metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{4,4′-Di­bromo-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato-κ4O,N,N′,O′}nickel(II)

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 20 January 2021; accepted 25 January 2021; online 29 January 2021)

In the title compound, [Ni(C20H18Br2N2O2)], the NiII ion is four-coordinated in a slightly distorted square-planar coordination geometry defined by two N atoms and two O atoms of the tetra­dentate dianionic 4,4′-di­bromo-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato ligand. Pairs of complex mol­ecules are assembled by inter­molecular C—H⋯O hydrogen bonds with d(C⋯O) = 3.247 (4) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title compound, [Ni(saldach)] (saldach = 4,4′-di­bromo- 2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolato), the crystal structures of the tetra­dentate Schiff base (H2-saldach) ligand (Yi & Hu, 2009[Yi, J. & Hu, S. (2009). Acta Cryst. E65, o2643.]; Ha, 2012[Ha, K. (2012). Acta Cryst. E68, o1449.]), and related saldach–metal complexes [Cu(saldach)] (Tohidiyan et al., 2017[Tohidiyan, Z., Sheikhshoaie, I., Khaleghi, M. & Mague, J. T. (2017). J. Mol. Struct. 1134, 706-714.]) and [Zn(saldach)(pyridine)] (Szłyk et al., 2005[Szłyk, E., Wojtczak, A., Surdykowski, A. & Goździkiewicz, M. (2005). Inorg. Chim. Acta, 358, 467-475.]) have been determined previously.

In the title complex, the central NiII cation is four-coordinated in a slightly distorted square-planar coordination geometry defined by the N1, N2, O1 and O2 atoms of the tetra­dentate dianionic saldach ligand (Fig. 1[link]). The tight N—Ni—N and N—Ni—O chelating angles of <N1—Ni1—N2 = 86.13 (10)°, <N1—Ni1—O1 = 94.64 (10)° and <N2—Ni1—O2 = 95.02 (10)° form the square-plane. The Ni—N and Ni—O bonds are almost equal [1.844 (2)–1.858 (2) Å] and the nearly planar benzene rings of the saldach ligand are slightly twisted with a dihedral angle of 2.9 (2)° between them. The dihedral angles between the least-squares plane [maximum deviation = 0.066 (1) Å] of the Ni square-plane (Ni1/O1/O2/N1/N2) and the benzene rings are 7.2 (2) and 4.4 (2)°, respectively. In the crystal structure (Fig. 2[link]), pairs of complex mol­ecules are assembled by inter­molecular C—H⋯O hydrogen bonds (Table 1[link]). In addition, the complex displays several inter­molecular ππ inter­actions between adjacent benzene rings. For Cg1 (the centroid of ring C8–C13) and Cg2i [the centroid of ring C15—C20; symmetry code: (i) −x + 1, −y + 1, −z + 1], the centroid–centroid distance is 4.081 (2) Å and the dihedral angle between the ring planes is 2.9 (1)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.99 2.36 3.247 (4) 149
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom labelling and displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2]
Figure 2
The packing in the crystal structure of the title compound, viewed approximately along the a axis. Hydrogen-bonding inter­actions are drawn as dashed lines.

Synthesis and crystallization

To a solution of Ni(acac)2 (acac = pentane-2,4-dionate; 0.1231 g, 0.479 mmol) in acetone (30 ml) was added 4,4′-di­bromo-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenol (0.2320 g, 0.483 mmol; Ha, 2012[Ha, K. (2012). Acta Cryst. E68, o1449.]) and stirred for 1 h at room temperature. After addition of ether (30 ml), the formed precipitate was separated by filtration, washed with ether, and dried at 323 K, to give a brown powder (0.2464 g). Brown crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide (DMSO) solution at 363 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The highest peak (0.77 e Å−3) and the deepest hole (−0.51 e Å−3) in the difference Fourier map are located 0.86 and 0.70 Å, respectively, from the atoms Br1 and Br2.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C20H18Br2N2O2)]
Mr 536.89
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 13.5179 (4), 13.6343 (5), 10.4966 (4)
β (°) 104.510 (1)
V3) 1872.89 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.32
Crystal size (mm) 0.14 × 0.10 × 0.07
 
Data collection
Diffractometer PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.618, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 50588, 3710, 3107
Rint 0.059
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.10
No. of reflections 3710
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

{4,4'-Dibromo-2,2'-[cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenolato- κ4O,N,N',O'}nickel(II) top
Crystal data top
[Ni(C20H18Br2N2O2)]F(000) = 1064
Mr = 536.89Dx = 1.904 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5179 (4) ÅCell parameters from 9977 reflections
b = 13.6343 (5) Åθ = 2.5–26.0°
c = 10.4966 (4) ŵ = 5.32 mm1
β = 104.510 (1)°T = 223 K
V = 1872.89 (11) Å3Block, brown
Z = 40.14 × 0.10 × 0.07 mm
Data collection top
PHOTON 100 CMOS detector
diffractometer
3107 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.059
φ and ω scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1616
Tmin = 0.618, Tmax = 0.745k = 1616
50588 measured reflectionsl = 1212
3710 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0258P)2 + 2.4859P]
where P = (Fo2 + 2Fc2)/3
3710 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94, 0.98 or 0.99 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.00079 (3)0.44652 (3)0.23580 (4)0.05730 (14)
Br20.08652 (3)0.78593 (3)0.58203 (4)0.05165 (13)
Ni10.49753 (3)0.55203 (3)0.34846 (4)0.02442 (10)
O10.62893 (15)0.60079 (16)0.3841 (2)0.0304 (5)
O20.47131 (15)0.66161 (16)0.4383 (2)0.0301 (5)
N10.52417 (17)0.44688 (18)0.2516 (2)0.0252 (5)
N20.36814 (17)0.49806 (19)0.3268 (2)0.0267 (5)
C10.4343 (2)0.3849 (2)0.1927 (3)0.0269 (6)
H10.45650.31610.18830.032*
C20.3649 (2)0.3921 (2)0.2871 (3)0.0284 (7)
H20.39750.35370.36670.034*
C30.2600 (2)0.3463 (3)0.2275 (3)0.0339 (7)
H3A0.26750.27480.22550.041*
H3B0.21460.36130.28440.041*
C40.2111 (2)0.3822 (3)0.0896 (3)0.0374 (8)
H4A0.19560.45230.09210.045*
H4B0.14680.34710.05450.045*
C50.2827 (2)0.3653 (3)0.0006 (3)0.0361 (8)
H5A0.25050.38860.08840.043*
H5B0.29660.29500.00410.043*
C60.3832 (2)0.4208 (2)0.0554 (3)0.0308 (7)
H6A0.42900.41050.00250.037*
H6B0.36930.49120.05790.037*
C70.6106 (2)0.4235 (2)0.2282 (3)0.0265 (6)
H70.61220.36760.17620.032*
C80.7038 (2)0.4763 (2)0.2755 (3)0.0255 (6)
C90.7083 (2)0.5611 (2)0.3546 (3)0.0271 (7)
C100.8051 (2)0.6037 (2)0.4047 (3)0.0325 (7)
H100.81120.65750.46220.039*
C110.8910 (2)0.5690 (3)0.3719 (3)0.0370 (8)
H110.95450.59940.40580.044*
C120.8835 (2)0.4889 (3)0.2886 (3)0.0336 (7)
C130.7927 (2)0.4414 (2)0.2423 (3)0.0304 (7)
H130.78920.38570.18870.036*
C140.2916 (2)0.5380 (2)0.3591 (3)0.0290 (7)
H140.22940.50350.33900.035*
C150.2940 (2)0.6313 (2)0.4236 (3)0.0268 (6)
C160.3855 (2)0.6850 (2)0.4669 (3)0.0255 (6)
C170.3841 (2)0.7673 (2)0.5479 (3)0.0310 (7)
H170.44460.80310.58030.037*
C180.2964 (3)0.7962 (2)0.5805 (3)0.0347 (7)
H180.29740.85110.63500.042*
C190.2063 (2)0.7446 (2)0.5329 (3)0.0332 (7)
C200.2041 (2)0.6637 (2)0.4562 (3)0.0316 (7)
H200.14260.62930.42480.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02496 (17)0.0832 (3)0.0682 (3)0.00022 (18)0.02006 (17)0.0224 (2)
Br20.0399 (2)0.0644 (3)0.0559 (2)0.01865 (18)0.02165 (17)0.0045 (2)
Ni10.01809 (18)0.0301 (2)0.0257 (2)0.00166 (15)0.00659 (15)0.00440 (17)
O10.0212 (10)0.0346 (12)0.0371 (13)0.0038 (9)0.0107 (9)0.0096 (10)
O20.0239 (10)0.0335 (12)0.0350 (12)0.0034 (9)0.0112 (9)0.0075 (10)
N10.0207 (12)0.0302 (13)0.0250 (13)0.0024 (10)0.0061 (10)0.0024 (11)
N20.0220 (12)0.0334 (15)0.0245 (13)0.0024 (11)0.0055 (10)0.0044 (11)
C10.0238 (14)0.0274 (16)0.0292 (16)0.0021 (12)0.0062 (12)0.0055 (13)
C20.0260 (15)0.0305 (17)0.0283 (17)0.0044 (13)0.0059 (12)0.0003 (13)
C30.0322 (17)0.0345 (18)0.0372 (19)0.0062 (14)0.0129 (14)0.0041 (15)
C40.0233 (15)0.041 (2)0.044 (2)0.0023 (14)0.0019 (14)0.0008 (16)
C50.0352 (17)0.043 (2)0.0266 (17)0.0046 (15)0.0018 (14)0.0005 (15)
C60.0305 (16)0.0333 (18)0.0289 (17)0.0022 (13)0.0077 (13)0.0010 (14)
C70.0265 (15)0.0311 (17)0.0220 (15)0.0022 (12)0.0067 (12)0.0017 (12)
C80.0216 (14)0.0326 (17)0.0226 (15)0.0024 (12)0.0061 (12)0.0028 (13)
C90.0217 (14)0.0340 (17)0.0269 (16)0.0018 (13)0.0084 (12)0.0019 (13)
C100.0256 (15)0.0359 (18)0.0350 (18)0.0018 (13)0.0059 (13)0.0063 (15)
C110.0211 (15)0.048 (2)0.041 (2)0.0033 (14)0.0053 (14)0.0051 (16)
C120.0202 (14)0.046 (2)0.0361 (19)0.0059 (14)0.0092 (13)0.0017 (15)
C130.0273 (15)0.0382 (18)0.0263 (16)0.0037 (14)0.0077 (13)0.0019 (14)
C140.0202 (14)0.0404 (19)0.0269 (16)0.0041 (13)0.0066 (12)0.0025 (14)
C150.0262 (15)0.0322 (17)0.0227 (15)0.0013 (13)0.0073 (12)0.0025 (13)
C160.0257 (14)0.0286 (16)0.0237 (15)0.0012 (12)0.0092 (12)0.0038 (13)
C170.0321 (16)0.0277 (17)0.0349 (18)0.0002 (13)0.0117 (14)0.0003 (14)
C180.0433 (19)0.0314 (18)0.0342 (18)0.0060 (15)0.0186 (15)0.0016 (14)
C190.0322 (16)0.0380 (19)0.0322 (18)0.0116 (14)0.0136 (14)0.0070 (15)
C200.0251 (15)0.0403 (19)0.0299 (17)0.0033 (14)0.0081 (13)0.0011 (14)
Geometric parameters (Å, º) top
Br1—C121.896 (3)C5—H5B0.9800
Br2—C191.903 (3)C6—H6A0.9800
Ni1—N11.844 (2)C6—H6B0.9800
Ni1—O11.8449 (19)C7—C81.429 (4)
Ni1—O21.848 (2)C7—H70.9400
Ni1—N21.858 (2)C8—C131.414 (4)
O1—C91.307 (3)C8—C91.415 (4)
O2—C161.309 (3)C9—C101.407 (4)
N1—C71.293 (4)C10—C111.375 (4)
N1—C11.482 (4)C10—H100.9400
N2—C141.288 (4)C11—C121.386 (5)
N2—C21.501 (4)C11—H110.9400
C1—C61.515 (4)C12—C131.365 (4)
C1—C21.528 (4)C13—H130.9400
C1—H10.9900C14—C151.437 (4)
C2—C31.532 (4)C14—H140.9400
C2—H20.9900C15—C161.411 (4)
C3—C41.514 (5)C15—C201.413 (4)
C3—H3A0.9800C16—C171.412 (4)
C3—H3B0.9800C17—C181.371 (4)
C4—C51.522 (5)C17—H170.9400
C4—H4A0.9800C18—C191.386 (5)
C4—H4B0.9800C18—H180.9400
C5—C61.534 (4)C19—C201.361 (5)
C5—H5A0.9800C20—H200.9400
N1—Ni1—O194.64 (10)C5—C6—H6A109.6
N1—Ni1—O2177.02 (10)C1—C6—H6B109.6
O1—Ni1—O284.45 (9)C5—C6—H6B109.6
N1—Ni1—N286.13 (10)H6A—C6—H6B108.1
O1—Ni1—N2175.08 (11)N1—C7—C8124.7 (3)
O2—Ni1—N295.02 (10)N1—C7—H7117.6
C9—O1—Ni1127.51 (19)C8—C7—H7117.6
C16—O2—Ni1127.46 (19)C13—C8—C9120.3 (3)
C7—N1—C1117.7 (2)C13—C8—C7118.3 (3)
C7—N1—Ni1127.4 (2)C9—C8—C7121.4 (3)
C1—N1—Ni1114.85 (18)O1—C9—C10118.8 (3)
C14—N2—C2120.7 (3)O1—C9—C8124.1 (3)
C14—N2—Ni1126.5 (2)C10—C9—C8117.1 (3)
C2—N2—Ni1112.07 (18)C11—C10—C9121.9 (3)
N1—C1—C6110.1 (2)C11—C10—H10119.1
N1—C1—C2105.4 (2)C9—C10—H10119.1
C6—C1—C2112.9 (2)C10—C11—C12119.7 (3)
N1—C1—H1109.5C10—C11—H11120.1
C6—C1—H1109.5C12—C11—H11120.1
C2—C1—H1109.5C13—C12—C11121.0 (3)
N2—C2—C1105.2 (2)C13—C12—Br1119.7 (3)
N2—C2—C3117.7 (3)C11—C12—Br1119.3 (2)
C1—C2—C3111.4 (2)C12—C13—C8119.7 (3)
N2—C2—H2107.4C12—C13—H13120.1
C1—C2—H2107.4C8—C13—H13120.1
C3—C2—H2107.4N2—C14—C15125.0 (3)
C4—C3—C2113.4 (3)N2—C14—H14117.5
C4—C3—H3A108.9C15—C14—H14117.5
C2—C3—H3A108.9C16—C15—C20119.8 (3)
C4—C3—H3B108.9C16—C15—C14121.7 (3)
C2—C3—H3B108.9C20—C15—C14118.2 (3)
H3A—C3—H3B107.7O2—C16—C15123.8 (3)
C3—C4—C5110.2 (3)O2—C16—C17118.6 (3)
C3—C4—H4A109.6C15—C16—C17117.6 (3)
C5—C4—H4A109.6C18—C17—C16121.4 (3)
C3—C4—H4B109.6C18—C17—H17119.3
C5—C4—H4B109.6C16—C17—H17119.3
H4A—C4—H4B108.1C17—C18—C19120.1 (3)
C4—C5—C6109.6 (3)C17—C18—H18120.0
C4—C5—H5A109.8C19—C18—H18120.0
C6—C5—H5A109.8C20—C19—C18120.7 (3)
C4—C5—H5B109.8C20—C19—Br2120.4 (3)
C6—C5—H5B109.8C18—C19—Br2118.9 (2)
H5A—C5—H5B108.2C19—C20—C15120.3 (3)
C1—C6—C5110.3 (3)C19—C20—H20119.9
C1—C6—H6A109.6C15—C20—H20119.9
N1—Ni1—O1—C95.3 (3)Ni1—O1—C9—C10172.2 (2)
O2—Ni1—O1—C9177.5 (3)Ni1—O1—C9—C87.2 (4)
O1—Ni1—O2—C16176.7 (3)C13—C8—C9—O1176.5 (3)
N2—Ni1—O2—C161.6 (3)C7—C8—C9—O14.1 (5)
O1—Ni1—N1—C71.5 (3)C13—C8—C9—C104.1 (4)
N2—Ni1—N1—C7173.6 (3)C7—C8—C9—C10175.3 (3)
O1—Ni1—N1—C1176.9 (2)O1—C9—C10—C11176.4 (3)
N2—Ni1—N1—C18.0 (2)C8—C9—C10—C114.1 (5)
N1—Ni1—N2—C14172.0 (3)C9—C10—C11—C120.8 (5)
O2—Ni1—N2—C145.3 (3)C10—C11—C12—C132.6 (5)
N1—Ni1—N2—C217.9 (2)C10—C11—C12—Br1176.3 (3)
O2—Ni1—N2—C2164.82 (19)C11—C12—C13—C82.5 (5)
C7—N1—C1—C687.0 (3)Br1—C12—C13—C8176.4 (2)
Ni1—N1—C1—C691.6 (2)C9—C8—C13—C121.0 (5)
C7—N1—C1—C2151.0 (3)C7—C8—C13—C12178.5 (3)
Ni1—N1—C1—C230.4 (3)C2—N2—C14—C15166.6 (3)
C14—N2—C2—C1151.3 (3)Ni1—N2—C14—C152.7 (5)
Ni1—N2—C2—C138.0 (3)N2—C14—C15—C164.9 (5)
C14—N2—C2—C326.6 (4)N2—C14—C15—C20178.1 (3)
Ni1—N2—C2—C3162.6 (2)Ni1—O2—C16—C154.8 (4)
N1—C1—C2—N241.5 (3)Ni1—O2—C16—C17173.8 (2)
C6—C1—C2—N278.7 (3)C20—C15—C16—O2178.2 (3)
N1—C1—C2—C3170.1 (2)C14—C15—C16—O28.8 (5)
C6—C1—C2—C349.8 (4)C20—C15—C16—C173.2 (4)
N2—C2—C3—C471.7 (4)C14—C15—C16—C17169.8 (3)
C1—C2—C3—C449.8 (4)O2—C16—C17—C18179.4 (3)
C2—C3—C4—C555.3 (4)C15—C16—C17—C182.0 (5)
C3—C4—C5—C659.6 (4)C16—C17—C18—C190.4 (5)
N1—C1—C6—C5172.9 (2)C17—C18—C19—C201.5 (5)
C2—C1—C6—C555.5 (3)C17—C18—C19—Br2179.2 (2)
C4—C5—C6—C159.9 (3)C18—C19—C20—C150.2 (5)
C1—N1—C7—C8178.9 (3)Br2—C19—C20—C15177.8 (2)
Ni1—N1—C7—C80.5 (5)C16—C15—C20—C192.3 (5)
N1—C7—C8—C13179.6 (3)C14—C15—C20—C19171.0 (3)
N1—C7—C8—C90.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.992.363.247 (4)149
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant No. 2018R1D1A1B07050550).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o1449.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzłyk, E., Wojtczak, A., Surdykowski, A. & Goździkiewicz, M. (2005). Inorg. Chim. Acta, 358, 467–475.  Google Scholar
First citationTohidiyan, Z., Sheikhshoaie, I., Khaleghi, M. & Mague, J. T. (2017). J. Mol. Struct. 1134, 706–714.  CrossRef CAS Google Scholar
First citationYi, J. & Hu, S. (2009). Acta Cryst. E65, o2643.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds