organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 October 2012; accepted 13 October 2012; online 20 October 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C14H14N2O4S. The N—H bonds are syn to the ortho-nitro groups in the sulfonyl benzene rings and anti to the methyl groups in the aniline benzene rings. The mol­ecules are twisted at the S—N bonds with torsion angles of −60.4 (3) and 58.8 (3)° in the two mol­ecules. The dihedral angles between the planes of the sulfonyl and the anilino benzene rings are 53.67 (8) and 56.99 (9)°. The amide H atoms of both mol­ecules are involved in an intra­molecular hydrogen bond, generating an S(7) motif. In the crystal, pairs of N—H⋯O(S) hydrogen bonds link like mol­ecules into inversion dimers.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Alkan et al. (2011[Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769-777.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2649.]); Gowda et al. (2002[Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967-973.]) and of N-chloro­aryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O4S

  • Mr = 306.33

  • Triclinic, [P \overline 1]

  • a = 8.0248 (9) Å

  • b = 12.633 (1) Å

  • c = 14.711 (1) Å

  • α = 88.205 (9)°

  • β = 80.818 (9)°

  • γ = 82.323 (9)°

  • V = 1459.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.902, Tmax = 0.945

  • 10389 measured reflections

  • 5936 independent reflections

  • 3935 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.164

  • S = 1.02

  • 5936 reflections

  • 389 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.83 (2) 2.36 (3) 3.056 (4) 142 (3)
N1—H1N⋯O7 0.83 (2) 2.45 (3) 3.011 (4) 126 (3)
N3—H3N⋯O3 0.85 (2) 2.40 (3) 3.012 (4) 129 (3)
N3—H3N⋯O1ii 0.85 (2) 2.41 (3) 3.070 (4) 135 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of substituents on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bowes et al., 2003; Gowda et al., 1994; Saeed et al., 2010; Shahwar et al., 2012), N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylsulfonamides (Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(2-methylphenyl)-2-nitrobenzenesulfonamide (I) has been determined (Fig. 1).

The asymmetric unit of the structure contains two independent molecules. The conformation of the N—H bonds are syn to the ortho-nitro groups in the sulfonyl benzene rings and anti to both the ortho- and meta-methyl groups in the anilino rings, compared to a syn conformation between the N—H bonds and the ortho-nitro groups in the sulfonyl benzene rings or the ortho-methyl group in the anilino ring observed in N-(2-methylphenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). In (I) the molecules are twisted at the S—N bonds with the torsional angles of -60.37 (30) and 58.81 (34)°, compared to the value of 73.90 (26)° in (II). The dihedral angles between the sulfonyl and anilino rings are 53.67 (8) and 56.99 (9)°, compared to the value of 53.44 (14)° in (II).

The amide H-atoms each form intramolecular H-bonds with the O3 and O7 atoms of the ortho-nitro groups in the sulfonyl benzene rings, generating S(7) motifs (Bernstein et al., 1995). Intermolecular H-bonds from amide H-atoms to sulfonyl oxygen atoms of a similar neighbouring molecule, generate R22(8) inversion dimers (Table 1, Fig. 2.)

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bowes et al. (2003); Gowda et al. (1994); Saeed et al. (2010); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloroarylsulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 2,3-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2,3-dimethylphenyl)-2-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point (138° C) from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectrum.

Prism like light pink single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. The amino H atom was freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq (C-methyl)of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level and intramolecular hydrogen bonds drawn as dashed lines..
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonds shown as dashed lines.
N-(2,3-Dimethylphenyl)-2-nitrobenzenesulfonamide top
Crystal data top
C14H14N2O4SZ = 4
Mr = 306.33F(000) = 640
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0248 (9) ÅCell parameters from 2511 reflections
b = 12.633 (1) Åθ = 2.6–27.8°
c = 14.711 (1) ŵ = 0.24 mm1
α = 88.205 (9)°T = 293 K
β = 80.818 (9)°Prism, light pink
γ = 82.323 (9)°0.44 × 0.40 × 0.24 mm
V = 1459.0 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
5936 independent reflections
Radiation source: fine-focus sealed tube3935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω scans.θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 610
Tmin = 0.902, Tmax = 0.945k = 1515
10389 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.4896P]
where P = (Fo2 + 2Fc2)/3
5936 reflections(Δ/σ)max = 0.007
389 parametersΔρmax = 0.73 e Å3
18 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H14N2O4Sγ = 82.323 (9)°
Mr = 306.33V = 1459.0 (2) Å3
Triclinic, P1Z = 4
a = 8.0248 (9) ÅMo Kα radiation
b = 12.633 (1) ŵ = 0.24 mm1
c = 14.711 (1) ÅT = 293 K
α = 88.205 (9)°0.44 × 0.40 × 0.24 mm
β = 80.818 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
5936 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3935 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.945Rint = 0.018
10389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06218 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.73 e Å3
5936 reflectionsΔρmin = 0.32 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59078 (10)0.35977 (6)0.38703 (6)0.0426 (2)
O50.5488 (3)0.47186 (18)0.37132 (17)0.0537 (6)
O60.5067 (3)0.2854 (2)0.34621 (17)0.0561 (6)
O70.8170 (3)0.4954 (2)0.47995 (19)0.0637 (7)
O80.9658 (5)0.5631 (2)0.3634 (2)0.0896 (10)
N10.5588 (4)0.3406 (2)0.49664 (19)0.0454 (7)
H1N0.581 (5)0.391 (2)0.526 (2)0.055*
N20.9020 (4)0.4890 (2)0.4036 (2)0.0523 (7)
C10.8118 (4)0.3235 (2)0.3470 (2)0.0372 (7)
C20.9393 (4)0.3844 (2)0.3586 (2)0.0399 (7)
C31.1079 (4)0.3496 (3)0.3287 (2)0.0488 (8)
H31.19120.39110.33780.059*
C41.1527 (4)0.2528 (3)0.2851 (3)0.0533 (9)
H41.26680.22810.26540.064*
C51.0292 (4)0.1927 (3)0.2706 (2)0.0503 (9)
H51.05990.12790.24020.060*
C60.8602 (4)0.2276 (3)0.3009 (2)0.0437 (8)
H60.77760.18640.29040.052*
C70.5971 (5)0.2352 (3)0.5374 (2)0.0476 (8)
C80.4693 (5)0.1718 (3)0.5629 (2)0.0523 (9)
C90.5109 (6)0.0721 (3)0.6048 (2)0.0582 (10)
C100.6782 (7)0.0421 (3)0.6172 (3)0.0748 (13)
H100.70650.02430.64380.090*
C110.8033 (6)0.1053 (4)0.5925 (3)0.0781 (13)
H110.91380.08220.60280.094*
C120.7653 (5)0.2033 (3)0.5522 (3)0.0620 (10)
H120.84910.24750.53510.074*
C130.2916 (5)0.2082 (3)0.5485 (3)0.0708 (12)
H13A0.28400.27970.52390.106*
H13B0.21670.20690.60630.106*
H13C0.25910.16150.50610.106*
C140.3784 (7)0.0013 (3)0.6390 (3)0.0865 (15)
H14A0.29690.03690.68690.130*
H14B0.43160.06400.66270.130*
H14C0.32180.01420.58920.130*
S20.02193 (11)0.85930 (7)0.11713 (6)0.0481 (2)
O10.0211 (3)0.97056 (19)0.13593 (18)0.0594 (7)
O20.0880 (3)0.7857 (2)0.15857 (19)0.0648 (7)
O30.3080 (3)0.9908 (2)0.0211 (2)0.0657 (7)
O40.3890 (4)1.0547 (2)0.1388 (2)0.0822 (9)
N30.0419 (4)0.8477 (2)0.0069 (2)0.0509 (7)
H3N0.091 (4)0.897 (2)0.022 (2)0.061*
N40.3487 (4)0.9821 (2)0.0977 (2)0.0534 (8)
C150.2213 (4)0.8163 (3)0.1527 (2)0.0434 (8)
C160.3568 (4)0.8767 (3)0.1430 (2)0.0447 (8)
C170.5065 (5)0.8400 (3)0.1742 (3)0.0572 (10)
H170.59520.88150.16710.069*
C180.5242 (5)0.7411 (3)0.2163 (3)0.0650 (11)
H180.62590.71520.23680.078*
C190.3936 (6)0.6811 (3)0.2282 (3)0.0643 (11)
H190.40650.61460.25700.077*
C200.2406 (5)0.7184 (3)0.1975 (2)0.0543 (9)
H200.15110.67740.20710.065*
C210.0992 (6)0.7447 (3)0.0398 (3)0.0652 (8)
C220.0109 (7)0.6796 (3)0.0580 (3)0.0756 (10)
C230.0528 (8)0.5828 (3)0.1033 (3)0.0824 (11)
C240.2297 (9)0.5572 (4)0.1317 (3)0.1028 (14)
H240.27240.49320.16170.123*
C250.3376 (9)0.6261 (5)0.1152 (4)0.1085 (16)
H250.45350.60840.13580.130*
C260.2839 (7)0.7197 (4)0.0697 (3)0.0804 (10)
H260.35980.76540.05830.096*
C270.1925 (7)0.7109 (4)0.0284 (3)0.0878 (12)
H27A0.23640.65880.01460.132*
H27B0.25050.71510.08090.132*
H27C0.21020.77940.00060.132*
C280.0634 (10)0.5087 (4)0.1236 (4)0.124 (2)
H28A0.14090.54430.16160.186*
H28B0.12650.48580.06700.186*
H28C0.00150.44770.15540.186*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0351 (4)0.0445 (5)0.0468 (5)0.0025 (3)0.0089 (3)0.0013 (4)
O50.0494 (14)0.0469 (14)0.0596 (16)0.0113 (11)0.0094 (11)0.0082 (11)
O60.0397 (13)0.0690 (16)0.0628 (16)0.0087 (12)0.0150 (11)0.0083 (13)
O70.0597 (16)0.0675 (18)0.0631 (18)0.0091 (13)0.0023 (14)0.0225 (14)
O80.121 (3)0.0455 (16)0.096 (2)0.0205 (17)0.009 (2)0.0026 (16)
N10.0487 (16)0.0413 (16)0.0442 (17)0.0036 (13)0.0029 (13)0.0016 (12)
N20.0528 (18)0.0457 (18)0.059 (2)0.0038 (14)0.0128 (16)0.0060 (15)
C10.0358 (16)0.0378 (17)0.0368 (17)0.0033 (13)0.0091 (13)0.0014 (13)
C20.0436 (18)0.0376 (17)0.0385 (18)0.0004 (14)0.0108 (14)0.0010 (13)
C30.0368 (18)0.054 (2)0.058 (2)0.0060 (15)0.0127 (16)0.0012 (17)
C40.0373 (19)0.059 (2)0.060 (2)0.0084 (16)0.0090 (16)0.0070 (18)
C50.050 (2)0.044 (2)0.054 (2)0.0068 (16)0.0076 (17)0.0082 (16)
C60.0427 (18)0.0430 (19)0.0464 (19)0.0058 (15)0.0099 (15)0.0005 (15)
C70.060 (2)0.0387 (18)0.0400 (19)0.0022 (16)0.0001 (16)0.0016 (14)
C80.058 (2)0.048 (2)0.046 (2)0.0024 (17)0.0030 (17)0.0060 (16)
C90.084 (3)0.045 (2)0.042 (2)0.005 (2)0.0016 (19)0.0009 (16)
C100.102 (4)0.060 (3)0.056 (3)0.001 (3)0.003 (2)0.006 (2)
C110.072 (3)0.086 (3)0.070 (3)0.012 (3)0.015 (2)0.013 (2)
C120.066 (3)0.064 (3)0.051 (2)0.005 (2)0.0094 (19)0.0092 (19)
C130.062 (3)0.067 (3)0.082 (3)0.011 (2)0.006 (2)0.003 (2)
C140.123 (4)0.060 (3)0.075 (3)0.030 (3)0.001 (3)0.004 (2)
S20.0398 (5)0.0510 (5)0.0532 (5)0.0027 (4)0.0099 (4)0.0027 (4)
O10.0505 (15)0.0545 (15)0.0684 (17)0.0094 (12)0.0072 (12)0.0072 (13)
O20.0489 (15)0.0765 (18)0.0721 (18)0.0202 (13)0.0129 (13)0.0186 (14)
O30.0609 (17)0.0663 (18)0.0726 (19)0.0141 (13)0.0165 (15)0.0145 (14)
O40.096 (2)0.0583 (18)0.093 (2)0.0181 (16)0.0072 (18)0.0174 (16)
N30.0561 (19)0.0487 (15)0.0506 (18)0.0072 (13)0.0181 (15)0.0080 (12)
N40.0405 (17)0.0504 (19)0.066 (2)0.0044 (14)0.0013 (15)0.0054 (16)
C150.0411 (18)0.0443 (19)0.0436 (19)0.0023 (15)0.0087 (14)0.0044 (15)
C160.0402 (18)0.0479 (19)0.0440 (19)0.0029 (15)0.0058 (14)0.0096 (15)
C170.041 (2)0.065 (2)0.064 (2)0.0031 (17)0.0093 (17)0.017 (2)
C180.056 (2)0.077 (3)0.059 (2)0.014 (2)0.021 (2)0.009 (2)
C190.075 (3)0.056 (2)0.060 (3)0.012 (2)0.022 (2)0.0044 (19)
C200.060 (2)0.052 (2)0.051 (2)0.0042 (18)0.0131 (18)0.0023 (17)
C210.0985 (19)0.0527 (17)0.047 (2)0.0022 (15)0.0262 (19)0.0070 (15)
C220.1152 (19)0.056 (2)0.060 (3)0.0115 (17)0.027 (2)0.0067 (16)
C230.160 (3)0.0523 (19)0.038 (2)0.012 (2)0.030 (2)0.0094 (15)
C240.167 (4)0.073 (3)0.061 (3)0.011 (2)0.017 (3)0.002 (2)
C250.130 (3)0.100 (4)0.084 (4)0.018 (2)0.008 (3)0.019 (3)
C260.0994 (19)0.082 (3)0.056 (3)0.011 (2)0.019 (2)0.000 (2)
C270.1075 (19)0.092 (3)0.068 (3)0.023 (2)0.019 (2)0.019 (2)
C280.210 (7)0.094 (4)0.077 (4)0.045 (4)0.030 (4)0.016 (3)
Geometric parameters (Å, º) top
S1—O61.426 (2)S2—O21.424 (3)
S1—O51.431 (2)S2—O11.427 (2)
S1—N11.608 (3)S2—N31.613 (3)
S1—C11.780 (3)S2—C151.774 (3)
O7—N21.216 (4)O3—N41.220 (4)
O8—N21.218 (4)O4—N41.219 (4)
N1—C71.458 (4)N3—C211.474 (5)
N1—H1N0.829 (18)N3—H3N0.846 (18)
N2—C21.470 (4)N4—C161.469 (4)
C1—C61.385 (4)C15—C201.385 (5)
C1—C21.394 (4)C15—C161.396 (5)
C2—C31.371 (4)C16—C171.372 (5)
C3—C41.377 (5)C17—C181.377 (5)
C3—H30.9300C17—H170.9300
C4—C51.373 (5)C18—C191.360 (6)
C4—H40.9300C18—H180.9300
C5—C61.375 (5)C19—C201.394 (5)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.382 (5)C21—C221.346 (6)
C7—C121.405 (5)C21—C261.472 (7)
C8—C91.409 (5)C22—C231.406 (6)
C8—C131.485 (5)C22—C271.457 (7)
C9—C101.384 (6)C23—C241.411 (8)
C9—C141.495 (6)C23—C281.475 (7)
C10—C111.363 (6)C24—C251.360 (8)
C10—H100.9300C24—H240.9300
C11—C121.374 (5)C25—C261.361 (6)
C11—H110.9300C25—H250.9300
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O6—S1—O5119.75 (15)O2—S2—O1119.82 (16)
O6—S1—N1107.92 (16)O2—S2—N3107.96 (17)
O5—S1—N1106.93 (14)O1—S2—N3106.38 (16)
O6—S1—C1105.38 (14)O2—S2—C15105.30 (16)
O5—S1—C1108.58 (15)O1—S2—C15108.09 (15)
N1—S1—C1107.78 (15)N3—S2—C15108.98 (16)
C7—N1—S1121.6 (2)C21—N3—S2122.4 (2)
C7—N1—H1N114 (3)C21—N3—H3N111 (3)
S1—N1—H1N113 (3)S2—N3—H3N112 (3)
O7—N2—O8124.1 (3)O4—N4—O3124.5 (3)
O7—N2—C2118.5 (3)O4—N4—C16116.9 (3)
O8—N2—C2117.3 (3)O3—N4—C16118.5 (3)
C6—C1—C2117.7 (3)C20—C15—C16117.8 (3)
C6—C1—S1117.5 (2)C20—C15—S2117.6 (3)
C2—C1—S1124.8 (2)C16—C15—S2124.5 (3)
C3—C2—C1121.6 (3)C17—C16—C15121.7 (3)
C3—C2—N2116.0 (3)C17—C16—N4116.2 (3)
C1—C2—N2122.4 (3)C15—C16—N4122.1 (3)
C2—C3—C4119.4 (3)C16—C17—C18119.4 (4)
C2—C3—H3120.3C16—C17—H17120.3
C4—C3—H3120.3C18—C17—H17120.3
C5—C4—C3120.1 (3)C19—C18—C17120.3 (4)
C5—C4—H4120.0C19—C18—H18119.8
C3—C4—H4120.0C17—C18—H18119.8
C4—C5—C6120.4 (3)C18—C19—C20120.6 (4)
C4—C5—H5119.8C18—C19—H19119.7
C6—C5—H5119.8C20—C19—H19119.7
C5—C6—C1120.8 (3)C15—C20—C19120.2 (4)
C5—C6—H6119.6C15—C20—H20119.9
C1—C6—H6119.6C19—C20—H20119.9
C8—C7—C12122.1 (3)C22—C21—C26121.8 (4)
C8—C7—N1120.2 (3)C22—C21—N3122.2 (4)
C12—C7—N1117.6 (3)C26—C21—N3115.9 (4)
C7—C8—C9118.3 (4)C21—C22—C23119.1 (5)
C7—C8—C13121.3 (3)C21—C22—C27118.8 (4)
C9—C8—C13120.4 (4)C23—C22—C27122.0 (5)
C10—C9—C8118.2 (4)C22—C23—C24119.7 (5)
C10—C9—C14120.1 (4)C22—C23—C28120.8 (6)
C8—C9—C14121.6 (4)C24—C23—C28119.4 (5)
C11—C10—C9123.2 (4)C25—C24—C23119.9 (5)
C11—C10—H10118.4C25—C24—H24120.0
C9—C10—H10118.4C23—C24—H24120.0
C10—C11—C12119.6 (4)C24—C25—C26123.0 (6)
C10—C11—H11120.2C24—C25—H25118.5
C12—C11—H11120.2C26—C25—H25118.5
C11—C12—C7118.6 (4)C25—C26—C21116.3 (5)
C11—C12—H12120.7C25—C26—H26121.8
C7—C12—H12120.7C21—C26—H26121.8
C8—C13—H13A109.5C22—C27—H27A109.5
C8—C13—H13B109.5C22—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C8—C13—H13C109.5C22—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C9—C14—H14A109.5C23—C28—H28A109.5
C9—C14—H14B109.5C23—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C9—C14—H14C109.5C23—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O6—S1—N1—C753.0 (3)O2—S2—N3—C2155.1 (3)
O5—S1—N1—C7177.0 (3)O1—S2—N3—C21175.1 (3)
C1—S1—N1—C760.4 (3)C15—S2—N3—C2158.8 (3)
O6—S1—C1—C610.1 (3)O2—S2—C15—C209.5 (3)
O5—S1—C1—C6139.6 (2)O1—S2—C15—C20138.7 (3)
N1—S1—C1—C6104.9 (3)N3—S2—C15—C20106.1 (3)
O6—S1—C1—C2169.9 (3)O2—S2—C15—C16166.9 (3)
O5—S1—C1—C240.5 (3)O1—S2—C15—C1637.7 (3)
N1—S1—C1—C275.0 (3)N3—S2—C15—C1677.5 (3)
C6—C1—C2—C32.3 (5)C20—C15—C16—C171.8 (5)
S1—C1—C2—C3177.7 (3)S2—C15—C16—C17178.2 (3)
C6—C1—C2—N2177.9 (3)C20—C15—C16—N4179.2 (3)
S1—C1—C2—N22.1 (4)S2—C15—C16—N42.8 (5)
O7—N2—C2—C3126.1 (3)O4—N4—C16—C1750.8 (4)
O8—N2—C2—C350.4 (4)O3—N4—C16—C17126.9 (3)
O7—N2—C2—C153.8 (4)O4—N4—C16—C15130.2 (3)
O8—N2—C2—C1129.7 (4)O3—N4—C16—C1552.2 (4)
C1—C2—C3—C40.7 (5)C15—C16—C17—C180.0 (5)
N2—C2—C3—C4179.4 (3)N4—C16—C17—C18179.1 (3)
C2—C3—C4—C51.0 (5)C16—C17—C18—C191.1 (6)
C3—C4—C5—C61.1 (6)C17—C18—C19—C200.4 (6)
C4—C5—C6—C10.4 (5)C16—C15—C20—C192.4 (5)
C2—C1—C6—C52.1 (5)S2—C15—C20—C19179.1 (3)
S1—C1—C6—C5177.9 (3)C18—C19—C20—C151.4 (6)
S1—N1—C7—C897.5 (3)S2—N3—C21—C2292.1 (4)
S1—N1—C7—C1284.6 (4)S2—N3—C21—C2690.9 (4)
C12—C7—C8—C90.1 (5)C26—C21—C22—C232.8 (6)
N1—C7—C8—C9177.9 (3)N3—C21—C22—C23179.6 (3)
C12—C7—C8—C13178.6 (3)C26—C21—C22—C27178.3 (4)
N1—C7—C8—C130.8 (5)N3—C21—C22—C271.6 (6)
C7—C8—C9—C100.9 (5)C21—C22—C23—C242.1 (6)
C13—C8—C9—C10179.6 (4)C27—C22—C23—C24179.1 (4)
C7—C8—C9—C14176.7 (3)C21—C22—C23—C28179.3 (4)
C13—C8—C9—C142.0 (6)C27—C22—C23—C280.5 (6)
C8—C9—C10—C111.3 (6)C22—C23—C24—C250.0 (7)
C14—C9—C10—C11176.3 (4)C28—C23—C24—C25178.6 (5)
C9—C10—C11—C120.8 (7)C23—C24—C25—C261.6 (8)
C10—C11—C12—C70.2 (6)C24—C25—C26—C210.9 (8)
C8—C7—C12—C110.6 (6)C22—C21—C26—C251.3 (6)
N1—C7—C12—C11178.5 (3)N3—C21—C26—C25178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.83 (2)2.36 (3)3.056 (4)142 (3)
N1—H1N···O70.83 (2)2.45 (3)3.011 (4)126 (3)
N3—H3N···O30.85 (2)2.40 (3)3.012 (4)129 (3)
N3—H3N···O1ii0.85 (2)2.41 (3)3.070 (4)135 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O4S
Mr306.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0248 (9), 12.633 (1), 14.711 (1)
α, β, γ (°)88.205 (9), 80.818 (9), 82.323 (9)
V3)1459.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.44 × 0.40 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.902, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
10389, 5936, 3935
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.164, 1.02
No. of reflections5936
No. of parameters389
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.829 (18)2.36 (3)3.056 (4)142 (3)
N1—H1N···O70.829 (18)2.45 (3)3.011 (4)126 (3)
N3—H3N···O30.846 (18)2.40 (3)3.012 (4)129 (3)
N3—H3N···O1ii0.846 (18)2.41 (3)3.070 (4)135 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to Faculty.

References

First citationAlkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2649.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds