118.43 (17)C1—C5—H5A110.8
C6—N2—H2118.3C4—C5—H5A110.8
N1—N2—H2123.1C1—C5—H5B110.8
C6—N3—C7123.96 (16)C4—C5—H5B110.8
C6—N3—H3118.7H5A—C5—H5B108.9
C7—N3—H3116.9N3—C6—N2115.83 (18)
N1—C1—C2128.72 (18)N3—C6—S1123.58 (14)
N1—C1—C5120.66 (18)N2—C6—S1120.59 (16)
C2—C1—C5110.61 (16)C12—C7—C8120.89 (19)
C1—C2—C3104.01 (17)C12—C7—N3119.41 (19)
C1—C2—H2A111.0C8—C7—N3119.68 (19)
C3—C2—H2A111.0C7—C8—C9119.1 (2)
C1—C2—H2B111.0C7—C8—H8120.4
C3—C2—H2B111.0C9—C8—H8120.4
H2A—C2—H2B109.0C10—C9—C8120.0 (3)
C4—C3—C2105.41 (17)C10—C9—H9120.0
C4—C3—H3A110.7C8—C9—H9120.0
C2—C3—H3A110.7C11—C10—C9120.4 (2)
C4—C3—H3B110.7C11—C10—H10119.8
C2—C3—H3B110.7C9—C10—H10119.8
H3A—C3—H3B108.8C10—C11—C12120.0 (2)
C3—C4—C5105.07 (16)C10—C11—H11120.0
C3—C4—H4A110.7C12—C11—H11120.0
C5—C4—H4A110.7C7—C12—C11119.6 (2)
C3—C4—H4B110.7C7—C12—H12120.2
C5—C4—H4B110.7C11—C12—H12120.2
H4A—C4—H4B108.8
C1—N1—N2—C6173.97 (17)N1—N2—C6—N36.8 (3)
N2—N1—C1—C21.9 (3)N1—N2—C6—S1173.42 (14)
N2—N1—C1—C5177.10 (17)C6—N3—C7—C12100.6 (2)
N1—C1—C2—C3166.7 (2)C6—N3—C7—C880.9 (3)
C5—C1—C2—C312.4 (2)C12—C7—C8—C90.3 (3)
C1—C2—C3—C427.7 (2)N3—C7—C8—C9178.2 (2)
C2—C3—C4—C532.9 (2)C7—C8—C9—C100.0 (4)
N1—C1—C5—C4173.24 (18)C8—C9—C10—C110.3 (4)
C2—C1—C5—C47.6 (2)C9—C10—C11—C120.3 (4)
C3—C4—C5—C124.8 (2)C8—C7—C12—C110.3 (3)
C7—N3—C6—N2176.88 (18)N3—C7—C12—C11178.16 (19)
C7—N3—C6—S13.4 (3)C10—C11—C12—C70.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.912.563.4636 (18)172
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.912.563.4636 (18)172
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

References

First citationAbdullah, B. H. & Salh, Y. M. (2010). Orient. J. Chem. 26, 763–773.  CAS Google Scholar
First citationAkkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o359.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKarakuş, S. & Rollas, S. (2002). Il Farmaco, 57, 577–581.  Web of Science PubMed Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSolomon, V. R., Haq, W., Smilkstein, M., Srivastava, K., Puri, S. K. & Katti, S. B. (2010). Eur. J. Med. Chem. 45, 4990–4996.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStruga, M., Kossakowski, J. E., Koziol, A. & La Colla, P. (2009). Eur. J. Med. Chem. 44, 4960–4969.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYin, B., Liu, Zh., Yi, M. & Zhang, J. (2008). Tetrahedron Lett. 49, 3687–3690.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds