organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,5-Di­bromo-2-hy­dr­oxy­benzyl­­idene)-2-methyl­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: tangchunbao@yahoo.com.cn

(Received 22 November 2010; accepted 23 November 2010; online 30 November 2010)

The asymmetric unit of the title compound, C15H12Br2N2O2, contains two independent mol­ecules in which the dihedral angles between the benzene rings are 49.5 (7) and 66.4 (7)°. Intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs in each mol­ecule. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the b axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Br2N2O2

  • Mr = 412.09

  • Monoclinic, P 21 /c

  • a = 18.636 (3) Å

  • b = 9.606 (2) Å

  • c = 19.943 (3) Å

  • β = 113.726 (2)°

  • V = 3268.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.97 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.486, Tmax = 0.587

  • 17117 measured reflections

  • 6973 independent reflections

  • 2208 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.159

  • S = 0.89

  • 6973 reflections

  • 389 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.90 (1) 1.85 (2) 2.743 (8) 172 (7)
N4—H4⋯O2 0.90 (1) 1.92 (2) 2.815 (8) 174 (7)
O3—H3⋯N3 0.82 1.90 2.624 (8) 146
O1—H1⋯N1 0.82 1.87 2.584 (8) 145
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules. The dihedral angles between the two benzene rings in the two molecules are 49.5 (7) and 66.4 (7)°, respectively. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, N1—N2—C8—C9, C15—C21—N3—N4, C21—N3—N4—C22, and N3—N4—C22—C23 are 3.9 (6), 4.3 (6), 1.8 (6), 2.4 (6), 7.3 (6), and 2.4 (6)°, respectively. Bond lengths in the molecules are normal (Allen et al., 1987) and comparable to those in the similar compound the author reported recently (Tang, 2010). Intramolecular O1—H1···N1 and O3—H3···N3 hydrogen bonds generate S(6) ring motifs in each molecule (Bernstein et al., 1995). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the b axis (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3,5-Dibromo-2-hydroxybenzaldehyde (0.1 mmol, 28.0 mg) and 2-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atoms were located in a difference Fourier map and refined isotropically, with the N—H distances restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Structure description top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).

The asymmetric unit of the title compound contains two independent molecules. The dihedral angles between the two benzene rings in the two molecules are 49.5 (7) and 66.4 (7)°, respectively. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8, N1—N2—C8—C9, C15—C21—N3—N4, C21—N3—N4—C22, and N3—N4—C22—C23 are 3.9 (6), 4.3 (6), 1.8 (6), 2.4 (6), 7.3 (6), and 2.4 (6)°, respectively. Bond lengths in the molecules are normal (Allen et al., 1987) and comparable to those in the similar compound the author reported recently (Tang, 2010). Intramolecular O1—H1···N1 and O3—H3···N3 hydrogen bonds generate S(6) ring motifs in each molecule (Bernstein et al., 1995). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the b axis (Fig. 2).

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.
N'-(3,5-Dibromo-2-hydroxybenzylidene)-2-methylbenzohydrazide top
Crystal data top
C15H12Br2N2O2F(000) = 1616
Mr = 412.09Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1348 reflections
a = 18.636 (3) Åθ = 2.5–24.1°
b = 9.606 (2) ŵ = 4.97 mm1
c = 19.943 (3) ÅT = 298 K
β = 113.726 (2)°Block, colourless
V = 3268.4 (10) Å30.17 × 0.13 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6973 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2319
Tmin = 0.486, Tmax = 0.587k = 1211
17117 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
6973 reflections(Δ/σ)max < 0.001
389 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.49 e Å3
Crystal data top
C15H12Br2N2O2V = 3268.4 (10) Å3
Mr = 412.09Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.636 (3) ŵ = 4.97 mm1
b = 9.606 (2) ÅT = 298 K
c = 19.943 (3) Å0.17 × 0.13 × 0.12 mm
β = 113.726 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6973 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2208 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.587Rint = 0.116
17117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.32 e Å3
6973 reflectionsΔρmin = 0.49 e Å3
389 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69344 (6)0.40876 (10)0.38431 (6)0.0971 (4)
Br20.72350 (5)0.17458 (10)0.37439 (6)0.0928 (4)
Br30.06953 (6)0.85420 (10)0.01006 (5)0.0876 (4)
Br40.12081 (6)0.29585 (11)0.04659 (6)0.0984 (4)
N10.4069 (4)0.1700 (7)0.3119 (3)0.0615 (18)
N20.3301 (4)0.1455 (7)0.3007 (4)0.0614 (19)
N30.1898 (4)0.6601 (6)0.2214 (3)0.0576 (18)
N40.2608 (4)0.6440 (7)0.2795 (4)0.0605 (18)
O10.5235 (3)0.3360 (6)0.3345 (3)0.0757 (17)
H10.47750.31540.32400.114*
O20.3146 (3)0.3703 (6)0.3204 (3)0.0781 (18)
O30.0844 (3)0.8048 (6)0.1160 (3)0.0726 (16)
H30.12660.79070.15040.109*
O40.2768 (3)0.8762 (6)0.2838 (3)0.0822 (19)
C10.5314 (4)0.0854 (9)0.3282 (4)0.051 (2)
C20.5659 (5)0.2190 (9)0.3415 (4)0.057 (2)
C30.6469 (5)0.2318 (8)0.3630 (4)0.060 (2)
C40.6930 (5)0.1155 (10)0.3713 (4)0.067 (2)
H4A0.74670.12490.38510.081*
C50.6590 (5)0.0157 (9)0.3591 (4)0.065 (2)
C60.5792 (5)0.0284 (9)0.3376 (4)0.058 (2)
H60.55690.11680.32920.069*
C70.4486 (4)0.0642 (9)0.3118 (4)0.057 (2)
H70.42650.02420.30150.069*
C80.2854 (5)0.2545 (10)0.3053 (4)0.055 (2)
C90.2028 (5)0.2208 (9)0.2904 (5)0.061 (2)
C100.1668 (6)0.2838 (11)0.3318 (5)0.088 (3)
C110.0869 (7)0.2519 (13)0.3119 (7)0.109 (4)
H110.06070.29060.33840.131*
C120.0470 (7)0.1646 (14)0.2540 (7)0.111 (4)
H120.00590.14730.24170.133*
C130.0832 (6)0.1029 (9)0.2144 (6)0.089 (3)
H130.05610.04330.17570.107*
C140.1627 (5)0.1327 (9)0.2342 (5)0.073 (3)
H140.18880.09110.20830.087*
C150.0682 (4)0.5631 (8)0.1399 (4)0.048 (2)
C160.0418 (5)0.6869 (9)0.1003 (4)0.054 (2)
C170.0330 (5)0.6879 (9)0.0439 (4)0.059 (2)
C180.0814 (5)0.5726 (9)0.0281 (4)0.066 (2)
H180.13150.57550.00900.079*
C190.0538 (4)0.4536 (8)0.0683 (4)0.057 (2)
C200.0207 (4)0.4455 (9)0.1218 (4)0.056 (2)
H200.03940.36160.14580.067*
C210.1458 (4)0.5550 (8)0.1993 (4)0.051 (2)
H210.16360.46950.22170.061*
C220.3020 (5)0.7621 (9)0.3066 (4)0.051 (2)
C230.3807 (5)0.7368 (8)0.3682 (4)0.051 (2)
C240.4012 (5)0.8118 (9)0.4335 (5)0.065 (2)
C250.4759 (7)0.7929 (11)0.4871 (5)0.103 (3)
H250.49080.84050.53120.124*
C260.5285 (6)0.7049 (11)0.4762 (6)0.102 (3)
H260.57860.69520.51290.122*
C270.5087 (5)0.6310 (10)0.4121 (6)0.102 (3)
H270.54430.57100.40520.122*
C280.4339 (5)0.6489 (9)0.3583 (5)0.075 (3)
H280.41930.60030.31450.090*
C290.2102 (6)0.3762 (12)0.3981 (6)0.138 (5)
H29A0.25600.32860.43130.208*
H29B0.17630.39700.42260.208*
H29C0.22540.46130.38220.208*
C300.3438 (6)0.9038 (10)0.4487 (5)0.111 (4)
H30A0.33030.98190.41590.167*
H30B0.36730.93650.49830.167*
H30C0.29740.85160.44150.167*
H40.281 (4)0.559 (3)0.295 (4)0.080*
H20.309 (4)0.060 (3)0.291 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0765 (7)0.0809 (7)0.1295 (9)0.0250 (6)0.0369 (7)0.0015 (7)
Br20.0685 (6)0.0922 (8)0.1017 (8)0.0176 (6)0.0175 (6)0.0253 (6)
Br30.0767 (7)0.0865 (8)0.0826 (7)0.0029 (5)0.0143 (6)0.0252 (6)
Br40.0707 (7)0.0878 (8)0.1113 (8)0.0274 (6)0.0101 (6)0.0070 (6)
N10.051 (5)0.047 (4)0.067 (5)0.004 (4)0.004 (4)0.006 (4)
N20.046 (5)0.045 (5)0.083 (5)0.004 (4)0.015 (4)0.007 (4)
N30.051 (4)0.051 (4)0.059 (5)0.013 (4)0.009 (4)0.015 (4)
N40.040 (4)0.056 (5)0.065 (5)0.005 (4)0.000 (4)0.001 (4)
O10.049 (3)0.062 (4)0.104 (5)0.003 (3)0.019 (4)0.015 (3)
O20.060 (4)0.057 (4)0.107 (5)0.006 (3)0.022 (4)0.006 (4)
O30.060 (4)0.066 (4)0.073 (4)0.019 (3)0.006 (3)0.006 (3)
O40.069 (4)0.047 (4)0.095 (5)0.004 (3)0.004 (4)0.012 (4)
C10.050 (5)0.054 (6)0.041 (5)0.007 (5)0.009 (4)0.006 (4)
C20.053 (6)0.064 (7)0.041 (5)0.002 (5)0.005 (4)0.005 (5)
C30.060 (6)0.061 (6)0.049 (5)0.013 (5)0.010 (5)0.001 (4)
C40.053 (5)0.091 (8)0.055 (6)0.006 (6)0.018 (5)0.007 (6)
C50.062 (6)0.073 (7)0.056 (6)0.010 (5)0.019 (5)0.021 (5)
C60.050 (5)0.063 (6)0.050 (5)0.003 (5)0.009 (4)0.010 (5)
C70.042 (5)0.057 (6)0.061 (5)0.006 (5)0.009 (4)0.001 (5)
C80.046 (6)0.053 (6)0.047 (5)0.010 (5)0.000 (4)0.006 (5)
C90.048 (6)0.054 (6)0.075 (7)0.011 (5)0.019 (5)0.001 (5)
C100.087 (8)0.112 (9)0.071 (7)0.003 (7)0.038 (7)0.017 (6)
C110.085 (9)0.168 (12)0.096 (9)0.009 (8)0.058 (8)0.026 (9)
C120.074 (8)0.164 (13)0.101 (10)0.006 (8)0.042 (8)0.051 (9)
C130.073 (8)0.080 (7)0.105 (8)0.008 (6)0.026 (7)0.028 (6)
C140.048 (6)0.066 (7)0.101 (8)0.005 (5)0.027 (6)0.017 (6)
C150.055 (5)0.040 (5)0.046 (5)0.006 (4)0.019 (4)0.001 (4)
C160.051 (5)0.060 (6)0.054 (6)0.010 (5)0.024 (5)0.017 (5)
C170.046 (5)0.074 (6)0.049 (5)0.009 (5)0.011 (5)0.018 (5)
C180.052 (5)0.082 (7)0.060 (6)0.019 (6)0.018 (5)0.007 (5)
C190.050 (5)0.050 (6)0.057 (6)0.004 (4)0.007 (5)0.002 (5)
C200.044 (5)0.064 (6)0.046 (5)0.000 (5)0.004 (4)0.010 (4)
C210.046 (5)0.061 (6)0.034 (5)0.007 (4)0.003 (4)0.009 (4)
C220.049 (5)0.056 (6)0.046 (5)0.018 (5)0.016 (5)0.009 (5)
C230.052 (5)0.049 (5)0.049 (6)0.008 (4)0.017 (5)0.005 (4)
C240.067 (6)0.073 (6)0.049 (6)0.002 (5)0.017 (5)0.004 (5)
C250.104 (9)0.116 (9)0.055 (7)0.005 (8)0.004 (7)0.018 (6)
C260.074 (8)0.101 (9)0.093 (9)0.013 (7)0.007 (7)0.013 (7)
C270.058 (7)0.092 (8)0.114 (9)0.006 (6)0.008 (6)0.028 (7)
C280.058 (6)0.078 (7)0.070 (6)0.004 (5)0.005 (6)0.003 (5)
C290.124 (10)0.209 (14)0.103 (9)0.013 (9)0.067 (8)0.035 (9)
C300.121 (8)0.144 (10)0.078 (7)0.008 (8)0.049 (7)0.012 (7)
Geometric parameters (Å, º) top
Br1—C31.878 (8)C11—H110.9300
Br2—C51.890 (8)C12—C131.364 (13)
Br3—C171.894 (7)C12—H120.9300
Br4—C191.900 (8)C13—C141.402 (11)
N1—C71.280 (8)C13—H130.9300
N1—N21.377 (8)C14—H140.9300
N2—C81.364 (10)C15—C201.391 (9)
N2—H20.898 (10)C15—C161.402 (10)
N3—C211.263 (8)C15—C211.457 (9)
N3—N41.372 (8)C16—C171.396 (10)
N4—C221.355 (9)C17—C181.382 (10)
N4—H40.898 (10)C18—C191.371 (10)
O1—C21.348 (8)C18—H180.9300
O1—H10.8200C19—C201.370 (9)
O2—C81.221 (8)C20—H200.9300
O3—C161.345 (8)C21—H210.9300
O3—H30.8200C22—C231.507 (10)
O4—C221.207 (8)C23—C281.375 (10)
C1—C61.375 (9)C23—C241.400 (10)
C1—C21.412 (10)C24—C251.384 (11)
C1—C71.457 (9)C24—C301.508 (11)
C2—C31.399 (10)C25—C261.378 (12)
C3—C41.377 (10)C25—H250.9300
C4—C51.387 (10)C26—C271.376 (12)
C4—H4A0.9300C26—H260.9300
C5—C61.378 (9)C27—C281.386 (11)
C6—H60.9300C27—H270.9300
C7—H70.9300C28—H280.9300
C8—C91.481 (10)C29—H29A0.9600
C9—C141.363 (10)C29—H29B0.9600
C9—C101.396 (11)C29—H29C0.9600
C10—C111.411 (13)C30—H30A0.9600
C10—C291.526 (12)C30—H30B0.9600
C11—C121.377 (14)C30—H30C0.9600
C7—N1—N2117.1 (6)C20—C15—C21119.2 (7)
C8—N2—N1118.7 (6)C16—C15—C21120.8 (7)
C8—N2—H2119 (5)O3—C16—C17119.1 (8)
N1—N2—H2122 (5)O3—C16—C15122.9 (7)
C21—N3—N4118.3 (7)C17—C16—C15118.0 (8)
C22—N4—N3116.2 (6)C18—C17—C16121.8 (8)
C22—N4—H4122 (5)C18—C17—Br3119.6 (6)
N3—N4—H4122 (5)C16—C17—Br3118.6 (7)
C2—O1—H1109.5C19—C18—C17118.5 (7)
C16—O3—H3109.5C19—C18—H18120.8
C6—C1—C2118.4 (7)C17—C18—H18120.8
C6—C1—C7119.3 (8)C20—C19—C18121.8 (7)
C2—C1—C7122.1 (8)C20—C19—Br4119.9 (7)
O1—C2—C3118.3 (8)C18—C19—Br4118.3 (6)
O1—C2—C1122.3 (7)C19—C20—C15119.7 (7)
C3—C2—C1119.4 (8)C19—C20—H20120.2
C4—C3—C2120.6 (8)C15—C20—H20120.2
C4—C3—Br1119.9 (7)N3—C21—C15122.2 (7)
C2—C3—Br1119.5 (7)N3—C21—H21118.9
C3—C4—C5119.8 (8)C15—C21—H21118.9
C3—C4—H4A120.1O4—C22—N4122.5 (8)
C5—C4—H4A120.1O4—C22—C23123.9 (7)
C6—C5—C4119.6 (8)N4—C22—C23113.6 (8)
C6—C5—Br2121.0 (7)C28—C23—C24120.5 (8)
C4—C5—Br2119.3 (7)C28—C23—C22120.2 (7)
C1—C6—C5122.1 (8)C24—C23—C22119.1 (8)
C1—C6—H6119.0C25—C24—C23117.6 (9)
C5—C6—H6119.0C25—C24—C30119.7 (9)
N1—C7—C1118.5 (7)C23—C24—C30122.6 (8)
N1—C7—H7120.8C26—C25—C24121.2 (9)
C1—C7—H7120.8C26—C25—H25119.4
O2—C8—N2119.5 (7)C24—C25—H25119.4
O2—C8—C9124.9 (9)C27—C26—C25121.4 (10)
N2—C8—C9115.6 (8)C27—C26—H26119.3
C14—C9—C10121.4 (8)C25—C26—H26119.3
C14—C9—C8118.9 (9)C26—C27—C28117.7 (9)
C10—C9—C8119.7 (9)C26—C27—H27121.1
C9—C10—C11116.3 (10)C28—C27—H27121.1
C9—C10—C29123.5 (10)C23—C28—C27121.6 (9)
C11—C10—C29120.1 (11)C23—C28—H28119.2
C12—C11—C10121.4 (11)C27—C28—H28119.2
C12—C11—H11119.3C10—C29—H29A109.5
C10—C11—H11119.3C10—C29—H29B109.5
C13—C12—C11121.6 (11)H29A—C29—H29B109.5
C13—C12—H12119.2C10—C29—H29C109.5
C11—C12—H12119.2H29A—C29—H29C109.5
C12—C13—C14117.5 (10)H29B—C29—H29C109.5
C12—C13—H13121.2C24—C30—H30A109.5
C14—C13—H13121.2C24—C30—H30B109.5
C9—C14—C13121.7 (9)H30A—C30—H30B109.5
C9—C14—H14119.1C24—C30—H30C109.5
C13—C14—H14119.1H30A—C30—H30C109.5
C20—C15—C16120.0 (7)H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (1)1.85 (2)2.743 (8)172 (7)
N4—H4···O20.90 (1)1.92 (2)2.815 (8)174 (7)
O3—H3···N30.821.902.624 (8)146
O1—H1···N10.821.872.584 (8)145
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H12Br2N2O2
Mr412.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.636 (3), 9.606 (2), 19.943 (3)
β (°) 113.726 (2)
V3)3268.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)4.97
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.486, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
17117, 6973, 2208
Rint0.116
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.159, 0.89
No. of reflections6973
No. of parameters389
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.49

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.898 (10)1.851 (17)2.743 (8)172 (7)
N4—H4···O20.898 (10)1.921 (15)2.815 (8)174 (7)
O3—H3···N30.821.902.624 (8)145.9
O1—H1···N10.821.872.584 (8)145.4
Symmetry code: (i) x, y1, z.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds