organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Hy­dr­oxy-5-meth­­oxy­benzyl­­idene]pyridine-4-carbohydrazide

aDepartment of Chemistry, School of Science, Payame Noor University, Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 October 2010; accepted 24 October 2010; online 30 October 2010)

In the title compound, C14H13N3O3, the dihedral angle between the pyridine and benzene rings is 15.17 (18)°. The torsion angle of the –C=N—N—C– system between two aromatic rings is −167.1 (3)°. Intra­molecular O—H⋯N hydrogen bonding generates S(6) rings. In the crystal structure, neighbouring mol­ecules are linked together along the c axis by weak inter­molecular C—H⋯O and N—H⋯O hydrogen bonds, generating R12(6) ring motifs.

Related literature

For the tuberculostatic activity of isoniazid (isonicotinylhydrazine) derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]). For the synthesis of the isoniazid derivative, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3

  • Mr = 271.27

  • Monoclinic, C c

  • a = 6.1114 (6) Å

  • b = 29.489 (3) Å

  • c = 7.4820 (7) Å

  • β = 96.696 (8)°

  • V = 1339.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.67 × 0.34 × 0.12 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.962, Tmax = 0.988

  • 4353 measured reflections

  • 1542 independent reflections

  • 1166 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.114

  • S = 1.11

  • 1542 reflections

  • 191 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.96 (4) 1.80 (4) 2.628 (4) 142 (4)
N2—H2⋯O3i 0.88 (4) 2.03 (4) 2.872 (4) 161 (4)
C8—H8⋯O3i 0.93 2.43 3.188 (4) 139
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the search for new biologically active compounds, isoniazid (isonicotinylhydrazine) derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005). Here, we present the crystal structure of the title compound, (I).

In the title compound (I), (Fig. 1), the dihedral angle between the pyridine (C10–C14) and benzene (C1–C6) rings is 15.17 (18)°. The C8–N1–N2–C9 torsion angle is -167.1 (3) °.

Intramolecular O1—H1···N1 hydrogen bonding generates S(6) rings (Bernstein et al., 1995) (Table 1, Fig. 2). In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H···O and N—H···O hydrogen bonds (Table 1, Fig. 2), generating R12(6) ring motifs (Bernstein et al., 1995), and linking the molecules along the c axis.

Related literature top

For the tuberculostatic activity of isoniazid (isonicotinylhydrazine) derivatives, see: Janin (2007); Maccari et al. (2005). For the synthesis of the isoniazid derivative, see: Lourenco et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the calculation of the Flack parameter, see: Flack (1983).

Experimental top

The isoniazid derivative was prepared following procedure reported by Lourenco et al., (2008). 5-methoxysalicylaldehyde (1.0 mmol) was added to isoniazid (1.0 mmol) in ethanol. After stirring for 3 h at reflux condition, the resulting mixture was concentrated at room temperature. The residue was purified by washing with cold ethanol and diethyl ether to give the pure derivative. Colourless single crystals suitable for X-ray analysis were obtained by re-crystallization from methanol.

Refinement top

In the absence of significant anomalous dispersion effects, Freidel pairs were merged. The calculation of the Flack (1983) parameter was suppressed by the MERG 4 command in SHELXL97 (Sheldrick, 2008), as the lack of anomalous scatterers did not allow the determination of the absolute configuration from the X-ray measurements. The H atoms of the O—H and N—H groups were found from a difference Fourier map and refined freely [O1—H1 = 0.96 (4) and N2—H2 = 0.88 (4) Å]. The remaining H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for aromatic H.

Structure description top

In the search for new biologically active compounds, isoniazid (isonicotinylhydrazine) derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005). Here, we present the crystal structure of the title compound, (I).

In the title compound (I), (Fig. 1), the dihedral angle between the pyridine (C10–C14) and benzene (C1–C6) rings is 15.17 (18)°. The C8–N1–N2–C9 torsion angle is -167.1 (3) °.

Intramolecular O1—H1···N1 hydrogen bonding generates S(6) rings (Bernstein et al., 1995) (Table 1, Fig. 2). In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H···O and N—H···O hydrogen bonds (Table 1, Fig. 2), generating R12(6) ring motifs (Bernstein et al., 1995), and linking the molecules along the c axis.

For the tuberculostatic activity of isoniazid (isonicotinylhydrazine) derivatives, see: Janin (2007); Maccari et al. (2005). For the synthesis of the isoniazid derivative, see: Lourenco et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the calculation of the Flack parameter, see: Flack (1983).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding interactions of (I), down a axis, showing R12(6) ring motifs. All H atoms not involved in hydrogen bonding are omitted for clarity.
N'-[(E)-2-Hydroxy-5-methoxybenzylidene]pyridine-4-carbohydrazide top
Crystal data top
C14H13N3O3F(000) = 568
Mr = 271.27Dx = 1.345 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 7613 reflections
a = 6.1114 (6) Åθ = 2.8–28.0°
b = 29.489 (3) ŵ = 0.10 mm1
c = 7.4820 (7) ÅT = 296 K
β = 96.696 (8)°Prism, colourless
V = 1339.2 (2) Å30.67 × 0.34 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
1542 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1166 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 3835
Tmin = 0.962, Tmax = 0.988l = 98
4353 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0582P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1542 reflectionsΔρmax = 0.13 e Å3
191 parametersΔρmin = 0.16 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0090 (19)
Crystal data top
C14H13N3O3V = 1339.2 (2) Å3
Mr = 271.27Z = 4
Monoclinic, CcMo Kα radiation
a = 6.1114 (6) ŵ = 0.10 mm1
b = 29.489 (3) ÅT = 296 K
c = 7.4820 (7) Å0.67 × 0.34 × 0.12 mm
β = 96.696 (8)°
Data collection top
Stoe IPDS 2
diffractometer
1542 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1166 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.988Rint = 0.038
4353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.13 e Å3
1542 reflectionsΔρmin = 0.16 e Å3
191 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1045 (4)0.82503 (10)0.3515 (4)0.0727 (9)
O20.2101 (5)0.99107 (9)0.6041 (5)0.0844 (10)
O30.2501 (4)0.71171 (8)0.2791 (4)0.0743 (9)
N10.2870 (4)0.79115 (10)0.4570 (4)0.0619 (9)
N20.4398 (4)0.75656 (9)0.4882 (4)0.0622 (9)
N30.8707 (5)0.61195 (13)0.5468 (5)0.0794 (11)
C10.1994 (5)0.86852 (12)0.5002 (4)0.0572 (10)
C20.0172 (5)0.86497 (12)0.4151 (5)0.0599 (11)
C30.1453 (5)0.90380 (14)0.3930 (6)0.0753 (15)
C40.0645 (6)0.94459 (14)0.4568 (6)0.0766 (13)
C50.1486 (5)0.94855 (12)0.5445 (5)0.0646 (11)
C60.2792 (5)0.91072 (12)0.5652 (5)0.0611 (11)
C70.4191 (7)0.99583 (16)0.7042 (7)0.0830 (14)
C80.3464 (5)0.82985 (12)0.5228 (5)0.0591 (11)
C90.4075 (4)0.71774 (11)0.3949 (4)0.0574 (10)
C100.5728 (5)0.68156 (11)0.4456 (4)0.0564 (10)
C110.7920 (5)0.69069 (13)0.5046 (5)0.0672 (11)
C120.9319 (6)0.65507 (17)0.5525 (6)0.0778 (15)
C130.6605 (6)0.60362 (13)0.4866 (6)0.0739 (14)
C140.5073 (5)0.63664 (12)0.4332 (5)0.0655 (11)
H10.007 (7)0.8019 (15)0.363 (6)0.080 (12)*
H20.552 (7)0.7604 (14)0.572 (6)0.079 (11)*
H30.287700.902100.334000.0900*
H40.153400.970200.441500.0920*
H60.422000.913000.622900.0730*
H7A0.531500.988600.629200.1250*
H7B0.430200.975600.805400.1250*
H7C0.437901.026500.746000.1250*
H80.485700.833200.586000.0710*
H110.843500.720400.511800.0810*
H121.078600.661700.591200.0940*
H130.614300.573600.480400.0880*
H140.363300.628900.389800.0790*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0555 (12)0.0673 (16)0.0905 (19)0.0003 (11)0.0119 (12)0.0055 (13)
O20.0782 (15)0.0598 (16)0.111 (2)0.0057 (12)0.0066 (15)0.0122 (16)
O30.0669 (13)0.0602 (14)0.0864 (19)0.0021 (11)0.0310 (12)0.0050 (13)
N10.0523 (12)0.0570 (17)0.0721 (19)0.0056 (12)0.0115 (12)0.0015 (14)
N20.0541 (12)0.0544 (16)0.0716 (18)0.0064 (12)0.0195 (12)0.0042 (14)
N30.0687 (18)0.079 (2)0.090 (2)0.0237 (16)0.0069 (15)0.0059 (19)
C10.0511 (15)0.061 (2)0.0581 (19)0.0045 (13)0.0008 (13)0.0026 (15)
C20.0478 (14)0.065 (2)0.066 (2)0.0007 (14)0.0023 (13)0.0000 (17)
C30.0481 (17)0.078 (3)0.097 (3)0.0108 (16)0.0031 (18)0.003 (2)
C40.0616 (18)0.069 (2)0.096 (3)0.0148 (17)0.0043 (18)0.002 (2)
C50.0606 (17)0.058 (2)0.074 (2)0.0017 (15)0.0028 (15)0.0040 (18)
C60.0495 (15)0.062 (2)0.070 (2)0.0014 (13)0.0011 (14)0.0002 (16)
C70.081 (2)0.072 (2)0.093 (3)0.0038 (19)0.003 (2)0.011 (2)
C80.0519 (14)0.059 (2)0.063 (2)0.0013 (13)0.0081 (13)0.0011 (16)
C90.0458 (13)0.0562 (19)0.066 (2)0.0026 (12)0.0107 (13)0.0011 (16)
C100.0504 (14)0.0602 (19)0.0565 (18)0.0030 (13)0.0027 (13)0.0032 (16)
C110.0520 (15)0.070 (2)0.077 (2)0.0048 (15)0.0028 (15)0.0028 (19)
C120.0548 (16)0.090 (3)0.087 (3)0.0123 (18)0.0011 (17)0.001 (2)
C130.074 (2)0.061 (2)0.086 (3)0.0101 (17)0.007 (2)0.0042 (19)
C140.0616 (17)0.058 (2)0.076 (2)0.0017 (14)0.0039 (16)0.0093 (18)
Geometric parameters (Å, º) top
O1—C21.356 (5)C5—C61.370 (5)
O2—C51.369 (5)C9—C101.488 (4)
O2—C71.410 (6)C10—C111.387 (4)
O3—C91.230 (4)C10—C141.384 (5)
O1—H10.96 (4)C11—C121.375 (6)
N1—N21.384 (4)C13—C141.377 (5)
N1—C81.279 (5)C3—H30.9300
N2—C91.343 (4)C4—H40.9300
N3—C131.334 (5)C6—H60.9300
N3—C121.325 (6)C7—H7A0.9600
N2—H20.88 (4)C7—H7B0.9600
C1—C61.403 (5)C7—H7C0.9600
C1—C21.404 (4)C8—H80.9300
C1—C81.449 (5)C11—H110.9300
C2—C31.386 (5)C12—H120.9300
C3—C41.365 (6)C13—H130.9300
C4—C51.393 (5)C14—H140.9300
O1···N12.628 (4)C7···H62.5200
O1···C10i3.347 (4)C8···H12.42 (4)
O2···C7ii3.409 (6)C11···H22.61 (4)
O3···N2i2.872 (4)C12···H3viii3.0600
O3···C12iii3.418 (5)C14···H12iii3.0900
O3···N12.691 (4)H1···N11.80 (4)
O3···C8i3.188 (4)H1···C82.42 (4)
O1···H12iv2.6100H2···C112.61 (4)
O2···H13v2.6500H2···H82.1900
O2···H7Bii2.9100H2···H112.2300
O3···H142.6400H2···O3vi2.03 (4)
O3···H2i2.03 (4)H3···N3iv2.8500
O3···H8i2.4300H3···C12iv3.0600
N1···O12.628 (4)H4···H7Aiii2.5700
N1···O32.691 (4)H6···C72.5200
N1···C11i3.431 (5)H6···H7A2.3300
N2···O3vi2.872 (4)H6···H7B2.2900
N1···H11.80 (4)H6···H82.4100
N2···H112.6700H7A···C62.7800
N3···H7Cvii2.9300H7A···H4xi2.5700
N3···H3viii2.8500H7A···H62.3300
C1···C14ix3.576 (5)H7B···C62.7100
C5···C7ii3.590 (6)H7B···H62.2900
C6···C13ix3.344 (6)H7B···O2x2.9100
C7···O2x3.409 (6)H7C···C5x3.0900
C7···C5x3.590 (6)H7C···N3v2.9300
C8···O3vi3.188 (4)H8···H22.1900
C10···O1vi3.347 (4)H8···H62.4100
C11···N1vi3.431 (5)H8···O3vi2.4300
C12···O3xi3.418 (5)H11···N22.6700
C13···C6xii3.344 (6)H11···H22.2300
C14···C1xii3.576 (5)H12···C14xi3.0900
C5···H7Cii3.0900H12···O1viii2.6100
C6···H7A2.7800H13···O2vii2.6500
C6···H7B2.7100H14···O32.6400
C5—O2—C7117.5 (3)C10—C11—C12118.9 (3)
C2—O1—H1110 (3)N3—C12—C11124.1 (4)
N2—N1—C8115.9 (3)N3—C13—C14124.3 (4)
N1—N2—C9119.0 (3)C10—C14—C13118.4 (3)
C12—N3—C13116.4 (4)C2—C3—H3120.00
C9—N2—H2122 (3)C4—C3—H3120.00
N1—N2—H2119 (3)C3—C4—H4119.00
C2—C1—C6119.6 (3)C5—C4—H4119.00
C2—C1—C8122.2 (3)C1—C6—H6120.00
C6—C1—C8118.2 (3)C5—C6—H6120.00
O1—C2—C3118.8 (3)O2—C7—H7A109.00
O1—C2—C1122.4 (3)O2—C7—H7B109.00
C1—C2—C3118.8 (3)O2—C7—H7C109.00
C2—C3—C4120.7 (3)H7A—C7—H7B109.00
C3—C4—C5121.3 (4)H7A—C7—H7C109.00
C4—C5—C6119.0 (3)H7B—C7—H7C110.00
O2—C5—C4115.9 (3)N1—C8—H8120.00
O2—C5—C6125.1 (3)C1—C8—H8120.00
C1—C6—C5120.6 (3)C10—C11—H11121.00
N1—C8—C1120.9 (3)C12—C11—H11121.00
O3—C9—N2123.0 (3)N3—C12—H12118.00
O3—C9—C10121.9 (3)C11—C12—H12118.00
N2—C9—C10115.1 (2)N3—C13—H13118.00
C11—C10—C14117.9 (3)C14—C13—H13118.00
C9—C10—C11122.9 (3)C10—C14—H14121.00
C9—C10—C14119.1 (3)C13—C14—H14121.00
C7—O2—C5—C64.1 (6)O1—C2—C3—C4179.3 (4)
C7—O2—C5—C4175.8 (4)C2—C3—C4—C50.5 (6)
N2—N1—C8—C1179.4 (3)C3—C4—C5—O2179.3 (4)
C8—N1—N2—C9167.1 (3)C3—C4—C5—C60.6 (6)
N1—N2—C9—C10176.4 (3)O2—C5—C6—C1179.5 (3)
N1—N2—C9—O31.7 (5)C4—C5—C6—C10.4 (5)
C13—N3—C12—C111.5 (6)O3—C9—C10—C1430.5 (4)
C12—N3—C13—C140.7 (6)O3—C9—C10—C11149.2 (3)
C8—C1—C6—C5178.8 (3)N2—C9—C10—C14147.6 (3)
C6—C1—C2—C31.8 (5)N2—C9—C10—C1132.7 (4)
C2—C1—C6—C50.8 (5)C14—C10—C11—C121.8 (5)
C8—C1—C2—O11.3 (5)C9—C10—C11—C12178.5 (3)
C8—C1—C2—C3177.8 (3)C9—C10—C14—C13177.8 (3)
C6—C1—C2—O1179.2 (3)C11—C10—C14—C132.5 (5)
C2—C1—C8—N13.7 (5)C10—C11—C12—N30.3 (6)
C6—C1—C8—N1175.9 (3)N3—C13—C14—C101.4 (6)
C1—C2—C3—C41.6 (6)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+2, z1/2; (iii) x1, y, z; (iv) x3/2, y+3/2, z1/2; (v) x1/2, y+1/2, z; (vi) x+1/2, y+3/2, z+1/2; (vii) x+1/2, y1/2, z; (viii) x+3/2, y+3/2, z+1/2; (ix) x1/2, y+3/2, z+1/2; (x) x, y+2, z+1/2; (xi) x+1, y, z; (xii) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (4)1.80 (4)2.628 (4)142 (4)
N2—H2···O3vi0.88 (4)2.03 (4)2.872 (4)161 (4)
C8—H8···O3vi0.932.433.188 (4)139
Symmetry code: (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O3
Mr271.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)6.1114 (6), 29.489 (3), 7.4820 (7)
β (°) 96.696 (8)
V3)1339.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.67 × 0.34 × 0.12
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.962, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4353, 1542, 1166
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 1.11
No. of reflections1542
No. of parameters191
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (4)1.80 (4)2.628 (4)142 (4)
N2—H2···O3i0.88 (4)2.03 (4)2.872 (4)161 (4)
C8—H8···O3i0.932.433.188 (4)139
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HK thanks Payame Noor University for the financial support of this work. RK thanks the Science and Research Branch of Islamic Azad University of Tehran.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds