organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Benz­yl(4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]meth­­oxy}benzyl­­idene)amine

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 February 2014; accepted 5 February 2014; online 8 February 2014)

The triazole ring of the title compound, C20H20N4O, is normal to the central benzene ring, making a dihedral angle of 90.0 (3)°, and forms a dihedral angle of 69.2 (3)° with the terminal phenyl ring. The dihedral angle between the phenyl and benzene rings is 88.2 (3)°. The atoms of the terminal propenyl group are disordered over two sets of sites, with a site-occupancy ratio of 0.663 (13):0.337 (13). In the crystal, C—H⋯N contacts lead to the formation of a layer structure extending parallel to (011). Two weak C—H⋯π inter­actions are also observed.

Related literature

For background to the importance of Schiff bases and triazole derivatives and their uses, see: Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, p. 715. Oxford: Pergamon.]); Dikusar & Kozlov (2006[Dikusar, E. A. & Kozlov, N. G. (2006). Russ. J. Org. Chem. 42, 369-375.]); Macho et al. (2004[Macho, V., Kralik, M., Hudec, J. & Cingelova, J. (2004). J. Mol. Catal. A Chem. 209, 69-73.]); Yap & Weinreb (2006[Yap, A. H. & Weinreb, S. M. (2006). Tetrahedron Lett. 47, 3035-3038.]); Yu et al. (2006[Yu, H.-X., Ma, J.-F., Xu, G.-H., Li, S.-L., Yang, J., Liu, Y.-Y. & Cheng, Y.-X. (2006). J. Organomet. Chem. 691, 3531-3539.]). For similar structures, see: Akkurt et al. (2013a[Akkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013a). Acta Cryst. E69, o247.],b[Akkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Büyükgüngör, O. (2013b). Acta Cryst. E69, o1576.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N4O

  • Mr = 332.40

  • Monoclinic, P 21 /c

  • a = 8.5873 (9) Å

  • b = 20.0601 (13) Å

  • c = 10.7450 (9) Å

  • β = 97.241 (8)°

  • V = 1836.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.57 × 0.24 × 0.05 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.971, Tmax = 0.996

  • 10252 measured reflections

  • 3236 independent reflections

  • 981 reflections with I > 2σ(I)

  • Rint = 0.137

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.117

  • S = 0.93

  • 3236 reflections

  • 236 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N3i 0.93 2.54 3.379 (7) 150
C18B—H18D⋯N1ii 0.97 2.52 3.42 (2) 153
C13—H13⋯Cg2iii 0.93 2.88 3.638 (6) 139
C18B—H18CCg2iv 0.97 2.95 3.706 (18) 135
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases result from the condensation of primary amines with carbonyl compounds to give imines containing a C=N bond (Calligaris & Randaccio 1987). There is a continuing interest in the chemistry of Schiff bases and their complexes because of their uses as biologically active substances, liquid crystals, dyes, luminophores and polymer stabilizers (Dikusar & Kozlov 2006). Schiff bases are used as substrates in the preparation of a large number of bioactive and industrial compounds via ring closure, cycloaddition, replacement reactions, cyclization and enantioselective oxidation (Macho et al., 2004). 1,2,3-Triazoles are nitrogen heterocycles, that have a number of important industrial, agrochemical, and pharmaceutical uses (Yap & Weinreb 2006). Triazole derivatives also display a broad range of biological activity, showing potential applications as antitumor, antibacterial, antifungal and antiviral agents (Yu et al., 2006). Therefore, compound (I), which that contains both of these features, was synthesized and its X-ray structure is reported here.

In the title compound (I, Fig. 1), the C1–C6 phenyl and C9–C14 benzene rings make a dihedral angle of 88.2 (3)° with each other. The plane of the five-membered triazole ring (N2–N4/C16/C17) of (I) lies perpendicular to the plane of the central benzene ring (C9–C14) with a dihedral angle of 90.0 (3)° and, forms dihedral angles of 69.2 (3)°, with the C1–C6 phenyl ring.

The C6–C7–N1–C8, C12–O1–C15–C16, N4–C18A–C19A–C20A and N4–C18B–C19B–C20B torsion angles are 179.7 (4), -174.2 (3), -174.2 (3) and 151.9 (14)°, respectively. The values of the bond lengths and bond angles in (I) are comparable to those reported for the similar compounds (Akkurt et al., 2013a,b).

In the crystal structure, intermolecular C—H···N contacts (Table 1; Figs. 2 & 3) connect the adjacent molecules, forming a layer structure extending parallel to the (011) plane. In addition, weak two C—H···π interactions (Table 1) contribute to the stabilization of the molecular packing.

Related literature top

For background to the importance of Schiff bases and triazole derivatives and their uses, see: Calligaris & Randaccio (1987); Dikusar & Kozlov (2006); Macho et al. (2004); Yap & Weinreb (2006); Yu et al. (2006). For similar structures, see: Akkurt et al. (2013a,b).

Experimental top

Reaction of 4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (1.00 mmol) with phenylmethanamine (1.00 mmol) in refluxing ethanol gave the title compound (I). Recrystallization from ethanol gave colourless prisms in 75% yield. Mp: 373–375 K. IR (KBr, cm-1):1635 (C=N). 1H-NMR (250 MHz, CDCl3), δ (p.p.m.): 4.78 (CH2, s, 2H), 4.96 (d, 2H, J=5 Hz), 5.24 (s, 2H), 5.35 (m, 2H), 6.01 (m, 1H), 7.01 (aromatic H, d, 2H, J=7.5 Hz), 6.24–7.33 (aromatic H, m, 5H), 7.72 (aromatic H, d, 2H, J=10 Hz), 7.61 (H triazole, s, 1H), 8.32 (HCN, s, 1H). 13CNMR (62.9 MHz, CDCl3), δ (p.p.m): 52.7, 60.0 (CH2—N), 64.9 (CH2—O), 114.7–143.9 (aromatic carbons and C=C triazole), 161.1 (C=N).

Refinement top

All H atoms were positioned geometrically and were refined using a riding model with Uiso(H) = 1.2Ueq(C). The atoms of the propenyl group are disordered over two positions with a site-occupancy ratio of 0.663 (13): 0.337 (13). The small proportion of reflections observed is a result of the rather poor quality of the very thin crystals obtained.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title molecule (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only major disorder component is shown.
[Figure 2] Fig. 2. Hydrogen bonding and molecular packing of (I) viewed along the a axis. Only H atoms involved in H bonding and atoms of the major disorder component are shown.
[Figure 3] Fig. 3. Hydrogen bonding and molecular packing of (I) viewed along the b axis. Only H atoms involved in H bonding and atoms of the major disorder component are shown.
(E)-Benzyl(4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]methoxy}benzylidene)amine top
Crystal data top
C20H20N4OF(000) = 704
Mr = 332.40Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4967 reflections
a = 8.5873 (9) Åθ = 1.9–27.9°
b = 20.0601 (13) ŵ = 0.08 mm1
c = 10.7450 (9) ÅT = 296 K
β = 97.241 (8)°Prism, colourless
V = 1836.2 (3) Å30.57 × 0.24 × 0.05 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
3236 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus981 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.137
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 910
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2323
Tmin = 0.971, Tmax = 0.996l = 1212
10252 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3236 reflectionsΔρmax = 0.16 e Å3
236 parametersΔρmin = 0.11 e Å3
Crystal data top
C20H20N4OV = 1836.2 (3) Å3
Mr = 332.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5873 (9) ŵ = 0.08 mm1
b = 20.0601 (13) ÅT = 296 K
c = 10.7450 (9) Å0.57 × 0.24 × 0.05 mm
β = 97.241 (8)°
Data collection top
Stoe IPDS 2
diffractometer
3236 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
981 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.996Rint = 0.137
10252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0796 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.93Δρmax = 0.16 e Å3
3236 reflectionsΔρmin = 0.11 e Å3
236 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3201 (4)0.56064 (18)0.0649 (3)0.0860 (16)
N10.2214 (5)0.2770 (2)0.3186 (4)0.089 (2)
N20.2721 (5)0.6732 (2)0.1458 (5)0.091 (2)
N30.3496 (6)0.7255 (3)0.1800 (4)0.092 (2)
N40.4179 (5)0.7540 (2)0.0749 (5)0.0762 (17)
C10.0466 (7)0.1614 (3)0.1724 (7)0.092 (3)
C20.0451 (9)0.1104 (4)0.0881 (6)0.114 (3)
C30.1458 (10)0.0586 (4)0.1125 (9)0.125 (4)
C40.2454 (8)0.0562 (4)0.2212 (9)0.127 (4)
C50.2463 (8)0.1079 (4)0.3075 (6)0.104 (3)
C60.1454 (7)0.1609 (3)0.2823 (6)0.075 (3)
C70.1495 (7)0.2187 (3)0.3719 (5)0.099 (3)
C80.1315 (6)0.3256 (3)0.2899 (5)0.082 (3)
C90.1839 (7)0.3873 (3)0.2328 (5)0.075 (2)
C100.3292 (6)0.3939 (3)0.1924 (5)0.079 (2)
C110.3695 (6)0.4523 (3)0.1362 (5)0.077 (2)
C120.2673 (6)0.5053 (3)0.1221 (5)0.074 (2)
C130.1217 (6)0.4994 (3)0.1635 (5)0.084 (3)
C140.0817 (6)0.4405 (3)0.2180 (5)0.084 (2)
C150.2156 (6)0.6170 (3)0.0470 (5)0.090 (3)
C160.2921 (6)0.6707 (3)0.0195 (6)0.074 (2)
C170.3832 (6)0.7217 (3)0.0260 (5)0.082 (3)
C18B0.512 (2)0.8153 (7)0.072 (2)0.090 (4)0.663 (13)
C19B0.4081 (17)0.8751 (6)0.0933 (16)0.112 (6)0.663 (13)
C20B0.415 (4)0.9226 (11)0.0118 (19)0.174 (9)0.663 (13)
C20A0.382 (8)0.918 (2)0.077 (4)0.174 (9)0.337 (13)
C18A0.503 (6)0.8150 (14)0.104 (4)0.090 (4)0.337 (13)
C19A0.458 (3)0.8683 (12)0.015 (3)0.112 (6)0.337 (13)
H20.024400.111200.014400.1370*
H50.314700.106700.381900.1250*
H30.146600.024300.054300.1500*
H40.312700.020100.237800.1530*
H10.021200.197200.154500.1100*
H100.400500.358800.202800.0950*
H110.467000.455900.107700.0930*
H130.051300.534900.154700.1010*
H140.016500.436600.245200.1010*
H15A0.192100.633200.127600.1080*
H15B0.117900.603800.002100.1080*
H170.415000.732100.109600.0990*
H18C0.581400.813200.136500.1080*0.663 (13)
H18D0.576200.819100.008700.1080*0.663 (13)
H19B0.337800.878100.166300.1340*0.663 (13)
H20C0.484600.920000.061500.2100*0.663 (13)
H20D0.349200.959500.026400.2100*0.663 (13)
H7A0.043600.229500.387500.1180*
H7B0.209700.206600.451200.1180*
H80.027600.322600.305300.0980*
H18A0.472400.828300.190400.1080*0.337 (13)
H18B0.615200.807500.091200.1080*0.337 (13)
H19A0.480700.866200.071500.1340*0.337 (13)
H20A0.362300.917300.163700.2100*0.337 (13)
H20B0.347600.954100.032500.2100*0.337 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.087 (3)0.073 (2)0.105 (3)0.010 (2)0.040 (2)0.020 (2)
N10.108 (4)0.069 (3)0.091 (4)0.020 (3)0.019 (3)0.001 (3)
N20.094 (4)0.098 (4)0.079 (4)0.014 (3)0.009 (3)0.004 (3)
N30.098 (4)0.106 (4)0.071 (3)0.013 (3)0.009 (3)0.008 (3)
N40.083 (3)0.076 (3)0.070 (3)0.007 (3)0.011 (3)0.007 (3)
C10.089 (4)0.087 (5)0.097 (5)0.006 (4)0.006 (4)0.011 (4)
C20.140 (7)0.118 (6)0.089 (5)0.032 (5)0.029 (4)0.007 (5)
C30.119 (7)0.089 (6)0.182 (9)0.020 (5)0.074 (6)0.027 (6)
C40.082 (6)0.111 (7)0.188 (9)0.005 (5)0.018 (5)0.016 (7)
C50.097 (5)0.101 (5)0.113 (6)0.015 (5)0.005 (4)0.011 (5)
C60.071 (4)0.065 (4)0.090 (5)0.014 (3)0.018 (4)0.016 (4)
C70.128 (5)0.076 (4)0.095 (5)0.019 (4)0.023 (4)0.004 (4)
C80.092 (5)0.069 (4)0.088 (4)0.014 (4)0.025 (4)0.014 (4)
C90.077 (4)0.065 (4)0.084 (4)0.008 (3)0.015 (3)0.008 (4)
C100.073 (4)0.068 (4)0.098 (4)0.002 (3)0.015 (3)0.000 (4)
C110.066 (4)0.077 (4)0.093 (4)0.001 (3)0.030 (3)0.005 (4)
C120.077 (4)0.068 (4)0.082 (4)0.002 (3)0.028 (3)0.006 (3)
C130.079 (4)0.079 (4)0.100 (5)0.003 (3)0.034 (3)0.003 (4)
C140.078 (4)0.082 (4)0.100 (4)0.008 (4)0.039 (3)0.001 (4)
C150.099 (5)0.078 (4)0.099 (5)0.009 (4)0.032 (3)0.003 (4)
C160.081 (4)0.074 (4)0.068 (4)0.003 (3)0.017 (3)0.007 (4)
C170.108 (5)0.084 (4)0.058 (4)0.003 (4)0.024 (3)0.002 (4)
C18B0.080 (6)0.091 (5)0.099 (11)0.004 (4)0.016 (7)0.003 (6)
C19B0.112 (10)0.072 (6)0.137 (14)0.017 (6)0.040 (8)0.008 (9)
C20B0.177 (17)0.156 (10)0.18 (2)0.048 (10)0.012 (17)0.071 (14)
C20A0.177 (17)0.156 (10)0.18 (2)0.048 (10)0.012 (17)0.071 (14)
C18A0.080 (6)0.091 (5)0.099 (11)0.004 (4)0.016 (7)0.003 (6)
C19A0.112 (10)0.072 (6)0.137 (14)0.017 (6)0.040 (8)0.008 (9)
Geometric parameters (Å, º) top
O1—C121.373 (7)C19A—C20A1.32 (5)
O1—C151.441 (7)C19B—C20B1.29 (3)
N1—C71.472 (7)C1—H10.9300
N1—C81.258 (7)C2—H20.9300
N2—N31.319 (7)C3—H30.9300
N2—C161.347 (8)C4—H40.9300
N3—N41.334 (7)C5—H50.9300
N4—C171.329 (7)C7—H7A0.9700
N4—C18B1.470 (16)C7—H7B0.9700
N4—C18A1.48 (4)C8—H80.9300
C1—C21.365 (10)C10—H100.9300
C1—C61.365 (10)C11—H110.9300
C2—C31.356 (11)C13—H130.9300
C3—C41.359 (13)C14—H140.9300
C4—C51.391 (11)C15—H15A0.9700
C5—C61.377 (10)C15—H15B0.9700
C6—C71.505 (8)C17—H170.9300
C8—C91.477 (8)C18A—H18B0.9700
C9—C101.378 (8)C18A—H18A0.9700
C9—C141.378 (8)C18B—H18D0.9700
C10—C111.382 (8)C18B—H18C0.9700
C11—C121.375 (8)C19A—H19A0.9300
C12—C131.384 (7)C19B—H19B0.9300
C13—C141.381 (8)C20A—H20B0.9400
C15—C161.490 (8)C20A—H20A0.9300
C16—C171.342 (8)C20B—H20D0.9300
C18A—C19A1.52 (5)C20B—H20C0.9300
C18B—C19B1.50 (2)
C12—O1—C15117.3 (4)C5—C4—H4120.00
C7—N1—C8115.9 (5)C4—C5—H5120.00
N3—N2—C16107.8 (4)C6—C5—H5120.00
N2—N3—N4106.8 (4)N1—C7—H7A110.00
N3—N4—C17111.2 (4)N1—C7—H7B110.00
N3—N4—C18B124.0 (9)C6—C7—H7A110.00
N3—N4—C18A110.6 (17)C6—C7—H7B110.00
C17—N4—C18B124.8 (9)H7A—C7—H7B108.00
C17—N4—C18A138.1 (17)N1—C8—H8119.00
C2—C1—C6121.4 (6)C9—C8—H8119.00
C1—C2—C3119.6 (7)C9—C10—H10120.00
C2—C3—C4120.7 (8)C11—C10—H10120.00
C3—C4—C5119.8 (7)C10—C11—H11120.00
C4—C5—C6119.6 (6)C12—C11—H11120.00
C1—C6—C5118.9 (6)C12—C13—H13120.00
C1—C6—C7120.7 (5)C14—C13—H13120.00
C5—C6—C7120.4 (6)C9—C14—H14119.00
N1—C7—C6109.9 (4)C13—C14—H14119.00
N1—C8—C9122.8 (5)O1—C15—H15A110.00
C8—C9—C10123.2 (5)O1—C15—H15B110.00
C8—C9—C14118.3 (5)C16—C15—H15A110.00
C10—C9—C14118.6 (5)C16—C15—H15B110.00
C9—C10—C11120.4 (5)H15A—C15—H15B108.00
C10—C11—C12120.8 (5)N4—C17—H17128.00
O1—C12—C11115.6 (5)C16—C17—H17128.00
O1—C12—C13125.1 (5)H18A—C18A—H18B109.00
C11—C12—C13119.2 (5)N4—C18A—H18B111.00
C12—C13—C14119.5 (5)C19A—C18A—H18A110.00
C9—C14—C13121.5 (5)N4—C18A—H18A110.00
O1—C15—C16109.1 (4)C19A—C18A—H18B110.00
N2—C16—C15120.1 (5)N4—C18B—H18D109.00
N2—C16—C17109.5 (5)C19B—C18B—H18C110.00
C15—C16—C17130.4 (6)N4—C18B—H18C110.00
N4—C17—C16104.8 (5)H18C—C18B—H18D108.00
N4—C18A—C19A106 (3)C19B—C18B—H18D110.00
N4—C18B—C19B110.6 (12)C20A—C19A—H19A125.00
C18A—C19A—C20A111 (3)C18A—C19A—H19A124.00
C18B—C19B—C20B120.9 (19)C18B—C19B—H19B120.00
C2—C1—H1119.00C20B—C19B—H19B120.00
C6—C1—H1119.00C19A—C20A—H20A121.00
C1—C2—H2120.00C19A—C20A—H20B120.00
C3—C2—H2120.00H20A—C20A—H20B120.00
C2—C3—H3120.00C19B—C20B—H20C120.00
C4—C3—H3120.00C19B—C20B—H20D120.00
C3—C4—H4120.00H20C—C20B—H20D120.00
C12—O1—C15—C16178.3 (4)C4—C5—C6—C10.1 (10)
C15—O1—C12—C11179.3 (5)C1—C6—C7—N170.5 (7)
C15—O1—C12—C130.2 (7)C5—C6—C7—N1106.7 (6)
C7—N1—C8—C9178.6 (5)N1—C8—C9—C14172.7 (5)
C8—N1—C7—C6112.8 (6)N1—C8—C9—C108.0 (9)
C16—N2—N3—N40.8 (6)C8—C9—C14—C13178.9 (5)
N3—N2—C16—C15179.1 (5)C8—C9—C10—C11178.0 (5)
N3—N2—C16—C170.2 (6)C10—C9—C14—C130.3 (8)
N2—N3—N4—C18B178.1 (9)C14—C9—C10—C111.2 (8)
N2—N3—N4—C171.2 (6)C9—C10—C11—C121.5 (8)
C18B—N4—C17—C16177.9 (9)C10—C11—C12—C130.8 (8)
N3—N4—C17—C161.1 (6)C10—C11—C12—O1180.0 (5)
C17—N4—C18B—C19B99.3 (15)C11—C12—C13—C140.1 (8)
N3—N4—C18B—C19B77.2 (16)O1—C12—C13—C14179.0 (5)
C2—C1—C6—C50.6 (10)C12—C13—C14—C90.3 (8)
C2—C1—C6—C7177.8 (6)O1—C15—C16—N289.9 (6)
C6—C1—C2—C31.3 (11)O1—C15—C16—C1791.1 (7)
C1—C2—C3—C41.6 (12)N2—C16—C17—N40.5 (6)
C2—C3—C4—C51.2 (12)C15—C16—C17—N4179.7 (5)
C3—C4—C5—C60.4 (11)N4—C18B—C19B—C20B122 (2)
C4—C5—C6—C7177.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N3i0.932.543.379 (7)150
C18B—H18D···N1ii0.972.523.42 (2)153
C13—H13···Cg2iii0.932.883.638 (6)139
C18B—H18C···Cg2iv0.972.953.706 (18)135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···N3i0.932.543.379 (7)150
C18B—H18D···N1ii0.972.523.42 (2)153
C13—H13···Cg2iii0.932.883.638 (6)139
C18B—H18C···Cg2iv0.972.953.706 (18)135
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAkkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Büyükgüngör, O. (2013b). Acta Cryst. E69, o1576.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Jarrahpour, A., Chermahini, M. M., Shiri, P. & Tahir, M. N. (2013a). Acta Cryst. E69, o247.  CSD CrossRef IUCr Journals Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, p. 715. Oxford: Pergamon.  Google Scholar
First citationDikusar, E. A. & Kozlov, N. G. (2006). Russ. J. Org. Chem. 42, 369–375.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacho, V., Kralik, M., Hudec, J. & Cingelova, J. (2004). J. Mol. Catal. A Chem. 209, 69–73.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYap, A. H. & Weinreb, S. M. (2006). Tetrahedron Lett. 47, 3035–3038.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, H.-X., Ma, J.-F., Xu, G.-H., Li, S.-L., Yang, J., Liu, Y.-Y. & Cheng, Y.-X. (2006). J. Organomet. Chem. 691, 3531–3539.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds