organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Methyl-2-oxo-4-phenyl-2,11-di­hydro­pyrano[2,3-a]carbazole-3-carbo­nitrile

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Tamkang University, Tamsui 25137, Taiwan, cDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 27 April 2013; accepted 30 April 2013; online 4 May 2013)

In the title mol­ecule, C23H14N2O2, the atoms in the carbazole unit deviate from planarity [maximum deviation from mean plane = 0.1018 (8) Å]. The pyrrole ring makes dihedral angles of 4.44 (5), 3.84 (5), 2.18 (5) and 56.44 (5)° with the pyran, fused benzene rings and phenyl ring, respectively. In the crystal, pairs of N—H⋯O hydrogen bonds generate R22(14) loops and a C—H⋯N inter­action is also found. Mol­ecules are further linked by a number of ππ interactions [centroid–centroid distances vary from 3.5702 (5) to 3.7068 (6) Å], forming a three-dimensional network.

Related literature

For a related structure, see: Sridharan et al. (2009[Sridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o830.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H14N2O2

  • Mr = 350.36

  • Monoclinic, P 21 /n

  • a = 7.8659 (1) Å

  • b = 8.5151 (1) Å

  • c = 25.1137 (4) Å

  • β = 98.133 (2)°

  • V = 1665.17 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.46 × 0.41 × 0.29 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.978, Tmax = 1.000

  • 27185 measured reflections

  • 8485 independent reflections

  • 7184 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.154

  • S = 1.16

  • 8485 reflections

  • 249 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O2i 0.874 (18) 2.095 (19) 2.9561 (11) 168.2 (15)
C43—H43⋯N31ii 0.95 2.56 3.3130 (17) 136
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{7\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON.

Supporting information


Comment top

The title compound has been analysed as part of our crystallographic studies on pyranocarbazoles. Sridharan et al. (2009), have reported the synthesis and X-ray crystal structure of a related pyranocarbazole.

In the title molecule (Scheme I, Fig. 1), C23H14N2O2, the atoms in the carbazole unit deviate from planarity [maximum deviation from mean plane = -0.1018 (8) Å for atom C4A]. The pyrrole ring makes dihedral angles of 4.44 (5), 3.84 (5), 2.18 (5) and 56.44 (5)° with the pyran, fused benzene rings and phenyl ring, respectively.

Intermolecular N11—H11···O2 hydrogen bonds form a R22(14) (Bernstein et al., 1995) ring in the crystal structure and a C43—H43···N31 interaction is also found (Table 1, Fig. 2). Molecules are further linked by five π-π [Cg1—Cg4i = 3.7068 (6), Cg2—Cg4ii = Cg4—Cg2iii = 3.5702 (5), Cg4—Cg1i = 3.7067 (6) and Cg4—Cg4i = 3.5927 (6) Å, symmetry code (i): 1 - x, 2 - y, - z, (ii): 1 + x, y, z, (iii): - 1 + x, y, z where Cg1, Cg2 and Cg4 are the centroids of the pyrrole (N11/C11A/C6A/C6B/C10A), pyran (O1/C2/C3/C4/C4A/C11B) and benzene (C6B/C7—C10/C10A) rings, respectively (Fig. 3)] interactions to form a three-dimensional network.

Related literature top

For a related structure, see: Sridharan et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of benzaldehyde (0.106 g, 1 mmol), malononitrile (0.080 g, 1.2 mmol), 8-methyl-9H-carbazol-1-ol (0.197 g, 1 mmol) and NaHCO3 (0.084 g, 2 mmol) was ground at room temperature with the mortar and pestle. The reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into water and then filtered. The obtained crude product was purified by silica gel column chromatography using petroleum ether: ethyl acetate (98:2) yielded the title compound (0.308 g, 88%). Then this pure compound was recrystallized from EtOAc.

Refinement top

The H atom bonded to N11 was located in a difference Fourier map and refined freely; N11—H11 = 0.874 (18) Å. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. The crystal structure of compound, showing the formation of π-π stacking interactions.
10-Methyl-2-oxo-4-phenyl-2,11-dihydropyrano[2,3-a]carbazole-3-carbonitrile top
Crystal data top
C23H14N2O2F(000) = 728
Mr = 350.36Dx = 1.398 Mg m3
Monoclinic, P21/nMelting point: 573 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.8659 (1) ÅCell parameters from 11879 reflections
b = 8.5151 (1) Åθ = 3.3–37.6°
c = 25.1137 (4) ŵ = 0.09 mm1
β = 98.133 (2)°T = 123 K
V = 1665.17 (4) Å3Prism, colourless
Z = 40.46 × 0.41 × 0.29 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
8485 independent reflections
Radiation source: Enhance (Mo) X-ray Source7184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 37.7°, θmin = 3.3°
ω scansh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1411
Tmin = 0.978, Tmax = 1.000l = 3342
27185 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.6142P]
where P = (Fo2 + 2Fc2)/3
8485 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C23H14N2O2V = 1665.17 (4) Å3
Mr = 350.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8659 (1) ŵ = 0.09 mm1
b = 8.5151 (1) ÅT = 123 K
c = 25.1137 (4) Å0.46 × 0.41 × 0.29 mm
β = 98.133 (2)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
8485 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
7184 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 1.000Rint = 0.022
27185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.64 e Å3
8485 reflectionsΔρmin = 0.31 e Å3
249 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01566 (8)0.60784 (8)0.06827 (3)0.0167 (2)
O21.22719 (10)0.44963 (10)0.05318 (3)0.0242 (2)
N110.66938 (9)0.73028 (9)0.03766 (3)0.0157 (2)
N311.57295 (15)0.47611 (18)0.15540 (5)0.0423 (4)
C21.17839 (11)0.55044 (11)0.08165 (4)0.0171 (2)
C31.27720 (11)0.61006 (11)0.13093 (4)0.0172 (2)
C41.21143 (10)0.71613 (11)0.16390 (4)0.0155 (2)
C4A1.04339 (10)0.78085 (10)0.14642 (4)0.0151 (2)
C50.97078 (11)0.90356 (11)0.17439 (4)0.0177 (2)
C60.80984 (11)0.96194 (11)0.15617 (4)0.0183 (2)
C6A0.71503 (10)0.89666 (10)0.10970 (4)0.0156 (2)
C6B0.54287 (10)0.92067 (10)0.08278 (4)0.0160 (2)
C70.40849 (12)1.01896 (12)0.09342 (4)0.0203 (2)
C80.25297 (12)1.00848 (13)0.06019 (4)0.0228 (2)
C90.23100 (12)0.90200 (12)0.01695 (4)0.0213 (2)
C100.36192 (11)0.80389 (11)0.00460 (4)0.0178 (2)
C10A0.51917 (10)0.81560 (10)0.03876 (4)0.0155 (2)
C110.33434 (14)0.69327 (13)0.04214 (4)0.0243 (2)
C11A0.78675 (10)0.77783 (10)0.08058 (4)0.0145 (2)
C11B0.95174 (10)0.72217 (10)0.09862 (4)0.0144 (2)
C311.44170 (13)0.53773 (14)0.14491 (4)0.0252 (3)
C411.30970 (11)0.76005 (11)0.21667 (4)0.0171 (2)
C421.47693 (12)0.81736 (14)0.21961 (4)0.0231 (2)
C431.57064 (13)0.85772 (15)0.26898 (5)0.0265 (3)
C441.49880 (14)0.83808 (14)0.31591 (4)0.0249 (3)
C451.33329 (14)0.77825 (13)0.31351 (4)0.0234 (2)
C461.23742 (12)0.74058 (12)0.26415 (4)0.0203 (2)
H51.034370.945870.206130.0213*
H60.763361.045250.174740.0220*
H70.423941.090750.122660.0244*
H80.160111.073800.066630.0273*
H90.122080.896660.004820.0256*
H110.689 (2)0.667 (2)0.0118 (8)0.035 (5)*
H11A0.221120.643980.043830.0365*
H11B0.423440.611990.037710.0365*
H11C0.340410.751400.075500.0365*
H421.527370.828970.187630.0277*
H431.683580.898640.270510.0318*
H441.562510.865440.349630.0299*
H451.285230.762940.345760.0282*
H461.123580.701880.262700.0243*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0135 (2)0.0198 (3)0.0159 (3)0.0031 (2)0.0012 (2)0.0034 (2)
O20.0225 (3)0.0288 (4)0.0201 (3)0.0093 (3)0.0006 (3)0.0063 (3)
N110.0131 (3)0.0170 (3)0.0161 (3)0.0010 (2)0.0014 (2)0.0017 (2)
N310.0271 (5)0.0631 (8)0.0330 (6)0.0232 (5)0.0089 (4)0.0117 (5)
C20.0142 (3)0.0206 (4)0.0159 (3)0.0032 (3)0.0001 (3)0.0008 (3)
C30.0126 (3)0.0228 (4)0.0153 (3)0.0029 (3)0.0011 (2)0.0010 (3)
C40.0117 (3)0.0198 (3)0.0145 (3)0.0008 (2)0.0000 (2)0.0004 (3)
C4A0.0113 (3)0.0179 (3)0.0155 (3)0.0007 (2)0.0001 (2)0.0016 (3)
C50.0137 (3)0.0196 (4)0.0190 (4)0.0004 (3)0.0005 (3)0.0045 (3)
C60.0143 (3)0.0198 (4)0.0202 (4)0.0004 (3)0.0004 (3)0.0051 (3)
C6A0.0124 (3)0.0171 (3)0.0169 (3)0.0003 (2)0.0003 (2)0.0015 (3)
C6B0.0125 (3)0.0174 (3)0.0177 (3)0.0012 (3)0.0006 (3)0.0002 (3)
C70.0156 (3)0.0235 (4)0.0215 (4)0.0045 (3)0.0012 (3)0.0015 (3)
C80.0152 (3)0.0269 (4)0.0254 (4)0.0054 (3)0.0002 (3)0.0007 (3)
C90.0140 (3)0.0257 (4)0.0229 (4)0.0022 (3)0.0022 (3)0.0025 (3)
C100.0144 (3)0.0199 (4)0.0179 (4)0.0007 (3)0.0018 (3)0.0017 (3)
C10A0.0125 (3)0.0167 (3)0.0165 (3)0.0004 (2)0.0002 (2)0.0011 (3)
C110.0231 (4)0.0252 (4)0.0226 (4)0.0012 (3)0.0039 (3)0.0029 (3)
C11A0.0117 (3)0.0162 (3)0.0149 (3)0.0000 (2)0.0003 (2)0.0006 (3)
C11B0.0121 (3)0.0157 (3)0.0151 (3)0.0003 (2)0.0006 (2)0.0013 (3)
C310.0183 (4)0.0356 (5)0.0200 (4)0.0082 (3)0.0028 (3)0.0046 (4)
C410.0136 (3)0.0217 (4)0.0150 (3)0.0001 (3)0.0010 (3)0.0007 (3)
C420.0145 (3)0.0359 (5)0.0179 (4)0.0040 (3)0.0011 (3)0.0015 (3)
C430.0177 (4)0.0372 (5)0.0222 (4)0.0034 (3)0.0050 (3)0.0028 (4)
C440.0261 (4)0.0281 (5)0.0180 (4)0.0025 (3)0.0055 (3)0.0032 (3)
C450.0292 (4)0.0256 (4)0.0150 (4)0.0006 (3)0.0013 (3)0.0006 (3)
C460.0201 (4)0.0236 (4)0.0170 (4)0.0016 (3)0.0024 (3)0.0006 (3)
Geometric parameters (Å, º) top
O1—C21.3670 (11)C10—C10A1.4056 (13)
O1—C11B1.3748 (11)C10—C111.4967 (14)
O2—C21.2137 (12)C11A—C11B1.3956 (12)
N11—C10A1.3906 (11)C41—C461.4016 (14)
N11—C11A1.3772 (12)C41—C421.3952 (13)
N31—C311.1548 (17)C42—C431.3929 (16)
N11—H110.874 (18)C43—C441.3874 (16)
C2—C31.4565 (14)C44—C451.3914 (16)
C3—C41.3748 (13)C45—C461.3942 (14)
C3—C311.4312 (14)C5—H50.9500
C4—C411.4845 (14)C6—H60.9500
C4—C4A1.4420 (12)C7—H70.9500
C4A—C51.4230 (13)C8—H80.9500
C4A—C11B1.4020 (13)C9—H90.9500
C5—C61.3767 (13)C11—H11A0.9800
C6—C6A1.4074 (14)C11—H11B0.9800
C6A—C6B1.4400 (12)C11—H11C0.9800
C6A—C11A1.4120 (12)C42—H420.9500
C6B—C10A1.4139 (13)C43—H430.9500
C6B—C71.4032 (13)C44—H440.9500
C7—C81.3828 (14)C45—H450.9500
C8—C91.4064 (14)C46—H460.9500
C9—C101.3946 (13)
C2—O1—C11B121.34 (8)O1—C11B—C4A122.89 (7)
C10A—N11—C11A107.95 (7)C4A—C11B—C11A119.92 (8)
C11A—N11—H11126.4 (11)N31—C31—C3178.26 (13)
C10A—N11—H11125.2 (11)C4—C41—C42120.22 (8)
O1—C2—C3116.93 (8)C42—C41—C46119.29 (9)
O2—C2—C3124.88 (9)C4—C41—C46120.47 (8)
O1—C2—O2118.12 (9)C41—C42—C43120.64 (9)
C4—C3—C31122.63 (9)C42—C43—C44119.91 (10)
C2—C3—C4122.66 (8)C43—C44—C45119.90 (10)
C2—C3—C31114.44 (8)C44—C45—C46120.52 (9)
C4A—C4—C41120.97 (8)C41—C46—C45119.72 (9)
C3—C4—C4A118.33 (9)C4A—C5—H5119.00
C3—C4—C41120.69 (8)C6—C5—H5119.00
C4—C4A—C5123.02 (9)C5—C6—H6120.00
C4—C4A—C11B117.56 (8)C6A—C6—H6120.00
C5—C4A—C11B119.39 (8)C6B—C7—H7121.00
C4A—C5—C6121.03 (9)C8—C7—H7121.00
C5—C6—C6A119.17 (8)C7—C8—H8120.00
C6B—C6A—C11A106.06 (8)C9—C8—H8120.00
C6—C6A—C6B133.32 (8)C8—C9—H9119.00
C6—C6A—C11A120.59 (8)C10—C9—H9119.00
C6A—C6B—C10A106.77 (7)C10—C11—H11A109.00
C6A—C6B—C7132.76 (9)C10—C11—H11B109.00
C7—C6B—C10A120.45 (8)C10—C11—H11C109.00
C6B—C7—C8118.20 (9)H11A—C11—H11B109.00
C7—C8—C9120.61 (9)H11A—C11—H11C109.00
C8—C9—C10122.95 (9)H11B—C11—H11C109.00
C9—C10—C11121.45 (9)C41—C42—H42120.00
C10A—C10—C11122.73 (8)C43—C42—H42120.00
C9—C10—C10A115.82 (9)C42—C43—H43120.00
C6B—C10A—C10121.97 (8)C44—C43—H43120.00
N11—C10A—C6B109.13 (7)C43—C44—H44120.00
N11—C10A—C10128.88 (8)C45—C44—H44120.00
C6A—C11A—C11B119.77 (9)C44—C45—H45120.00
N11—C11A—C11B130.08 (8)C46—C45—H45120.00
N11—C11A—C6A110.08 (7)C41—C46—H46120.00
O1—C11B—C11A117.18 (8)C45—C46—H46120.00
C11B—O1—C2—O2179.96 (9)C6—C6A—C6B—C10A177.82 (10)
C11B—O1—C2—C33.08 (12)C11A—C6A—C6B—C7178.07 (10)
C2—O1—C11B—C4A3.74 (13)C11A—C6A—C6B—C10A0.10 (10)
C2—O1—C11B—C11A177.50 (8)C6—C6A—C11A—N11178.70 (8)
C11A—N11—C10A—C6B0.83 (10)C6—C6A—C11A—C11B1.36 (13)
C11A—N11—C10A—C10177.20 (9)C6B—C6A—C11A—N110.62 (10)
C10A—N11—C11A—C6A0.91 (10)C6B—C6A—C11A—C11B176.72 (8)
C10A—N11—C11A—C11B176.08 (9)C6A—C6B—C7—C8177.19 (10)
O1—C2—C3—C41.63 (14)C10A—C6B—C7—C80.78 (14)
O1—C2—C3—C31175.76 (8)C6A—C6B—C10A—N110.45 (10)
O2—C2—C3—C4175.11 (10)C6A—C6B—C10A—C10177.75 (8)
O2—C2—C3—C310.98 (14)C7—C6B—C10A—N11178.89 (8)
C2—C3—C4—C4A5.55 (14)C7—C6B—C10A—C100.70 (14)
C2—C3—C4—C41173.15 (9)C6B—C7—C8—C90.04 (15)
C31—C3—C4—C4A179.20 (9)C7—C8—C9—C100.85 (16)
C31—C3—C4—C410.50 (14)C8—C9—C10—C10A0.92 (14)
C3—C4—C4A—C5173.02 (9)C8—C9—C10—C11179.30 (10)
C3—C4—C4A—C11B4.82 (13)C9—C10—C10A—N11177.66 (9)
C41—C4—C4A—C58.28 (14)C9—C10—C10A—C6B0.15 (13)
C41—C4—C4A—C11B173.88 (8)C11—C10—C10A—N112.12 (15)
C3—C4—C41—C4254.88 (13)C11—C10—C10A—C6B179.93 (9)
C3—C4—C41—C46123.43 (10)N11—C11A—C11B—O14.06 (14)
C4A—C4—C41—C42126.45 (10)N11—C11A—C11B—C4A174.74 (9)
C4A—C4—C41—C4655.24 (13)C6A—C11A—C11B—O1179.21 (8)
C4—C4A—C5—C6179.91 (9)C6A—C11A—C11B—C4A2.00 (13)
C11B—C4A—C5—C62.10 (14)C4—C41—C42—C43179.49 (10)
C4—C4A—C11B—O10.34 (13)C46—C41—C42—C431.16 (16)
C4—C4A—C11B—C11A178.38 (8)C4—C41—C46—C45178.19 (9)
C5—C4A—C11B—O1177.59 (8)C42—C41—C46—C450.14 (15)
C5—C4A—C11B—C11A3.69 (13)C41—C42—C43—C441.27 (18)
C4A—C5—C6—C6A1.22 (14)C42—C43—C44—C450.06 (19)
C5—C6—C6A—C6B174.51 (10)C43—C44—C45—C461.25 (17)
C5—C6—C6A—C11A2.95 (14)C44—C45—C46—C411.34 (16)
C6—C6A—C6B—C70.35 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O2i0.874 (18)2.095 (19)2.9561 (11)168.2 (15)
C43—H43···N31ii0.952.563.3130 (17)136
Symmetry codes: (i) x+2, y+1, z; (ii) x+7/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H14N2O2
Mr350.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)7.8659 (1), 8.5151 (1), 25.1137 (4)
β (°) 98.133 (2)
V3)1665.17 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.41 × 0.29
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.978, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27185, 8485, 7184
Rint0.022
(sin θ/λ)max1)0.860
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.154, 1.16
No. of reflections8485
No. of parameters249
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.31

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O2i0.874 (18)2.095 (19)2.9561 (11)168.2 (15)
C43—H43···N31ii0.952.563.3130 (17)136
Symmetry codes: (i) x+2, y+1, z; (ii) x+7/2, y+1/2, z+1/2.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds