organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfon­yl)-2-methyl­naphtho­[1,2-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 19 November 2010; accepted 19 November 2010; online 27 November 2010)

In the title compound, C19H13FO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 68.59 (5)° with the mean plane of the naphtho­furan fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O, C—H⋯F and C—H⋯π inter­actions. The crystal structure also exhibits aromatic ππ inter­actions between the central benzene and the outer benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.650 (3) Å].

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Einhorn et al. (1984[Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405-410.]); Hranjec et al. (2003[Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319-1324.]); Mahadevan & Vaidya (2003[Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128-134.]). For our previous structural studies of related 3-aryl­sulfonyl-2-methyl­naphtho­[1,2-b]furan derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o452.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o837.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13FO3S

  • Mr = 340.35

  • Orthorhombic, P n a 21

  • a = 8.1456 (3) Å

  • b = 18.4472 (5) Å

  • c = 10.3618 (4) Å

  • V = 1557.00 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.30 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.664, Tmax = 0.746

  • 7603 measured reflections

  • 2719 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.05

  • 2719 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 830 Friedel pairs

  • Flack parameter: 0.09 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 4-fluoro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.95 2.46 3.379 (2) 163
C15—H15⋯F1ii 0.95 2.53 3.150 (3) 123
C16—H16⋯O3iii 0.95 2.44 3.380 (2) 170
C4—H4⋯Cg1iv 0.95 2.75 3.625 (3) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, -y+1, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a naphthofuran moiety show diverse pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn et al., 1984, Hranjec et al., 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 3-arylsulfonyl-2-methylnaphtho[1,2-b]furan analogues (Choi et al., 2008a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran ring and the 4-fluorophenyl ring is 68.59 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O and C–H···F hydrogen bonds; the first one between a benzene H atom and the oxygen of the OSO unit (Table 1; C8–H8···O3i), and the second one between the 4–fluorophenyl H atom and the oxygen of the OSO unit (Table 1; C16–H16···O3iii), and the third one between the 4-fluorophenyl H atom and the fluorine (Table 1; C15–H15···F1ii). The crystal packing (Fig. 3) is also exhibits an intermolecular C–H..π interaction between a benzene H atom and the 4-fluorophenyl ring (Table 1; C4–H4···Cg1iv, Cg1 is the centroid of the C14-C19 4-fluorophenyl ring). The crystal packing (Fig. 3) is further stabilized by an aromatic ππ interaction between the central benzene and the outer benzene rings of neighbouring molecules. The Cg2···Cg3viii distance is 3.650 (3) Å (Cg2 and Cg3 are the centroids of the C2/C3/C4/C5/C10/C11 benzene ring and the C5-C10 benzene ring, respectively).

Related literature top

For the pharmacological activity of naphthofuran compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003). For our previous structural studies of related 3-arylsulfonyl-2-methylnaphtho[1,2-b] furan derivatives, see: Choi et al. (2008a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (493 mg, 2.2 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2-methylnaphtho [1,2-b]furan (339 mg, 1.1 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 439-440 K; Rf = 0.55 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

Many compounds containing a naphthofuran moiety show diverse pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn et al., 1984, Hranjec et al., 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 3-arylsulfonyl-2-methylnaphtho[1,2-b]furan analogues (Choi et al., 2008a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran unit is essentially planar, with a mean deviation of 0.008 (2) Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran ring and the 4-fluorophenyl ring is 68.59 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O and C–H···F hydrogen bonds; the first one between a benzene H atom and the oxygen of the OSO unit (Table 1; C8–H8···O3i), and the second one between the 4–fluorophenyl H atom and the oxygen of the OSO unit (Table 1; C16–H16···O3iii), and the third one between the 4-fluorophenyl H atom and the fluorine (Table 1; C15–H15···F1ii). The crystal packing (Fig. 3) is also exhibits an intermolecular C–H..π interaction between a benzene H atom and the 4-fluorophenyl ring (Table 1; C4–H4···Cg1iv, Cg1 is the centroid of the C14-C19 4-fluorophenyl ring). The crystal packing (Fig. 3) is further stabilized by an aromatic ππ interaction between the central benzene and the outer benzene rings of neighbouring molecules. The Cg2···Cg3viii distance is 3.650 (3) Å (Cg2 and Cg3 are the centroids of the C2/C3/C4/C5/C10/C11 benzene ring and the C5-C10 benzene ring, respectively).

For the pharmacological activity of naphthofuran compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003). For our previous structural studies of related 3-arylsulfonyl-2-methylnaphtho[1,2-b] furan derivatives, see: Choi et al. (2008a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of C–H···O and C–H···F interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x +1/2, y - 1/2, z - 1/2; (ii) - x + 2, - y + 1, z + 1/2; (iii) x + 1, y, z; (v) - x +1/2, y + 1/2, z + 1/2; (vi) - x + 2, - y + 1, z - 1/2 ; (vii) x - 1, y, z.]
[Figure 3] Fig. 3. A view of C–H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (iv) - x + 1, - y + 1, z - 1/2 ; (viii) x + 1/2, - y + 1/2, z; (ix) - x + 1, - y + 1 , z + 1/2.]
3-(4-Fluorophenylsulfonyl)-2-methylnaphtho[1,2-b]furan top
Crystal data top
C19H13FO3SF(000) = 704
Mr = 340.35Dx = 1.452 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3161 reflections
a = 8.1456 (3) Åθ = 2.3–27.5°
b = 18.4472 (5) ŵ = 0.23 mm1
c = 10.3618 (4) ÅT = 173 K
V = 1557.00 (9) Å3Block, colourless
Z = 40.30 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2719 independent reflections
Radiation source: rotating anode2502 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.2°
φ and ω scansh = 104
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2322
Tmin = 0.664, Tmax = 0.746l = 1013
7603 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.1905P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2719 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 830 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (7)
Crystal data top
C19H13FO3SV = 1557.00 (9) Å3
Mr = 340.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.1456 (3) ŵ = 0.23 mm1
b = 18.4472 (5) ÅT = 173 K
c = 10.3618 (4) Å0.30 × 0.25 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2719 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2502 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.746Rint = 0.026
7603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.25 e Å3
S = 1.05Δρmin = 0.23 e Å3
2719 reflectionsAbsolute structure: Flack (1983), 830 Friedel pairs
218 parametersAbsolute structure parameter: 0.09 (7)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52554 (5)0.41581 (2)0.52995 (6)0.02619 (12)
F11.07897 (19)0.56345 (10)0.29185 (19)0.0694 (5)
O10.46264 (16)0.22234 (6)0.38327 (16)0.0295 (3)
O20.57654 (19)0.39444 (8)0.65655 (16)0.0367 (4)
O30.38342 (15)0.46132 (7)0.51578 (19)0.0351 (4)
C10.4869 (2)0.33848 (9)0.4394 (2)0.0256 (4)
C20.3939 (2)0.33602 (9)0.3211 (2)0.0262 (4)
C30.3171 (2)0.38737 (10)0.2398 (2)0.0294 (5)
H30.32210.43770.25850.035*
C40.2358 (2)0.36252 (10)0.1336 (2)0.0321 (5)
H40.18350.39650.07840.039*
C50.2264 (2)0.28691 (11)0.1021 (2)0.0316 (5)
C60.1433 (3)0.26263 (12)0.0094 (2)0.0399 (6)
H60.09230.29670.06530.048*
C70.1359 (3)0.18989 (13)0.0374 (3)0.0475 (6)
H70.08070.17400.11300.057*
C80.2087 (3)0.13917 (11)0.0444 (3)0.0447 (6)
H80.20160.08910.02400.054*
C90.2901 (3)0.16034 (10)0.1534 (3)0.0371 (5)
H90.33900.12530.20840.044*
C100.3008 (2)0.23490 (9)0.1835 (2)0.0294 (5)
C110.3834 (2)0.26340 (9)0.2913 (2)0.0276 (4)
C120.5250 (2)0.26895 (10)0.4729 (2)0.0286 (4)
C130.6087 (3)0.23448 (11)0.5836 (3)0.0382 (5)
H13A0.67860.19490.55240.057*
H13B0.52660.21510.64350.057*
H13C0.67640.27060.62810.057*
C140.6915 (2)0.45978 (9)0.4545 (2)0.0251 (4)
C150.8504 (2)0.44194 (10)0.4931 (2)0.0304 (5)
H150.86790.40590.55720.036*
C160.9823 (3)0.47724 (12)0.4372 (3)0.0386 (5)
H161.09170.46640.46240.046*
C170.9511 (3)0.52791 (13)0.3451 (3)0.0423 (6)
C180.7955 (3)0.54585 (13)0.3041 (3)0.0455 (6)
H180.77940.58130.23880.055*
C190.6633 (3)0.51109 (11)0.3605 (2)0.0359 (5)
H190.55440.52240.33460.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (2)0.02804 (19)0.0279 (3)0.00002 (15)0.0020 (3)0.0023 (2)
F10.0527 (9)0.1072 (12)0.0483 (10)0.0428 (9)0.0082 (9)0.0102 (10)
O10.0281 (7)0.0237 (6)0.0368 (9)0.0001 (5)0.0003 (6)0.0019 (6)
O20.0381 (8)0.0429 (7)0.0291 (9)0.0014 (6)0.0014 (8)0.0032 (7)
O30.0239 (6)0.0338 (6)0.0477 (11)0.0044 (5)0.0033 (8)0.0078 (8)
C10.0223 (8)0.0251 (8)0.0293 (12)0.0009 (6)0.0016 (9)0.0008 (9)
C20.0229 (9)0.0256 (8)0.0301 (12)0.0012 (7)0.0028 (9)0.0025 (8)
C30.0295 (10)0.0241 (8)0.0344 (13)0.0008 (7)0.0016 (9)0.0006 (8)
C40.0329 (10)0.0325 (8)0.0310 (13)0.0016 (8)0.0001 (10)0.0035 (9)
C50.0257 (10)0.0358 (10)0.0332 (12)0.0049 (8)0.0040 (9)0.0025 (9)
C60.0381 (11)0.0440 (12)0.0375 (14)0.0043 (9)0.0003 (10)0.0036 (10)
C70.0465 (13)0.0545 (14)0.0416 (15)0.0139 (10)0.0016 (13)0.0153 (12)
C80.0481 (12)0.0354 (9)0.0506 (17)0.0112 (9)0.0099 (14)0.0125 (12)
C90.0361 (11)0.0291 (9)0.0459 (15)0.0062 (8)0.0074 (11)0.0035 (10)
C100.0263 (9)0.0275 (9)0.0346 (12)0.0032 (7)0.0077 (9)0.0040 (8)
C110.0239 (9)0.0252 (8)0.0338 (11)0.0008 (7)0.0039 (9)0.0013 (8)
C120.0227 (9)0.0297 (9)0.0335 (12)0.0007 (7)0.0036 (9)0.0019 (9)
C130.0352 (11)0.0347 (10)0.0448 (15)0.0048 (9)0.0024 (11)0.0075 (10)
C140.0219 (8)0.0271 (8)0.0263 (11)0.0021 (7)0.0002 (8)0.0029 (8)
C150.0263 (9)0.0306 (9)0.0343 (13)0.0027 (7)0.0029 (8)0.0025 (8)
C160.0252 (9)0.0505 (12)0.0400 (15)0.0028 (8)0.0008 (10)0.0093 (12)
C170.0389 (12)0.0574 (13)0.0307 (14)0.0206 (10)0.0064 (11)0.0057 (12)
C180.0508 (14)0.0525 (12)0.0333 (14)0.0185 (11)0.0082 (12)0.0124 (12)
C190.0355 (11)0.0384 (9)0.0339 (13)0.0074 (8)0.0086 (10)0.0057 (10)
Geometric parameters (Å, º) top
S1—O21.4313 (18)C7—H70.9500
S1—O31.4375 (13)C8—C91.366 (4)
S1—C11.736 (2)C8—H80.9500
S1—C141.7596 (19)C9—C101.413 (2)
F1—C171.348 (2)C9—H90.9500
O1—C121.364 (3)C10—C111.406 (3)
O1—C111.378 (3)C12—C131.478 (3)
C1—C121.365 (3)C13—H13A0.9800
C1—C21.442 (3)C13—H13B0.9800
C2—C111.377 (2)C13—H13C0.9800
C2—C31.414 (3)C14—C191.378 (3)
C3—C41.364 (3)C14—C151.394 (3)
C3—H30.9500C15—C161.384 (3)
C4—C51.434 (3)C15—H150.9500
C4—H40.9500C16—C171.360 (4)
C5—C61.412 (3)C16—H160.9500
C5—C101.414 (3)C17—C181.377 (3)
C6—C71.374 (3)C18—C191.382 (3)
C6—H60.9500C18—H180.9500
C7—C81.395 (4)C19—H190.9500
O2—S1—O3119.22 (11)C11—C10—C9124.7 (2)
O2—S1—C1108.75 (9)C11—C10—C5115.16 (16)
O3—S1—C1106.18 (9)C9—C10—C5120.2 (2)
O2—S1—C14108.11 (10)C2—C11—O1110.52 (19)
O3—S1—C14107.71 (9)C2—C11—C10124.85 (19)
C1—S1—C14106.15 (10)O1—C11—C10124.62 (15)
C12—O1—C11107.39 (14)O1—C12—C1109.55 (19)
C12—C1—C2107.83 (17)O1—C12—C13115.41 (16)
C12—C1—S1126.42 (18)C1—C12—C13135.0 (2)
C2—C1—S1125.49 (14)C12—C13—H13A109.5
C11—C2—C3119.37 (19)C12—C13—H13B109.5
C11—C2—C1104.71 (18)H13A—C13—H13B109.5
C3—C2—C1135.91 (17)C12—C13—H13C109.5
C4—C3—C2118.08 (16)H13A—C13—H13C109.5
C4—C3—H3121.0H13B—C13—H13C109.5
C2—C3—H3121.0C19—C14—C15121.31 (19)
C3—C4—C5122.4 (2)C19—C14—S1120.18 (15)
C3—C4—H4118.8C15—C14—S1118.50 (16)
C5—C4—H4118.8C16—C15—C14119.3 (2)
C6—C5—C10118.56 (18)C16—C15—H15120.3
C6—C5—C4121.3 (2)C14—C15—H15120.3
C10—C5—C4120.1 (2)C17—C16—C15118.2 (2)
C7—C6—C5120.2 (2)C17—C16—H16120.9
C7—C6—H6119.9C15—C16—H16120.9
C5—C6—H6119.9F1—C17—C16118.5 (2)
C6—C7—C8120.6 (2)F1—C17—C18117.9 (2)
C6—C7—H7119.7C16—C17—C18123.6 (2)
C8—C7—H7119.7C17—C18—C19118.4 (2)
C9—C8—C7121.1 (2)C17—C18—H18120.8
C9—C8—H8119.4C19—C18—H18120.8
C7—C8—H8119.4C14—C19—C18119.2 (2)
C8—C9—C10119.4 (2)C14—C19—H19120.4
C8—C9—H9120.3C18—C19—H19120.4
C10—C9—H9120.3
O2—S1—C1—C1210.6 (2)C1—C2—C11—C10179.16 (19)
O3—S1—C1—C12140.05 (17)C12—O1—C11—C20.1 (2)
C14—S1—C1—C12105.50 (18)C12—O1—C11—C10179.04 (19)
O2—S1—C1—C2162.76 (16)C9—C10—C11—C2179.9 (2)
O3—S1—C1—C233.3 (2)C5—C10—C11—C20.6 (3)
C14—S1—C1—C281.12 (18)C9—C10—C11—O11.1 (3)
C12—C1—C2—C110.3 (2)C5—C10—C11—O1179.34 (18)
S1—C1—C2—C11174.67 (15)C11—O1—C12—C10.1 (2)
C12—C1—C2—C3178.4 (2)C11—O1—C12—C13177.31 (18)
S1—C1—C2—C34.0 (3)C2—C1—C12—O10.2 (2)
C11—C2—C3—C40.4 (3)S1—C1—C12—O1174.55 (14)
C1—C2—C3—C4178.9 (2)C2—C1—C12—C13176.4 (2)
C2—C3—C4—C50.2 (3)S1—C1—C12—C132.1 (3)
C3—C4—C5—C6179.1 (2)O2—S1—C14—C19152.63 (17)
C3—C4—C5—C101.0 (3)O3—S1—C14—C1922.6 (2)
C10—C5—C6—C70.1 (3)C1—S1—C14—C1990.83 (18)
C4—C5—C6—C7180.0 (2)O2—S1—C14—C1526.78 (19)
C5—C6—C7—C80.6 (4)O3—S1—C14—C15156.85 (16)
C6—C7—C8—C90.5 (4)C1—S1—C14—C1589.76 (18)
C7—C8—C9—C100.1 (3)C19—C14—C15—C161.0 (3)
C8—C9—C10—C11178.9 (2)S1—C14—C15—C16178.42 (17)
C8—C9—C10—C50.7 (3)C14—C15—C16—C170.6 (3)
C6—C5—C10—C11179.01 (19)C15—C16—C17—F1178.8 (2)
C4—C5—C10—C111.1 (3)C15—C16—C17—C180.2 (4)
C6—C5—C10—C90.6 (3)F1—C17—C18—C19178.3 (2)
C4—C5—C10—C9179.30 (19)C16—C17—C18—C190.7 (4)
C3—C2—C11—O1178.73 (17)C15—C14—C19—C180.5 (3)
C1—C2—C11—O10.2 (2)S1—C14—C19—C18178.88 (18)
C3—C2—C11—C100.2 (3)C17—C18—C19—C140.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.952.463.379 (2)163
C15—H15···F1ii0.952.533.150 (3)123
C16—H16···O3iii0.952.443.380 (2)170
C4—H4···Cg1iv0.952.753.625 (3)154
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+2, y+1, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC19H13FO3S
Mr340.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)8.1456 (3), 18.4472 (5), 10.3618 (4)
V3)1557.00 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.664, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
7603, 2719, 2502
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.05
No. of reflections2719
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23
Absolute structureFlack (1983), 830 Friedel pairs
Absolute structure parameter0.09 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.952.463.379 (2)163.3
C15—H15···F1ii0.952.533.150 (3)122.7
C16—H16···O3iii0.952.443.380 (2)169.5
C4—H4···Cg1iv0.952.753.625 (3)154.3
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x+2, y+1, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z1/2.
 

Acknowledgements

This work was supported by the Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEinhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405–410.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319–1324.  CrossRef PubMed CAS Google Scholar
First citationMahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128–134.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds