organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o253-o254

Cyclo­hexyl­ammonium nitrate

aPetrochemicals Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia, bSustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia, cCenter for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, dChemistry Department, King Saud University, Riyadh 11451, Saudi Arabia, eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and fDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 21 January 2014; accepted 30 January 2014; online 5 February 2014)

In the title salt, C6H14N+·NO3, the cyclo­hexyl ring adopts a chair conformation. The ammonium group occupies an equatorial position and the crystal struture is stabilized by inter­molecular N—H⋯O hydrogen-bonding inter­actions, resulting in a three-dimensional network.

Related literature

For the Brønsted–Lowry basicity behavior of cyclo­hexyl­amine, see: Solomons (1996[Solomons, T. W. G. (1996). Organic Chemistry, 6th ed., pp. 902-906. New York: John Wiley & Sons, Inc.]). For the preparation of salts of anions and complex anions with cyclo­hexyl primary ammonium cations, see: Jones et al. (1998[Jones, P. G. & Ahrens, B. (1998). Eur. J. Org. Chem. 8, 1687-1688.]); Kolev et al. (2007[Kolev, T., Koleva, B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2007). Acta Cryst. E63, o4852.]); Lock et al. (1981[Lock, C. J. L. & Zvagulis, M. (1981). Acta Cryst. B37, 1287-1289.]); Muthamizhchelvan et al. (2005[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K. & Sivakumar, K. (2005). Acta Cryst. E61, o3605-o3607.]); Wang et al. (2005[Wang, J.-P., Cheng, X.-X., Wang, J.-G. & Chen, Q.-H. (2005). Acta Cryst. E61, o4006-o4007.]); Yun et al. (2004[Yun, S., Moon, H., Kim, C. & Lee, S. (2004). J. Coord. Chem. 57, 321-327.]). For precautions relating to the reaction of cyclo­hexyl­amine with strong acids or oxidizing agents, see: Chang (2008[Chang, C. (2008). Cyclohexylamine MSDS, Kaohsiung, Taiwan: San Fu Chemical Co., Ltd. http://www.sfchem.com.tw/en-global/Home/index .]); Patnaik (2007[Patnaik, P. (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed., pp. 240-241. Hoboken, New Jersey: John Wiley & Sons, Inc.]). For the structures of other cyclo­hexyle­ammonium salts, see: Shimada et al. (1955[Shimada, A., Okaya, Y. & Nakaura, M. (1955). Acta Cryst. 8, 819-822.]); Smith et al. (1994[Smith, H. W., Mastropaolo, D., Camerman, A. & Camerman, N. (1994). J. Chem. Crystallogr. 24, 239-242.]); Odendal et al. (2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm. 12, 2398-2408.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N+·NO3

  • Mr = 162.19

  • Monoclinic, P 21 /c

  • a = 8.9322 (9) Å

  • b = 9.9010 (9) Å

  • c = 10.3951 (10) Å

  • β = 103.866 (2)°

  • V = 892.53 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.39 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.987

  • 2214 measured reflections

  • 2214 independent reflections

  • 1750 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.09

  • 2214 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.97 1.89 2.8553 (14) 172
N1—H2⋯O3ii 0.94 1.97 2.9074 (15) 172
N1—H3⋯O1iii 0.85 2.24 2.9880 (15) 148
N1—H3⋯O3iii 0.85 2.28 3.0689 (15) 155
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y-1, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound C6H11NH3+NO3- was obtained as the unexpected by-product of the reaction of metal (M) nitrate salts (metal = Mg2+, Al3+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) with cyclohexylamine (CHA) in either aqueous or ethanolic media. It was expected that CHA would coordinate to the M cations due to its Lewis basicity. However, metal oxides or hydroxides were formed along with C6H11NH3+NO3-, which reflects the Brønsted-Lowry basicity of CHA (pKb = 3.36, Solomons, 1996). This base strength makes CHA suitable for the preparation of several salts of anions and complex anions through the formation of the primary ammonium cation (C6H11NH3+) (Jones et al., 1998; Kolev et al., 2007; Lock et al., 1981; Muthamizhchelvan et al., 2005; Shimada et al., 1955; Smith et al., 1994; Wang et al., 2005; Yun et al., 2004). This Brønsted-Lowry behavior was responsible for the formation of the present compound, (I) (Fig. 1), which is dangerous to prepare from a direct reaction between CHA and nitric acid (HNO3) because CHA reacts violently with strong acids or oxidizing agents and may cause fire and explosion (Chang, 2008; Patnaik, 2007).

The asymmetric unit of the title compound contains one cyclohexylammonium cation (C1—C6/N1) and one nitrate anion (N2/O1—O3). The cyclohexane ring adopts a chair conformation, with puckering parameters: Q = 0.5668 (17) Å, θ = 179.29 (17)°, and φ = 276 (21)° (Cremer & Pople, 1975). The ammonium functional group is at an equatorial position to minimize 1,3 and 1,5 di-axial interactions. The bond lengths (Allen et al., 1987) and bond angles are in the normal ranges and are comparable with those reported earlier for similar compounds (Shimada et al., 1955; Smith et al., 1994; Odendal et al., 2010). Each proton of the ammonium group is hydrogen-bonded to two oxygen atoms of the nitrate ion. These intermolecular N–H···O hydrogen bonds (Table 2) generate a three-dimensional network (Fig. 2).

Related literature top

For the Brønsted–Lowry basicity behavior of cyclohexylamine, see: Solomons (1996). For the preparation of salts of anions and complex anions with cyclohexyl primary ammonium cations, see: Jones et al. (1998); Kolev et al. (2007); Lock et al. (1981); Muthamizhchelvan et al. (2005); Wang et al. (2005); Yun et al. (2004). For precautions relating to the reaction of cyclohexylamine with strong acids or oxidizing agents, see: Chang (2008); Patnaik (2007). For the structures of other cyclohexyleammonium salts, see: Shimada et al. (1955); Smith et al. (1994); Odendal et al. (2010). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For reference bond lengths, see: Allen et al. (1987).

Experimental top

The title compound C6H11NH3+NO3- was obtained as a by-product upon combining 60 ml, 0.5 M of metal nitrate (metal = Mg2+, Al3+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) with 20 ml, 3.0 M (for divalent metal) or 4.5 M (for trivalent metal) CHA in aqueous or ethanolic media. Depending on the identity of M, a metal hydroxide or oxide was precipitated. Filtering this precipitate resulted in a clear filtrate, which upon the gradual evaporation of the solvent at room temperature resulted in the deposition of beautiful, colorless crystals of HCHA+NO3-. The chemical composition of these crystals was determined by C, H, N elemental microanalysis: (%C: 44.47 exp; 44.43 cal.), (%H: 8.70 exp.; 8.72 cal.), (%N: 17.26 exp.; 17.28 cal.), and (%O: 29.61 exp.; 29.59 cal.).

Refinement top

The nitrogen-bound H-atoms were located in a difference Fourier map and were fixed at their found positions (N–H = 0.8498, 0.9440 and 0.9724 Å), with Uiso(H) = 1.2 Ueq(N). Other H atoms were positioned geometrically (C=H 0.97–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines.
Cyclohexylammonium nitrate top
Crystal data top
C6H14N+·NO3F(000) = 352
Mr = 162.19Dx = 1.207 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11857 reflections
a = 8.9322 (9) Åθ = 2.4–28.3°
b = 9.9010 (9) ŵ = 0.10 mm1
c = 10.3951 (10) ÅT = 294 K
β = 103.866 (2)°Block, colorless
V = 892.53 (15) Å30.39 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2214 independent reflections
Radiation source: fine-focus sealed tube1750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.964, Tmax = 0.987k = 013
2214 measured reflectionsl = 013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0786P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.005
2214 reflectionsΔρmax = 0.15 e Å3
101 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (6)
Crystal data top
C6H14N+·NO3V = 892.53 (15) Å3
Mr = 162.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9322 (9) ŵ = 0.10 mm1
b = 9.9010 (9) ÅT = 294 K
c = 10.3951 (10) Å0.39 × 0.15 × 0.14 mm
β = 103.866 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2214 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1750 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.987Rint = 0.000
2214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.15 e Å3
2214 reflectionsΔρmin = 0.15 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.94737 (12)0.24027 (11)0.84734 (10)0.0591 (3)
H11.00400.23960.93970.071*
H20.93340.15040.81650.071*
H31.00010.28180.80170.071*
C10.79115 (13)0.30167 (11)0.83331 (11)0.0504 (3)
H40.73120.24280.87790.060*
C20.80481 (15)0.43882 (13)0.89905 (13)0.0619 (3)
H50.87010.49670.86050.074*
H60.85230.42930.99280.074*
C30.64691 (18)0.50274 (15)0.88097 (18)0.0806 (4)
H70.65800.59270.91900.097*
H80.58550.44950.92760.097*
C40.56468 (19)0.51139 (15)0.7354 (2)0.0887 (5)
H90.46220.54820.72700.106*
H100.62080.57210.69060.106*
C50.55222 (17)0.37454 (16)0.67001 (17)0.0833 (5)
H110.50520.38420.57620.100*
H120.48640.31680.70810.100*
C60.70975 (16)0.30923 (13)0.68820 (12)0.0638 (3)
H130.69790.21890.65090.077*
H140.77160.36140.64120.077*
O10.90382 (12)0.78324 (9)0.87802 (9)0.0694 (3)
O20.82965 (10)0.96820 (10)0.95391 (9)0.0681 (3)
O30.87733 (12)0.96351 (10)0.75996 (9)0.0729 (3)
N20.86827 (10)0.90604 (10)0.86507 (9)0.0529 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0641 (6)0.0561 (5)0.0586 (6)0.0105 (4)0.0177 (4)0.0154 (4)
C10.0543 (6)0.0449 (5)0.0521 (6)0.0010 (4)0.0129 (5)0.0065 (4)
C20.0651 (7)0.0546 (7)0.0635 (7)0.0030 (5)0.0108 (6)0.0057 (5)
C30.0777 (9)0.0615 (8)0.1048 (12)0.0089 (7)0.0265 (9)0.0157 (8)
C40.0674 (8)0.0606 (8)0.1274 (15)0.0139 (7)0.0022 (9)0.0051 (8)
C50.0720 (8)0.0705 (9)0.0906 (10)0.0057 (7)0.0135 (7)0.0017 (8)
C60.0754 (8)0.0569 (7)0.0535 (7)0.0052 (6)0.0041 (6)0.0008 (5)
O10.0868 (6)0.0492 (5)0.0696 (6)0.0075 (4)0.0139 (5)0.0001 (4)
O20.0688 (5)0.0736 (6)0.0650 (5)0.0105 (4)0.0221 (4)0.0094 (4)
O30.0975 (7)0.0663 (6)0.0549 (5)0.0129 (5)0.0181 (5)0.0090 (4)
N20.0479 (5)0.0538 (5)0.0536 (5)0.0040 (4)0.0051 (4)0.0018 (4)
Geometric parameters (Å, º) top
N1—C11.4968 (15)C3—H80.9700
N1—H10.9724C4—C51.508 (2)
N1—H20.9440C4—H90.9700
N1—H30.8498C4—H100.9700
C1—C61.5112 (16)C5—C61.519 (2)
C1—C21.5119 (17)C5—H110.9700
C1—H40.9800C5—H120.9700
C2—C31.5159 (19)C6—H130.9700
C2—H50.9700C6—H140.9700
C2—H60.9700O1—N21.2556 (13)
C3—C41.518 (3)O2—N21.2261 (12)
C3—H70.9700O3—N21.2516 (13)
C1—N1—H1110.6H7—C3—H8108.0
C1—N1—H2107.8C5—C4—C3111.37 (13)
H1—N1—H2108.9C5—C4—H9109.4
C1—N1—H3112.2C3—C4—H9109.4
H1—N1—H3109.1C5—C4—H10109.4
H2—N1—H3108.2C3—C4—H10109.4
N1—C1—C6109.37 (10)H9—C4—H10108.0
N1—C1—C2110.38 (10)C4—C5—C6111.12 (12)
C6—C1—C2111.97 (10)C4—C5—H11109.4
N1—C1—H4108.3C6—C5—H11109.4
C6—C1—H4108.3C4—C5—H12109.4
C2—C1—H4108.3C6—C5—H12109.4
C1—C2—C3110.31 (11)H11—C5—H12108.0
C1—C2—H5109.6C1—C6—C5110.81 (12)
C3—C2—H5109.6C1—C6—H13109.5
C1—C2—H6109.6C5—C6—H13109.5
C3—C2—H6109.6C1—C6—H14109.5
H5—C2—H6108.1C5—C6—H14109.5
C2—C3—C4111.14 (13)H13—C6—H14108.1
C2—C3—H7109.4O2—N2—O3121.20 (10)
C4—C3—H7109.4O2—N2—O1120.99 (10)
C2—C3—H8109.4O3—N2—O1117.79 (10)
C4—C3—H8109.4
N1—C1—C2—C3178.21 (11)C3—C4—C5—C655.5 (2)
C6—C1—C2—C356.11 (15)N1—C1—C6—C5178.51 (11)
C1—C2—C3—C455.73 (16)C2—C1—C6—C555.83 (15)
C2—C3—C4—C556.08 (19)C4—C5—C6—C155.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.971.892.8553 (14)172
N1—H2···O3ii0.941.972.9074 (15)172
N1—H3···O1iii0.852.242.9880 (15)148
N1—H3···O3iii0.852.283.0689 (15)155
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y1, z; (iii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.97001.89002.8553 (14)172.00
N1—H2···O3ii0.94001.97002.9074 (15)172.00
N1—H3···O1iii0.85002.24002.9880 (15)148.00
N1—H3···O3iii0.85002.28003.0689 (15)155.00
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y1, z; (iii) x+2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: abagbas@kacst.edu.sa.

§Thomson Reuters ResearcherID: C-3194-2011.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful to Dr Mohammed Fettouhi for the data collection and useful discussions and King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for the use of the X-ray facility. Funding for this work was provided by King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia, through project No. 29–280. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C. (2008). Cyclohexylamine MSDS, Kaohsiung, Taiwan: San Fu Chemical Co., Ltd. http://www.sfchem.com.tw/en-global/Home/indexGoogle Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJones, P. G. & Ahrens, B. (1998). Eur. J. Org. Chem. 8, 1687–1688.  CrossRef Google Scholar
First citationKolev, T., Koleva, B., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2007). Acta Cryst. E63, o4852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLock, C. J. L. & Zvagulis, M. (1981). Acta Cryst. B37, 1287–1289.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K. & Sivakumar, K. (2005). Acta Cryst. E61, o3605–o3607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOdendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm. 12, 2398–2408.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatnaik, P. (2007). A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed., pp. 240–241. Hoboken, New Jersey: John Wiley & Sons, Inc.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimada, A., Okaya, Y. & Nakaura, M. (1955). Acta Cryst. 8, 819–822.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSmith, H. W., Mastropaolo, D., Camerman, A. & Camerman, N. (1994). J. Chem. Crystallogr. 24, 239–242.  CSD CrossRef CAS Web of Science Google Scholar
First citationSolomons, T. W. G. (1996). Organic Chemistry, 6th ed., pp. 902–906. New York: John Wiley & Sons, Inc.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-P., Cheng, X.-X., Wang, J.-G. & Chen, Q.-H. (2005). Acta Cryst. E61, o4006–o4007.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYun, S., Moon, H., Kim, C. & Lee, S. (2004). J. Coord. Chem. 57, 321–327.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o253-o254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds