organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-({[(2S)-1-Hy­dr­oxy-1,1,3-tri­phenyl­propan-2-yl]imino}­meth­yl)-4,6-bis­­(4-methyl­phen­yl)phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711, USA
*Correspondence e-mail: adam_johnson@hmc.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 9 November 2020; accepted 1 December 2020; online 4 December 2020)

The title compound, C42H37NO2, crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit. An intra­molecular hydrogen bond orients the phenol hydroxyl group toward the imine nitro­gen. The aliphatic alcohol is engaged in a weak intra­molecular hydrogen bond with the imine nitro­gen.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We have synthesized a number of chiral imine diols by Schiff-base condensation of the corresponding salicyl­aldehydes with (S)-2-amino-1,1,3-tri­phenyl­propanol (Kang et al., 2004[Kang, Y.-F., Liu, L., Wang, R., Yan, W.-J. & Zhou, Y.-F. (2004). Tetrahedron Asymmetry, 15, 3155-3159.]; Liu et al., 2004[Liu, L., Kang, Y.-F., Wang, R., Zhou, Y.-F., Chen, C., Ni, M. & Gong, M.-Z. (2004). Tetrahedron Asymmetry, 15, 3757-3761.]). These compounds serve as ligands for titanium for the asymmetric intra­molecular hydro­amination of amino­allenes (Sha et al., 2019[Sha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603-9616.]; Fok et al., 2020[Fok, E. Y., Show, V. L. & Johnson, A. R. (2020). Polyhedron. Submitted.]). The absolute structure parameter of 0.1 (7) has a large uncertainty but the absolute configuration was verified by synthesis and polarimetry.

The compound reported here has the expected imine–phenol structure (Fig. 1[link]) as opposed to the iminium–phenoxide tautomer seen in derivatives with less steric bulk. There is an intra­molecular O2—H2⋯N1 hydrogen bond, Table 1[link]. The phenol aromatic ring (C23–C28) is essentially co-planar with O2, C22, and N1; O2 is 0.046 (3) Å above the plane, C22 is 0.083 (4) Å above the plane, and N1 is 0.180 (3) Å above the plane. The C22—N1—C2—C1 torsion angle is 136.5 (3)°, and the N1—C2—C1—O1 torsion angle is 60.2 (3)°, and these result in the positioning of C1 and H1 being pointed towards the open space near N1, and a intra­molecular O1—H1⋯N1 hydrogen bond. O1 becomes almost coplanar with the phenol ring, only 0.198 (3) Å below the plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.80 2.539 (4) 148
O1—H1⋯N1 0.82 2.46 2.763 (3) 103
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. The displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms apart from H1 and H2 have been omitted for clarity and intramolecular hydrogen bonds are shown as dashed lines. Figure generated using CrystalMaker (Palmer, 2020[Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Unlike the significant bond alternation seen in related structures (Sha et al., 2019[Sha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603-9616.]), the bonds within the phenol ring (C23–C28) are all between 1.391 (4) and 1.406 (4) Å. The aromatic rings on the benzyl and phenyl substituents have typical aromatic bond distances ranging from 1.34–1.41 Å. The aromatic C24—O2 bond at 1.354 (4) Å is substanti­ally shorter than the aliphatic C1—O1 bond of 1.435 (4) Å, as seen in related structures.

Synthesis and crystallization

Details of the preparation of the title compound are shown in Fig. 2[link]. 2-Hy­droxy-3,5-di-4-(meth­yl)phenyl­benzaldehyde (0.8654 g, 2.86 mmol) and (S)-2-amino-1,1,3-tri­phenyl­propanol (0.8651 g, 2.86 mmol, 1 equiv.) were dissolved in ethanol (50 ml) and heated overnight at reflux. The solvent was removed in vacuo. The crude product was purified by flash column chromatography to yield an orange solid (1.348 g, 1.52 mmol, 80.1%). X-ray quality crystals were obtained by slow evaporation of a toluene solution. M.p. 107.7–108.4°C. [α]D: −165° (c = 0.006 g ml−1, EtOAc). Analysis calculated for C42H37NO2: C, 85.83; H, 6.34; N, 2.38. Found: C, 85.47; H, 6.43; N, 2.35. 1H NMR (400 MHz, CDCl3): 13.22 (s, 1H, ArOH), 7.72–6.99 (m, 26H, ArH, HC=N), 4.41 (dd, 1H, J = 10.0, 1.6 Hz, CHCHaHbPh), 3.02 (apparent d, 1H, J = 12.5 Hz, CHCHaHbPh), 2.96 (s, 1H, OH), 2.89 (dd, 1H, J = 13.8, 10.2 Hz, CHCHaHbPh), 2.41 (s, 3H, CH3), 2.38 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): 167.11 (HC=N), 157.34 (4°), 145.66 (4°), 144.20 (4°), 139.06 (4°), 137.42 (4°), 137.23 (4°), 136.76 (4°), 134.67 (4°), 132.07 (4°), 131.95 (CH), 130.03 (4°), 129.88 (CH), 129.64 (CH), 129.34 (CH), 129.18 (CH), 129.10 (CH), 128.64 (CH), 128.56 (CH), 128.51 (CH), 128.37 (CH), 127.18 (CH), 127.06 (CH), 126.53 (CH), 126.20 (CH), 125.97 (CH), 118.74 (4°), 79.84 (4°), 78.97 (CH, chiral center), 37.54 (CH2), 21.37 (CH3), 21.18 (CH3). MS (APCI): m/z 589 [M+H]+. IR (ATR, diamond): (C=N) = 1628 cm−1.

[Figure 2]
Figure 2
Synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C42H37NO2
Mr 587.72
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 9.2554 (3), 11.5721 (4), 31.9214 (10)
V3) 3418.92 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.31 × 0.16 × 0.11
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO.. Rigaku Oxford Diffraction, Yarnton, England.]) and ABSPACK (Rigaku OD, 2017[Rigaku OD (2017). SCALE3 ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.])]
Tmin, Tmax 0.982, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 88879, 6086, 3835
Rint 0.074
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.112, 1.01
No. of reflections 6086
No. of parameters 410
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.11
Absolute structure Flack x determined using 1229 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, et al, 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO.. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and CrystalMaker (Palmer, 2020[Palmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and CrystalMaker (Palmer, 2020).

2-({[(2S)-1-Hydroxy-1,1,3-triphenylpropan-2-yl]imino}methyl)-4,6-bis(4-methylphenyl)phenol top
Crystal data top
C42H37NO2Dx = 1.142 Mg m3
Mr = 587.72Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 14764 reflections
a = 9.2554 (3) Åθ = 1.9–20.8°
b = 11.5721 (4) ŵ = 0.07 mm1
c = 31.9214 (10) ÅT = 293 K
V = 3418.92 (19) Å3Block, clear light yellow
Z = 40.31 × 0.16 × 0.11 mm
F(000) = 1248
Data collection top
XtaLAB Mini II
diffractometer
6086 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source3835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 10.0000 pixels mm-1θmax = 25.1°, θmin = 2.2°
ω scansh = 1111
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2019) and ABSPACK (Rigaku OD, 2017)]
k = 1313
Tmin = 0.982, Tmax = 0.994l = 3838
88879 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.0355P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.12 e Å3
6086 reflectionsΔρmin = 0.11 e Å3
410 parametersAbsolute structure: Flack x determined using 1229 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, et al, 2013)
0 restraintsAbsolute structure parameter: 0.1 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6294 (3)0.4955 (2)0.24453 (7)0.0653 (7)
H10.6891470.5041130.2632360.098*
O20.7917 (3)0.4887 (2)0.35057 (7)0.0692 (7)
H20.7366550.4643130.3324770.104*
N10.6319 (3)0.3457 (2)0.31194 (8)0.0532 (7)
C10.6062 (4)0.3744 (3)0.23755 (10)0.0517 (9)
C20.5320 (4)0.3249 (3)0.27742 (9)0.0504 (9)
H2A0.5162440.2416330.2740770.060*
C30.3884 (4)0.3847 (3)0.28819 (10)0.0639 (10)
H3A0.4076540.4636370.2967500.077*
H3B0.3281590.3873320.2633300.077*
C40.3080 (4)0.3237 (3)0.32255 (11)0.0556 (9)
C50.3318 (5)0.3464 (4)0.36421 (12)0.0798 (13)
H50.3965790.4043150.3716090.096*
C60.2621 (6)0.2855 (5)0.39534 (14)0.0977 (16)
H60.2800740.3032580.4232720.117*
C70.1695 (6)0.2017 (4)0.38588 (17)0.0970 (16)
H70.1248160.1598620.4071150.116*
C80.1405 (6)0.1773 (4)0.34539 (19)0.1091 (17)
H80.0741770.1198040.3387520.131*
C90.2096 (5)0.2380 (4)0.31360 (14)0.0921 (14)
H90.1889610.2203410.2858100.111*
C100.5138 (4)0.3654 (3)0.19787 (10)0.0543 (9)
C110.4240 (4)0.2731 (3)0.18940 (11)0.0677 (11)
H110.4147670.2144420.2091290.081*
C120.3474 (4)0.2657 (4)0.15224 (13)0.0770 (12)
H120.2854730.2037530.1475970.092*
C130.3629 (5)0.3501 (4)0.12213 (14)0.0828 (13)
H130.3099350.3463670.0974150.099*
C140.4574 (5)0.4401 (4)0.12889 (13)0.0870 (14)
H140.4717210.4950950.1080550.104*
C150.5317 (5)0.4495 (4)0.16667 (12)0.0744 (12)
H150.5933700.5116370.1712230.089*
C160.7499 (4)0.3123 (3)0.22963 (9)0.0522 (9)
C170.8731 (5)0.3723 (4)0.21882 (12)0.0772 (12)
H170.8700320.4525490.2173050.093*
C181.0013 (5)0.3154 (5)0.21019 (14)0.0910 (14)
H181.0827860.3576740.2027630.109*
C191.0091 (5)0.1980 (5)0.21249 (13)0.0831 (13)
H191.0954500.1598060.2069740.100*
C200.8883 (5)0.1375 (4)0.22298 (12)0.0778 (12)
H200.8917930.0572650.2245320.093*
C210.7618 (4)0.1940 (4)0.23126 (11)0.0703 (11)
H210.6806450.1507240.2382790.084*
C220.6586 (4)0.2695 (3)0.33965 (10)0.0550 (9)
H220.6200900.1956940.3368490.066*
C230.7494 (4)0.2969 (3)0.37590 (10)0.0496 (9)
C240.8122 (4)0.4061 (3)0.38002 (10)0.0526 (9)
C250.8931 (4)0.4348 (3)0.41580 (10)0.0500 (9)
C260.9079 (4)0.3519 (3)0.44648 (10)0.0529 (9)
H260.9598610.3708560.4704430.064*
C270.8493 (4)0.2410 (3)0.44368 (10)0.0478 (8)
C280.7703 (4)0.2159 (3)0.40773 (10)0.0541 (9)
H280.7301550.1426650.4048040.065*
C290.8755 (4)0.1531 (3)0.47686 (10)0.0504 (9)
C301.0031 (4)0.1530 (3)0.49976 (11)0.0604 (10)
H301.0714660.2103270.4948510.072*
C311.0305 (4)0.0696 (4)0.52972 (11)0.0683 (11)
H311.1165960.0723790.5446950.082*
C320.9326 (4)0.0180 (3)0.53792 (11)0.0622 (10)
C330.8045 (4)0.0174 (3)0.51594 (11)0.0621 (10)
H330.7357570.0740990.5213250.075*
C340.7762 (4)0.0665 (3)0.48582 (10)0.0591 (10)
H340.6889240.0646450.4713810.071*
C350.9668 (5)0.1114 (4)0.56979 (13)0.0922 (15)
H35A0.9056610.1020560.5938550.138*
H35B1.0660980.1052680.5781520.138*
H35C0.9501420.1859640.5575200.138*
C360.9554 (4)0.5526 (3)0.42036 (11)0.0561 (10)
C371.0498 (4)0.5958 (3)0.39045 (11)0.0650 (10)
H371.0749830.5501600.3676100.078*
C381.1070 (5)0.7055 (4)0.39409 (13)0.0770 (12)
H381.1696060.7325660.3735330.092*
C391.0733 (6)0.7756 (4)0.42744 (16)0.0842 (14)
C400.9821 (6)0.7310 (4)0.45696 (15)0.0924 (14)
H400.9586150.7761390.4800800.111*
C410.9239 (4)0.6224 (4)0.45388 (12)0.0730 (12)
H410.8622590.5957600.4747610.088*
C421.1356 (8)0.8968 (4)0.43117 (18)0.143 (2)
H42A1.0827490.9484090.4132880.214*
H42B1.2353550.8959790.4229190.214*
H42C1.1280800.9226310.4596750.214*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.090 (2)0.0512 (15)0.0548 (15)0.0053 (15)0.0084 (14)0.0028 (12)
O20.092 (2)0.0583 (15)0.0569 (15)0.0119 (14)0.0203 (14)0.0123 (13)
N10.0618 (18)0.0565 (18)0.0413 (16)0.0019 (16)0.0026 (15)0.0023 (15)
C10.066 (2)0.045 (2)0.044 (2)0.001 (2)0.0056 (19)0.0016 (16)
C20.056 (2)0.048 (2)0.046 (2)0.0028 (19)0.0033 (18)0.0010 (16)
C30.071 (3)0.068 (2)0.053 (2)0.012 (2)0.007 (2)0.0017 (19)
C40.055 (2)0.059 (2)0.053 (2)0.010 (2)0.0002 (19)0.0080 (19)
C50.082 (3)0.093 (3)0.064 (3)0.016 (3)0.008 (2)0.016 (2)
C60.104 (4)0.123 (4)0.066 (3)0.014 (4)0.024 (3)0.006 (3)
C70.104 (4)0.081 (3)0.106 (4)0.005 (3)0.049 (3)0.008 (3)
C80.109 (4)0.098 (4)0.121 (4)0.033 (3)0.041 (4)0.039 (4)
C90.088 (3)0.111 (4)0.077 (3)0.018 (3)0.012 (3)0.034 (3)
C100.062 (2)0.053 (2)0.048 (2)0.0072 (19)0.0011 (18)0.0027 (18)
C110.078 (3)0.075 (3)0.050 (2)0.013 (2)0.000 (2)0.001 (2)
C120.077 (3)0.097 (3)0.057 (2)0.011 (3)0.001 (2)0.020 (3)
C130.086 (3)0.094 (3)0.068 (3)0.017 (3)0.022 (3)0.018 (3)
C140.112 (4)0.085 (3)0.064 (3)0.019 (3)0.020 (3)0.013 (2)
C150.090 (3)0.068 (3)0.065 (2)0.000 (2)0.017 (2)0.008 (2)
C160.055 (2)0.061 (2)0.0408 (19)0.007 (2)0.0051 (18)0.0024 (17)
C170.070 (3)0.083 (3)0.079 (3)0.007 (3)0.003 (2)0.008 (2)
C180.059 (3)0.115 (5)0.099 (4)0.016 (3)0.008 (3)0.001 (3)
C190.069 (3)0.109 (4)0.071 (3)0.018 (3)0.001 (2)0.009 (3)
C200.079 (3)0.075 (3)0.080 (3)0.010 (3)0.003 (3)0.007 (2)
C210.062 (3)0.066 (3)0.083 (3)0.000 (2)0.009 (2)0.001 (2)
C220.062 (2)0.054 (2)0.050 (2)0.0008 (19)0.0030 (19)0.0009 (18)
C230.056 (2)0.050 (2)0.0423 (19)0.0015 (18)0.0014 (17)0.0007 (17)
C240.061 (2)0.053 (2)0.044 (2)0.0029 (19)0.0006 (18)0.0043 (17)
C250.055 (2)0.053 (2)0.0423 (19)0.0028 (19)0.0005 (18)0.0002 (18)
C260.055 (2)0.061 (2)0.0427 (19)0.003 (2)0.0013 (17)0.0024 (18)
C270.050 (2)0.051 (2)0.0432 (19)0.0011 (18)0.0006 (17)0.0037 (16)
C280.058 (2)0.053 (2)0.052 (2)0.0032 (19)0.0009 (19)0.0029 (18)
C290.053 (2)0.054 (2)0.0452 (18)0.002 (2)0.0029 (19)0.0027 (17)
C300.058 (2)0.068 (3)0.055 (2)0.005 (2)0.0074 (19)0.009 (2)
C310.067 (3)0.080 (3)0.058 (2)0.002 (2)0.016 (2)0.008 (2)
C320.071 (3)0.062 (2)0.054 (2)0.008 (2)0.003 (2)0.0097 (19)
C330.063 (2)0.062 (3)0.062 (2)0.003 (2)0.000 (2)0.014 (2)
C340.058 (2)0.062 (2)0.058 (2)0.001 (2)0.0077 (19)0.007 (2)
C350.108 (4)0.088 (3)0.080 (3)0.011 (3)0.016 (3)0.032 (2)
C360.069 (3)0.051 (2)0.048 (2)0.001 (2)0.005 (2)0.0026 (18)
C370.090 (3)0.057 (2)0.049 (2)0.009 (2)0.005 (2)0.0032 (19)
C380.099 (3)0.068 (3)0.064 (3)0.015 (3)0.009 (2)0.010 (2)
C390.112 (4)0.052 (3)0.089 (3)0.014 (3)0.015 (3)0.002 (3)
C400.126 (4)0.062 (3)0.089 (3)0.001 (3)0.002 (3)0.026 (3)
C410.088 (3)0.063 (3)0.068 (3)0.000 (2)0.009 (2)0.013 (2)
C420.214 (7)0.064 (3)0.149 (5)0.046 (4)0.014 (5)0.014 (3)
Geometric parameters (Å, º) top
O1—H10.8200C20—H200.9300
O1—C11.435 (4)C20—C211.367 (5)
O2—H20.8200C21—H210.9300
O2—C241.354 (4)C22—H220.9300
N1—C21.459 (4)C22—C231.465 (4)
N1—C221.273 (4)C23—C241.397 (4)
C1—C21.556 (4)C23—C281.396 (4)
C1—C101.532 (5)C24—C251.406 (4)
C1—C161.533 (5)C25—C261.378 (4)
C2—H2A0.9800C25—C361.487 (5)
C2—C31.538 (5)C26—H260.9300
C3—H3A0.9700C26—C271.396 (4)
C3—H3B0.9700C27—C281.391 (4)
C3—C41.501 (5)C27—C291.488 (4)
C4—C51.373 (5)C28—H280.9300
C4—C91.377 (5)C29—C301.388 (4)
C5—H50.9300C29—C341.390 (4)
C5—C61.378 (5)C30—H300.9300
C6—H60.9300C30—C311.382 (5)
C6—C71.329 (6)C31—H310.9300
C7—H70.9300C31—C321.385 (5)
C7—C81.350 (6)C32—C331.378 (5)
C8—H80.9300C32—C351.518 (5)
C8—C91.389 (6)C33—H330.9300
C9—H90.9300C33—C341.392 (5)
C10—C111.379 (5)C34—H340.9300
C10—C151.402 (5)C35—H35A0.9600
C11—H110.9300C35—H35B0.9600
C11—C121.385 (5)C35—H35C0.9600
C12—H120.9300C36—C371.388 (5)
C12—C131.378 (5)C36—C411.372 (5)
C13—H130.9300C37—H370.9300
C13—C141.377 (6)C37—C381.380 (5)
C14—H140.9300C38—H380.9300
C14—C151.392 (5)C38—C391.374 (6)
C15—H150.9300C39—C401.366 (6)
C16—C171.380 (5)C39—C421.521 (6)
C16—C211.374 (5)C40—H400.9300
C17—H170.9300C40—C411.371 (5)
C17—C181.385 (6)C41—H410.9300
C18—H180.9300C42—H42A0.9600
C18—C191.363 (6)C42—H42B0.9600
C19—H190.9300C42—H42C0.9600
C19—C201.361 (6)
C1—O1—H1109.5C16—C21—H21118.7
C24—O2—H2109.5C20—C21—C16122.6 (4)
C22—N1—C2122.3 (3)C20—C21—H21118.7
O1—C1—C2107.4 (3)N1—C22—H22119.6
O1—C1—C10106.2 (3)N1—C22—C23120.7 (3)
O1—C1—C16110.7 (3)C23—C22—H22119.6
C10—C1—C2113.9 (3)C24—C23—C22120.6 (3)
C10—C1—C16108.4 (3)C28—C23—C22120.6 (3)
C16—C1—C2110.2 (3)C28—C23—C24118.8 (3)
N1—C2—C1106.1 (3)O2—C24—C23121.0 (3)
N1—C2—H2A109.8O2—C24—C25118.2 (3)
N1—C2—C3107.8 (3)C23—C24—C25120.8 (3)
C1—C2—H2A109.8C24—C25—C36120.2 (3)
C3—C2—C1113.5 (3)C26—C25—C24117.8 (3)
C3—C2—H2A109.8C26—C25—C36122.0 (3)
C2—C3—H3A109.1C25—C26—H26118.1
C2—C3—H3B109.1C25—C26—C27123.8 (3)
H3A—C3—H3B107.9C27—C26—H26118.1
C4—C3—C2112.3 (3)C26—C27—C29121.3 (3)
C4—C3—H3A109.1C28—C27—C26116.7 (3)
C4—C3—H3B109.1C28—C27—C29122.0 (3)
C5—C4—C3122.6 (4)C23—C28—H28118.9
C5—C4—C9116.4 (4)C27—C28—C23122.2 (3)
C9—C4—C3121.0 (3)C27—C28—H28118.9
C4—C5—H5119.1C30—C29—C27120.9 (3)
C4—C5—C6121.7 (4)C30—C29—C34117.0 (3)
C6—C5—H5119.1C34—C29—C27122.1 (3)
C5—C6—H6119.6C29—C30—H30119.3
C7—C6—C5120.7 (5)C31—C30—C29121.4 (4)
C7—C6—H6119.6C31—C30—H30119.3
C6—C7—H7120.1C30—C31—H31119.3
C6—C7—C8119.9 (5)C30—C31—C32121.5 (3)
C8—C7—H7120.1C32—C31—H31119.3
C7—C8—H8119.9C31—C32—C35120.8 (4)
C7—C8—C9120.2 (5)C33—C32—C31117.6 (3)
C9—C8—H8119.9C33—C32—C35121.6 (4)
C4—C9—C8121.1 (4)C32—C33—H33119.4
C4—C9—H9119.4C32—C33—C34121.2 (4)
C8—C9—H9119.4C34—C33—H33119.4
C11—C10—C1123.4 (3)C29—C34—C33121.4 (3)
C11—C10—C15118.0 (3)C29—C34—H34119.3
C15—C10—C1118.3 (3)C33—C34—H34119.3
C10—C11—H11119.2C32—C35—H35A109.5
C10—C11—C12121.6 (4)C32—C35—H35B109.5
C12—C11—H11119.2C32—C35—H35C109.5
C11—C12—H12120.0H35A—C35—H35B109.5
C13—C12—C11120.0 (4)H35A—C35—H35C109.5
C13—C12—H12120.0H35B—C35—H35C109.5
C12—C13—H13120.2C37—C36—C25120.5 (3)
C14—C13—C12119.5 (4)C41—C36—C25122.3 (3)
C14—C13—H13120.2C41—C36—C37117.3 (4)
C13—C14—H14119.7C36—C37—H37119.5
C13—C14—C15120.5 (4)C38—C37—C36121.0 (4)
C15—C14—H14119.7C38—C37—H37119.5
C10—C15—H15119.9C37—C38—H38119.3
C14—C15—C10120.2 (4)C39—C38—C37121.4 (4)
C14—C15—H15119.9C39—C38—H38119.3
C17—C16—C1121.5 (3)C38—C39—C42121.3 (5)
C21—C16—C1122.1 (3)C40—C39—C38116.8 (4)
C21—C16—C17116.4 (4)C40—C39—C42121.9 (5)
C16—C17—H17119.4C39—C40—H40118.7
C16—C17—C18121.2 (4)C39—C40—C41122.7 (4)
C18—C17—H17119.4C41—C40—H40118.7
C17—C18—H18119.7C36—C41—H41119.6
C19—C18—C17120.6 (4)C40—C41—C36120.8 (4)
C19—C18—H18119.7C40—C41—H41119.6
C18—C19—H19120.6C39—C42—H42A109.5
C20—C19—C18118.8 (5)C39—C42—H42B109.5
C20—C19—H19120.6C39—C42—H42C109.5
C19—C20—H20119.8H42A—C42—H42B109.5
C19—C20—C21120.3 (4)H42A—C42—H42C109.5
C21—C20—H20119.8H42B—C42—H42C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.802.539 (4)148
O1—H1···N10.822.462.763 (3)103
 

Acknowledgements

The authors acknowledge technical assistance from Eric W. Reinheimer.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFok, E. Y., Show, V. L. & Johnson, A. R. (2020). Polyhedron. Submitted.  Google Scholar
First citationKang, Y.-F., Liu, L., Wang, R., Yan, W.-J. & Zhou, Y.-F. (2004). Tetrahedron Asymmetry, 15, 3155–3159.  Web of Science CrossRef CAS Google Scholar
First citationLiu, L., Kang, Y.-F., Wang, R., Zhou, Y.-F., Chen, C., Ni, M. & Gong, M.-Z. (2004). Tetrahedron Asymmetry, 15, 3757–3761.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2017). SCALE3 ABSPACK. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO.. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSha, F., Mitchell, B. S., Ye, C. Z., Abelson, C. S., Reinheimer, E. W., LeMagueres, P., Ferrara, J. D., Takase, M. K. & Johnson, A. R. (2019). Dalton Trans. 48, 9603–9616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds