metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m347-m348

Bis(2,2′-bi­pyridyl-κ2N,N′)(sulfato-κ2O,O′)nickel(II) 2.5-hydrate

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Str. 64, 01601 Kiev, Ukraine
*Correspondence e-mail: tiskenderov@ukr.net

(Received 9 May 2013; accepted 22 May 2013; online 31 May 2013)

The title compound, [Ni(SO4)(C10H8N2)2]·2.5H2O, is a nickel(II) complex with a distorted octa­hedral coordination geometry. The NiII atom is bonded by two O atoms of the bidentate chelating sulfate ligand and the four N atoms of two chelating 2,2′-bi­pyridine ligands. The Ni—N bond lengths range from 2.059 (3) to 2.075 (3) Å and the Ni—O bond lengths are 2.098 (3) and 2.123 (3) Å. The bipyridyl ligands are both close to planar (r.m.s. deviations of 0.254 and 0.0572 Å) and are almost orthogonal, making a dihedral angle of 82.77 (1)°. In the crystal, the complex and water mol­ecules are connected by O—H⋯O hydrogen bonds. Inter­estingly, six water mol­ecules form a chain linking two complex mol­ecules via sulfate O atoms. There are also stacking inter­actions between the aromatic rings of neighbouring 2,2′-bi­pyridine ligands with shortest non-covalent contacts of 3.268 (6), 3.393 (6) and 3.435 (5) Å. One of the three unique water molecules shows half-occupation.

Related literature

For applications of the 2,2′-bipyridyl ligand, see: Fritsky et al. (2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]). For related structures, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2000[Fritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255-3258.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.], 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Iskenderov et al. (2009[Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123-o2124.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(SO4)(C10H8N2)2]·2.5H2O

  • Mr = 512.18

  • Triclinic, [P \overline 1]

  • a = 10.045 (2) Å

  • b = 10.393 (2) Å

  • c = 11.028 (2) Å

  • α = 99.42 (3)°

  • β = 101.97 (3)°

  • γ = 98.56 (3)°

  • V = 1091.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.765, Tmax = 0.897

  • 3228 measured reflections

  • 3021 independent reflections

  • 2527 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 100 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.124

  • S = 1.07

  • 3021 reflections

  • 301 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.98 1.99 2.925 (5) 160
O1W—H2W1⋯O4ii 0.86 2.04 2.819 (5) 150
O2W—H1W2⋯O3Wiii 0.95 2.08 3.03 (2) 174
O2W—H2W2⋯O1W 0.85 1.93 2.774 (11) 170
O3W—H1W3⋯O3Wiv 0.99 1.91 2.86 (4) 163
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2'-bipyridyl (2,2'-bipy) is a well known neutral bidentate ligand which is widely used in coordination chemistry, in particular, for the preparation of mixed ligand complexes (Fritsky et al., 2004; Kanderal et al., 2005). It is also often used in the synthesis of discrete polynuclear complexes in order to prevent formation of coordination polymers by blocking a certain number of vacant sites in the coordination sphere of a metal ion (Fritsky et al., 2006).

The asymmetric unit of title compound, comprises a neutral monomeric [Ni(SO4)(C10H8N2)2] complex and three solvent water molecules, one of which is present at half occupancy. The six-coordinate nickel(II) complex adopts a distorted octahedral coordination geometry (Fig. 1).The NiII atom is bonded by two O atoms of the bidentate chelating sulfate ligand and four N atoms of the two chelating 2,2'-bipyridine ligands. Each of the bipyridyl ligands is reasonably planar with rms deviations of 0.254Å and 0.0572Å from the best fit meanplanes through the non-hydrogen atoms of the N1,N2 and N3, N4 ligands respectively. The bipyridyl ligands are almost orthogonal [dihedral angle = 82.7 (1)°]. The Ni—N bond distances range from 2.059 (3) to 2.075 (3) Å and the Ni—O bond distances are 2.098 (3) and 2.123 (3) Å and are typical for distorted octahedral NiII complexes with the nitrogen and oxygen donors (Fritsky et al., 1998; Świątek-Kozłowska et al., 2000; Sliva et al., 1997). The N—Ni—N bite angles around the central atom deviate significantly from 90°, [N2–Ni1–N1 = 78.94 (13)°, N3–Ni1–N4 = 79.32 (13)°], which is a consequence of the formation of five-membered chelate rings. The O2—Ni1—O1 bite angle is even smaller at 67.56 (10)° due to the formation of a four-membered chelate ring by the bidentate sulfate anion.

The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2000; Iskenderov et al., 2009; Moroz et al., 2010; Moroz et al., 2012).

In the crystal structure, the [NiSO4(C10H8N2)2] and water molecules are connected by intermolecular O—H···O hydrogen bonding, (Fig. 2) in which the water molecules act as donors while the sulfate anions and water oxygen atoms act as acceptors (Fig. 2). Interestingly, six water molecules form a chain O1W···O2W···O3W···O3W'···O2W'···O1W' linking two complex molecules via the O(4) atoms of the sulfate anions. There are also stacking interactions between the aromatic rings of the 2,2'-bipyridine molecules belonging to the neighboring complex molecules with shortest non-covalent contacts C(12)···C(18) (1-x, 1-y, 1-z) = 3.268 (6)Å; C(11)···C(18) = 3.393 (6)Å and N(3)···C(17) (1-x, 1-y, 1-z) = 3.435 (5) Å (Fig. 2).

Related literature top

For applications of the 2,2'-bipyridyl ligand, see: Fritsky et al. (2004, 2006); Kanderal et al. (2005). For related structures, see: Fritsky et al. (1998, 2000); Moroz et al. (2010, 2012); Sliva et al. (1997); Świątek-Kozłowska et al. (2000); Iskenderov et al. (2009).

Experimental top

Nickel(II) sulfate hexahydrate (0.026 g, 0.1 mmol) was dissolved in methanol (5 ml) and mixed with a solution of 2,2'-bipyridine (0.312 g, 2 mmol) in methanol (5 ml), afterwards the resulting transparent blue solution was left to evaporate in the air at ambient temperature. During 12 h the blue polycrystalline product precipitated from the solution. It was filtered off, washed with diethyl ether and dried in the air. Yield: 85%. Elemental analysis calc. (%) for C20H22N4NiO7S: C 46.09; H 4.25; N 10.75; found: C 47.11; H 4.60; N 10.43.

Refinement top

As the data were collected on an older diffractometer, collection ceased once sufficient reflections had been obtained to adequately solve and refine the structure, hence the number of missing reflections indicated in the B alert. The H2O H atoms of the solvate water molecules were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). One of the solvate water molecules was refined with an occupancy factor of 0.5 (an attempt to refine the occupancy factor freely converged with a value of 0.5). The C—H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and Uiso = 1.2Ueq(parent atom).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in H-bonds are omitted for clarity.
Bis(2,2'-bipyridyl-κ2N,N')(sulfato-κ2O,O')nickel(II) 2.5-hydrate top
Crystal data top
[Ni(SO4)(C10H8N2)2]·2.5H2OZ = 2
Mr = 512.18F(000) = 530
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.045 (2) ÅCell parameters from 1565 reflections
b = 10.393 (2) Åθ = 3.0–25.5°
c = 11.028 (2) ŵ = 1.03 mm1
α = 99.42 (3)°T = 293 K
β = 101.97 (3)°Block, blue
γ = 98.56 (3)°0.32 × 0.22 × 0.11 mm
V = 1091.0 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 26.1°, θmin = 1.9°
profile data from ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.765, Tmax = 0.897l = 1212
3228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0784P)2 + 0.7731P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.76 e Å3
12 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(SO4)(C10H8N2)2]·2.5H2Oγ = 98.56 (3)°
Mr = 512.18V = 1091.0 (4) Å3
Triclinic, P1Z = 2
a = 10.045 (2) ÅMo Kα radiation
b = 10.393 (2) ŵ = 1.03 mm1
c = 11.028 (2) ÅT = 293 K
α = 99.42 (3)°0.32 × 0.22 × 0.11 mm
β = 101.97 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3021 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2527 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.897Rint = 0.030
3228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04212 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.76 e Å3
3021 reflectionsΔρmin = 0.44 e Å3
301 parameters
Special details top

Experimental. The H2O H atoms of the solvate water molecules were located from the difference Fourier map but constrained to ride on their parent atom, with Uiso = 1.5 Ueq(parent atom). One of the solvate water molecule was included into refinement with the occupancy factor of 0.5 (as an attempt to refine it with free variation of the occupancy factor resulted in its value of 1/2, and as O3W forms an H-bond with the tranlsational O3W water molecule through the hydrogen atom H1W3 which limits the occupancy of the latter by 1/2). The C—H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and Uiso = 1.2Ueq(parent atom).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.05920 (10)0.23826 (10)0.38907 (9)0.0340 (3)
Ni10.23116 (5)0.29554 (5)0.24003 (4)0.0288 (2)
O10.2111 (3)0.2317 (3)0.4097 (2)0.0345 (6)
O20.0295 (3)0.2855 (3)0.2672 (2)0.0342 (6)
O30.0352 (3)0.3311 (3)0.4914 (3)0.0478 (8)
O40.0214 (3)0.1049 (3)0.3732 (3)0.0548 (9)
O1W0.7471 (4)0.0268 (4)0.4408 (4)0.0751 (11)
H1W10.78390.08940.48950.113*
H2W10.83040.01410.44900.113*
O2W0.5607 (10)0.0896 (10)0.2062 (10)0.225 (4)
H1W20.53950.17990.16200.337*
H2W20.62040.08000.27570.337*
O3W0.482 (2)0.631 (2)0.0491 (18)0.237 (9)0.50
H1W30.50880.55000.00810.356*0.50
H2W30.41200.60300.07160.356*0.50
N10.1856 (3)0.3201 (3)0.0539 (3)0.0354 (8)
N20.2016 (3)0.1024 (3)0.1437 (3)0.0324 (7)
N30.2837 (3)0.4950 (3)0.3228 (3)0.0300 (7)
N40.4444 (3)0.3267 (3)0.2655 (3)0.0312 (7)
C10.1708 (5)0.4330 (4)0.0137 (4)0.0459 (11)
H10.18290.51050.07370.055*
C20.1387 (6)0.4396 (5)0.1111 (4)0.0542 (13)
H20.12790.51980.13530.065*
C30.1227 (5)0.3263 (5)0.2006 (4)0.0475 (11)
H30.10340.32880.28620.057*
C40.1356 (5)0.2089 (4)0.1611 (4)0.0410 (10)
H40.12370.13060.22010.049*
C50.1663 (4)0.2082 (4)0.0339 (4)0.0324 (9)
C60.1766 (4)0.0860 (4)0.0172 (4)0.0313 (9)
C70.1606 (5)0.0371 (4)0.0592 (4)0.0418 (10)
H70.14240.04680.14670.050*
C80.1722 (5)0.1456 (4)0.0033 (4)0.0495 (12)
H80.16140.22960.05300.059*
C90.1998 (5)0.1289 (4)0.1260 (4)0.0465 (11)
H90.20990.20070.16530.056*
C100.2123 (5)0.0038 (4)0.1963 (4)0.0416 (10)
H100.22880.00740.28380.050*
C110.1965 (4)0.5742 (4)0.3500 (4)0.0359 (9)
H110.10290.53740.33450.043*
C120.2385 (4)0.7071 (4)0.3996 (4)0.0401 (10)
H120.17450.75950.41640.048*
C130.3771 (5)0.7620 (4)0.4242 (4)0.0471 (11)
H130.40810.85250.45660.057*
C140.4694 (5)0.6806 (4)0.3999 (4)0.0447 (11)
H140.56380.71520.41740.054*
C150.4197 (4)0.5473 (4)0.3494 (3)0.0327 (9)
C160.5110 (4)0.4517 (4)0.3221 (3)0.0327 (9)
C170.6536 (4)0.4860 (4)0.3560 (4)0.0398 (10)
H170.69720.57250.39540.048*
C180.7305 (5)0.3903 (5)0.3306 (4)0.0470 (11)
H180.82680.41140.35380.056*
C190.6657 (5)0.2657 (5)0.2719 (4)0.0494 (12)
H190.71630.20040.25260.059*
C200.5228 (4)0.2372 (4)0.2410 (4)0.0421 (10)
H200.47870.15100.20100.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0296 (6)0.0366 (6)0.0294 (5)0.0008 (4)0.0026 (4)0.0003 (4)
Ni10.0278 (3)0.0261 (3)0.0256 (3)0.0002 (2)0.0010 (2)0.0033 (2)
O10.0318 (15)0.0384 (15)0.0293 (14)0.0058 (12)0.0018 (12)0.0038 (12)
O20.0278 (14)0.0357 (15)0.0313 (15)0.0009 (12)0.0034 (12)0.0026 (12)
O30.0407 (17)0.063 (2)0.0349 (16)0.0123 (15)0.0082 (13)0.0041 (14)
O40.053 (2)0.0452 (18)0.056 (2)0.0144 (15)0.0058 (16)0.0120 (16)
O1W0.065 (2)0.064 (2)0.103 (3)0.0146 (19)0.017 (2)0.036 (2)
O2W0.204 (7)0.213 (7)0.244 (8)0.038 (6)0.016 (6)0.058 (6)
O3W0.237 (12)0.248 (12)0.222 (12)0.012 (9)0.059 (9)0.057 (9)
N10.0380 (19)0.0312 (18)0.0312 (18)0.0005 (15)0.0042 (15)0.0007 (15)
N20.0331 (18)0.0304 (17)0.0281 (18)0.0024 (14)0.0015 (14)0.0006 (14)
N30.0271 (18)0.0314 (17)0.0264 (17)0.0023 (14)0.0018 (14)0.0000 (13)
N40.0309 (17)0.0341 (18)0.0252 (16)0.0058 (15)0.0036 (14)0.0012 (14)
C10.061 (3)0.036 (2)0.037 (2)0.006 (2)0.005 (2)0.0060 (19)
C20.078 (4)0.039 (3)0.045 (3)0.011 (2)0.011 (3)0.012 (2)
C30.054 (3)0.056 (3)0.031 (2)0.007 (2)0.007 (2)0.012 (2)
C40.047 (3)0.040 (2)0.029 (2)0.004 (2)0.0042 (19)0.0028 (18)
C50.030 (2)0.033 (2)0.029 (2)0.0028 (17)0.0041 (17)0.0027 (17)
C60.026 (2)0.033 (2)0.030 (2)0.0015 (17)0.0029 (16)0.0012 (17)
C70.047 (3)0.039 (2)0.031 (2)0.006 (2)0.0030 (19)0.0060 (18)
C80.060 (3)0.029 (2)0.049 (3)0.002 (2)0.005 (2)0.005 (2)
C90.057 (3)0.031 (2)0.047 (3)0.005 (2)0.006 (2)0.003 (2)
C100.046 (3)0.039 (2)0.035 (2)0.004 (2)0.0043 (19)0.0034 (19)
C110.031 (2)0.036 (2)0.037 (2)0.0028 (18)0.0057 (18)0.0021 (18)
C120.045 (3)0.032 (2)0.041 (2)0.012 (2)0.009 (2)0.0012 (18)
C130.054 (3)0.031 (2)0.046 (3)0.000 (2)0.003 (2)0.0045 (19)
C140.037 (2)0.036 (2)0.046 (3)0.009 (2)0.001 (2)0.004 (2)
C150.034 (2)0.035 (2)0.025 (2)0.0027 (18)0.0016 (17)0.0051 (17)
C160.030 (2)0.040 (2)0.0235 (19)0.0003 (18)0.0037 (16)0.0041 (17)
C170.028 (2)0.048 (3)0.038 (2)0.0006 (19)0.0021 (18)0.007 (2)
C180.029 (2)0.065 (3)0.047 (3)0.009 (2)0.007 (2)0.015 (2)
C190.041 (3)0.063 (3)0.047 (3)0.021 (2)0.011 (2)0.005 (2)
C200.038 (2)0.038 (2)0.046 (3)0.008 (2)0.008 (2)0.004 (2)
Geometric parameters (Å, º) top
S1—O31.445 (3)C3—H30.9300
S1—O41.461 (3)C4—C51.374 (6)
S1—O21.493 (3)C4—H40.9300
S1—O11.509 (3)C5—C61.480 (6)
S1—Ni12.6892 (13)C6—C71.380 (6)
Ni1—N22.059 (3)C7—C81.379 (6)
Ni1—N32.065 (3)C7—H70.9300
Ni1—N42.070 (3)C8—C91.372 (6)
Ni1—N12.075 (3)C8—H80.9300
Ni1—O22.098 (3)C9—C101.374 (6)
Ni1—O12.123 (3)C9—H90.9300
O1W—H1W10.9753C10—H100.9300
O1W—H2W10.8603C11—C121.367 (6)
O2W—H1W20.9549C11—H110.9300
O2W—H2W20.8500C12—C131.376 (6)
O3W—H1W30.9888C12—H120.9300
O3W—H2W30.8245C13—C141.382 (6)
N1—C11.338 (5)C13—H130.9300
N1—C51.347 (5)C14—C151.380 (6)
N2—C101.335 (5)C14—H140.9300
N2—C61.342 (5)C15—C161.485 (6)
N3—C111.334 (5)C16—C171.379 (6)
N3—C151.345 (5)C17—C181.375 (6)
N4—C201.335 (5)C17—H170.9300
N4—C161.352 (5)C18—C191.349 (7)
C1—C21.362 (6)C18—H180.9300
C1—H10.9300C19—C201.379 (6)
C2—C31.372 (7)C19—H190.9300
C2—H20.9300C20—H200.9300
C3—C41.376 (6)
O3—S1—O4112.5 (2)C2—C3—C4118.7 (4)
O3—S1—O2111.38 (18)C2—C3—H3120.6
O4—S1—O2109.64 (17)C4—C3—H3120.6
O3—S1—O1110.62 (17)C5—C4—C3119.5 (4)
O4—S1—O1109.38 (18)C5—C4—H4120.3
O2—S1—O1102.89 (16)C3—C4—H4120.3
O3—S1—Ni1125.58 (14)N1—C5—C4121.7 (4)
O4—S1—Ni1121.92 (15)N1—C5—C6115.0 (3)
O2—S1—Ni150.95 (11)C4—C5—C6123.3 (4)
O1—S1—Ni151.94 (11)N2—C6—C7121.8 (4)
N2—Ni1—N3171.54 (12)N2—C6—C5115.5 (3)
N2—Ni1—N493.94 (13)C7—C6—C5122.7 (4)
N3—Ni1—N479.32 (13)C8—C7—C6118.7 (4)
N2—Ni1—N178.92 (13)C8—C7—H7120.6
N3—Ni1—N196.65 (13)C6—C7—H7120.6
N4—Ni1—N196.66 (13)C9—C8—C7119.6 (4)
N2—Ni1—O296.16 (12)C9—C8—H8120.2
N3—Ni1—O291.51 (12)C7—C8—H8120.2
N4—Ni1—O2164.38 (11)C8—C9—C10118.6 (4)
N1—Ni1—O296.95 (12)C8—C9—H9120.7
N2—Ni1—O191.50 (12)C10—C9—H9120.7
N3—Ni1—O194.73 (12)N2—C10—C9122.6 (4)
N4—Ni1—O1100.34 (12)N2—C10—H10118.7
N1—Ni1—O1161.03 (12)C9—C10—H10118.7
O2—Ni1—O167.57 (10)N3—C11—C12123.0 (4)
N2—Ni1—S194.37 (10)N3—C11—H11118.5
N3—Ni1—S193.99 (9)C12—C11—H11118.5
N4—Ni1—S1133.72 (9)C11—C12—C13118.9 (4)
N1—Ni1—S1129.62 (10)C11—C12—H12120.6
O2—Ni1—S133.54 (7)C13—C12—H12120.6
O1—Ni1—S134.03 (7)C12—C13—C14118.9 (4)
S1—O1—Ni194.03 (13)C12—C13—H13120.5
S1—O2—Ni195.51 (13)C14—C13—H13120.5
H1W1—O1W—H2W189.2C15—C14—C13119.1 (4)
H1W2—O2W—H2W2110.8C15—C14—H14120.4
H1W3—O3W—H2W3104.2C13—C14—H14120.4
C1—N1—C5118.0 (4)N3—C15—C14121.6 (4)
C1—N1—Ni1127.0 (3)N3—C15—C16115.4 (3)
C5—N1—Ni1115.0 (3)C14—C15—C16123.0 (4)
C10—N2—C6118.7 (3)N4—C16—C17122.0 (4)
C10—N2—Ni1125.8 (3)N4—C16—C15115.2 (3)
C6—N2—Ni1115.4 (3)C17—C16—C15122.7 (4)
C11—N3—C15118.5 (3)C18—C17—C16119.0 (4)
C11—N3—Ni1126.4 (3)C18—C17—H17120.5
C15—N3—Ni1115.1 (3)C16—C17—H17120.5
C20—N4—C16117.1 (3)C19—C18—C17119.7 (4)
C20—N4—Ni1127.9 (3)C19—C18—H18120.1
C16—N4—Ni1114.8 (3)C17—C18—H18120.1
N1—C1—C2123.0 (4)C18—C19—C20118.6 (4)
N1—C1—H1118.5C18—C19—H19120.7
C2—C1—H1118.5C20—C19—H19120.7
C1—C2—C3119.1 (4)N4—C20—C19123.5 (4)
C1—C2—H2120.5N4—C20—H20118.2
C3—C2—H2120.5C19—C20—H20118.2
O3—S1—Ni1—N2175.62 (18)N4—Ni1—N3—C151.3 (3)
O4—S1—Ni1—N24.30 (19)N1—Ni1—N3—C1594.2 (3)
O2—S1—Ni1—N294.56 (16)O2—Ni1—N3—C15168.6 (3)
O1—S1—Ni1—N286.20 (16)O1—Ni1—N3—C15101.0 (3)
O3—S1—Ni1—N33.11 (18)S1—Ni1—N3—C15135.1 (3)
O4—S1—Ni1—N3176.96 (18)N2—Ni1—N4—C208.9 (4)
O2—S1—Ni1—N386.71 (16)N3—Ni1—N4—C20176.3 (4)
O1—S1—Ni1—N392.54 (16)N1—Ni1—N4—C2088.2 (3)
O3—S1—Ni1—N475.9 (2)O2—Ni1—N4—C20121.3 (5)
O4—S1—Ni1—N4104.0 (2)O1—Ni1—N4—C2083.3 (3)
O2—S1—Ni1—N4165.74 (18)S1—Ni1—N4—C2091.0 (3)
O1—S1—Ni1—N413.50 (18)N2—Ni1—N4—C16176.2 (3)
O3—S1—Ni1—N1105.1 (2)N3—Ni1—N4—C161.3 (3)
O4—S1—Ni1—N174.9 (2)N1—Ni1—N4—C1696.9 (3)
O2—S1—Ni1—N115.33 (18)O2—Ni1—N4—C1653.6 (5)
O1—S1—Ni1—N1165.43 (17)O1—Ni1—N4—C1691.6 (3)
O3—S1—Ni1—O289.8 (2)S1—Ni1—N4—C1683.9 (3)
O4—S1—Ni1—O290.3 (2)C5—N1—C1—C20.7 (7)
O1—S1—Ni1—O2179.24 (19)Ni1—N1—C1—C2179.1 (4)
O3—S1—Ni1—O189.4 (2)N1—C1—C2—C31.0 (8)
O4—S1—Ni1—O190.5 (2)C1—C2—C3—C41.8 (7)
O2—S1—Ni1—O1179.24 (19)C2—C3—C4—C51.0 (7)
O3—S1—O1—Ni1119.66 (17)C1—N1—C5—C41.6 (6)
O4—S1—O1—Ni1115.88 (17)Ni1—N1—C5—C4179.9 (3)
O2—S1—O1—Ni10.60 (15)C1—N1—C5—C6176.7 (4)
N2—Ni1—O1—S195.60 (15)Ni1—N1—C5—C61.8 (4)
N3—Ni1—O1—S190.14 (14)C3—C4—C5—N10.7 (6)
N4—Ni1—O1—S1170.12 (13)C3—C4—C5—C6177.4 (4)
N1—Ni1—O1—S136.6 (4)C10—N2—C6—C70.6 (6)
O2—Ni1—O1—S10.45 (11)Ni1—N2—C6—C7177.2 (3)
O3—S1—O2—Ni1119.14 (16)C10—N2—C6—C5179.9 (3)
O4—S1—O2—Ni1115.69 (18)Ni1—N2—C6—C53.3 (4)
O1—S1—O2—Ni10.61 (15)N1—C5—C6—N21.0 (5)
N2—Ni1—O2—S188.62 (15)C4—C5—C6—N2177.3 (4)
N3—Ni1—O2—S194.95 (14)N1—C5—C6—C7179.5 (4)
N4—Ni1—O2—S141.4 (5)C4—C5—C6—C72.2 (6)
N1—Ni1—O2—S1168.16 (14)N2—C6—C7—C80.7 (6)
O1—Ni1—O2—S10.46 (11)C5—C6—C7—C8179.9 (4)
N2—Ni1—N1—C1175.7 (4)C6—C7—C8—C90.3 (7)
N3—Ni1—N1—C111.6 (4)C7—C8—C9—C101.3 (7)
N4—Ni1—N1—C191.6 (4)C6—N2—C10—C90.5 (6)
O2—Ni1—N1—C180.7 (4)Ni1—N2—C10—C9175.7 (3)
O1—Ni1—N1—C1114.8 (4)C8—C9—C10—N21.5 (7)
S1—Ni1—N1—C189.2 (4)C15—N3—C11—C122.3 (6)
N2—Ni1—N1—C52.7 (3)Ni1—N3—C11—C12176.9 (3)
N3—Ni1—N1—C5170.0 (3)N3—C11—C12—C130.8 (6)
N4—Ni1—N1—C590.0 (3)C11—C12—C13—C141.1 (7)
O2—Ni1—N1—C597.7 (3)C12—C13—C14—C151.3 (7)
O1—Ni1—N1—C563.5 (5)C11—N3—C15—C142.0 (6)
S1—Ni1—N1—C589.2 (3)Ni1—N3—C15—C14177.2 (3)
N3—Ni1—N2—C10120.5 (8)C11—N3—C15—C16177.2 (3)
N4—Ni1—N2—C1083.6 (3)Ni1—N3—C15—C163.5 (4)
N1—Ni1—N2—C10179.6 (4)C13—C14—C15—N30.2 (6)
O2—Ni1—N2—C1084.5 (3)C13—C14—C15—C16178.9 (4)
O1—Ni1—N2—C1016.9 (3)C20—N4—C16—C171.3 (6)
S1—Ni1—N2—C1050.8 (3)Ni1—N4—C16—C17174.2 (3)
N3—Ni1—N2—C655.8 (9)C20—N4—C16—C15179.0 (3)
N4—Ni1—N2—C692.8 (3)Ni1—N4—C16—C153.5 (4)
N1—Ni1—N2—C63.3 (3)N3—C15—C16—N44.7 (5)
O2—Ni1—N2—C699.2 (3)C14—C15—C16—N4176.1 (4)
O1—Ni1—N2—C6166.8 (3)N3—C15—C16—C17173.0 (4)
S1—Ni1—N2—C6132.8 (3)C14—C15—C16—C176.2 (6)
N2—Ni1—N3—C11142.9 (7)N4—C16—C17—C180.5 (6)
N4—Ni1—N3—C11179.5 (3)C15—C16—C17—C18178.0 (4)
N1—Ni1—N3—C1184.9 (3)C16—C17—C18—C190.9 (7)
O2—Ni1—N3—C1112.2 (3)C17—C18—C19—C201.3 (7)
O1—Ni1—N3—C1179.8 (3)C16—N4—C20—C190.9 (6)
S1—Ni1—N3—C1145.7 (3)Ni1—N4—C20—C19173.9 (3)
N2—Ni1—N3—C1536.3 (9)C18—C19—C20—N40.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.981.992.925 (5)160
O1W—H2W1···O4ii0.862.042.819 (5)150
O2W—H1W2···O3Wiii0.952.083.03 (2)174
O2W—H2W2···O1W0.851.932.774 (11)170
O3W—H1W3···O3Wiv0.991.912.86 (4)163
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(SO4)(C10H8N2)2]·2.5H2O
Mr512.18
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.045 (2), 10.393 (2), 11.028 (2)
α, β, γ (°)99.42 (3), 101.97 (3), 98.56 (3)
V3)1091.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.32 × 0.22 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.765, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
3228, 3021, 2527
Rint0.030
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.07
No. of reflections3021
No. of parameters301
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.44

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.981.992.925 (5)159.7
O1W—H2W1···O4ii0.862.042.819 (5)150.1
O2W—H1W2···O3Wiii0.952.083.03 (2)173.8
O2W—H2W2···O1W0.851.932.774 (11)169.6
O3W—H1W3···O3Wiv0.991.912.86 (4)162.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Acknowledgements

Financial support from the State Fund for Fundamental Researches of Ukraine (grant No. GP/F36/032) is gratefully acknowledged. I also thank Dr E. B. Rusanov, Institute of Organic Chemistry of the National Academy of Sciences of Ukraine, for collecting the X-ray data.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Ott, R. & Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 3255–3258.  CrossRef CAS Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages m347-m348
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds