metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­[1,1-(di­phenyl­phosphino)hydrazide]palladium(II) di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by J. Simpson, University of Otago, New Zealand (Received 14 December 2018; accepted 20 December 2018; online 4 January 2018)

In the title compound, [PdCl2(C24H22N2P2)]·CH2Cl2, the palladium(II) atom is surrounded by a chelating P—N—P ligand Ph2P—N(NH2)—PPh2 containing a hydrazine entity and two chlorido ligands in a distorted square-planar coordination geometry. Beside the complex mol­ecule, the asymmetric unit contains a co-crystallized di­chloro­methane mol­ecule. The contributions of further disordered solvent mol­ecules were removed from the diffraction data using the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] procedure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The distorted square-planar coordinated palladium(II) atom in the [PdCl2(C24H22N2P2)] complex mol­ecule (Fig. 1[link]) is ligated by two chlorido and a chelating P—N—P ligand, which contains a hydrazine entity. The bite angle [P2—Pd1—P1 = 72.689 (15)°] is rather acute as found in other PdII complexes with the Ph2P—N(NR2)—PPh2 ligand {72.93 (4)° for [PdCl2{(Ph2P)2NNC4H8O}] and 72.82 (5)° for [PdCl2{(Ph2P)2NNC4H8NHCH3}]Cl; Gholivand et al., 2016[Gholivand, K., Kahnouji, M., Latifi, R., Fadaei, F. T., Gholami, A. & Schenk, K. J. (2016). Inorg. Chim. Acta, 448, 61-69.]}. The P—N—P angle is 102.38 (7)°. Both, the Pd—Cl bond lengths [Pd1—Cl1 = 2.3531 (4) Å, Pd1—Cl2 = 2.3599 (4) Å] and Pd—P distances [Pd1—P1 = 2.2319 (4) Å, Pd1—P2 = 2.2063 (4) Å] are very similar to those in the related complexes detailed above. The N—N distance within the hydrazine unit is 1.4108 (18) Å. The P—N bond lengths [P1—N1 = 1.6968 (13) Å, P2—N1 = 1.6787 (14) Å] are significantly shortened when compared to the sum of the covalent radii [Σrcov(P—N) = 1.82 Å; Pyykkö, 2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]] but again are similar to the values found in the two complexes mentioned previously, where the P—N distances range from 1.701 (4) to 1.714 (3) Å. A co-crystallized di­chloro­methane mol­ecule appears in the asymmetric unit along with the complex mol­ecule. The contributions of further disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). In the crystal, mol­ecules of the palladium complex and the solvent di­chloro­methane are linked by weak N—H⋯Cl hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.91 (2) 2.63 (2) 3.3066 (16) 132.0 (17)
N2—H2B⋯Cl2i 0.82 (2) 2.58 (2) 3.3495 (17) 157 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 30% probability level. C-bound hydrogen atoms are omitted for clarity.

Synthesis and crystallization

A solution of Pd(PhCN)2Cl2 (0.107 g, 0.28 mmol) and (Ph2P)2N—NH2 (0.112 g, 0.28 mmol) (Höhne et al., 2018[Höhne, M., Aluri, B. R., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x181784.]) in CH2Cl2 was stirred overnight at room temperature. CH2Cl2 was removed under vacuum and the yellow residue washed with n-hexane. Recrystallization from CH2Cl2/Et2O gave pale-yellow crystals. Yield 0.129 g (80%). 31P NMR (121 MHz, CDCl3, 298 K): δ = 65.0 p.p.m.. Elemental analysis calculated (%) for C24H22Cl2N2P2Pd (577.72): C 49.90, H 3.84, N 4.85. Found: C 49.44, H 3.91, N 4.95.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. AFIX 66 instructions were used to improve the geometry of the phenyl rings. The contributions of other disordered solvent mol­ecules in addition to the di­chloro­methane monosolvate were removed from the diffraction data with SQUEEZE in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). SQUEEZE estimated the electron counts in two voids of 146 Å3 volume to be 42.

Table 2
Experimental details

Crystal data
Chemical formula [PdCl2(C24H22N2P2)]·CH2Cl2
Mr 662.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 11.7085 (3), 16.9319 (3), 15.2399 (4)
β (°) 105.3240 (19)
V3) 2913.85 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.13
Crystal size (mm) 0.45 × 0.35 × 0.11
 
Data collection
Diffractometer Stoe IPDS II
Absorption correction Numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.621, 0.897
No. of measured, independent and observed [I > 2σ(I)] reflections 50295, 7032, 6060
Rint 0.027
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.057, 1.00
No. of reflections 7032
No. of parameters 265
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.47
Computer programs: X-SHAPE (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) and X-AREA (Stoe & Cie, 2012[Stoe & Cie (2012). X-AREA. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-SHAPE (Stoe & Cie, 2005) and X-AREA (Stoe & Cie, 2012); cell refinement: X-SHAPE (Stoe & Cie, 2005) and X-AREA (Stoe & Cie, 2012); data reduction: X-SHAPE (Stoe & Cie, 2005) and X-AREA (Stoe & Cie, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido[1,1-(diphenylphosphino)hydrazide]palladium(II) dichloromethane monosolvate top
Crystal data top
PdCl2[C24H22N2P2]·CH2Cl2F(000) = 1328
Mr = 662.60Dx = 1.510 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7085 (3) ÅCell parameters from 16993 reflections
b = 16.9319 (3) Åθ = 1.8–29.7°
c = 15.2399 (4) ŵ = 1.13 mm1
β = 105.3240 (19)°T = 200 K
V = 2913.85 (12) Å3Prism, yellow
Z = 40.45 × 0.35 × 0.11 mm
Data collection top
STOE IPDS II
diffractometer
7032 independent reflections
Radiation source: fine-focus sealed tube6060 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
h = 1515
Tmin = 0.621, Tmax = 0.897k = 2222
50295 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
7032 reflectionsΔρmax = 0.45 e Å3
265 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.16203 (9)0.24562 (6)0.24613 (9)0.0297 (3)
C21.19152 (12)0.16638 (6)0.24250 (10)0.0450 (5)
H21.13900.12660.25230.054*
C31.29786 (13)0.14534 (6)0.22455 (12)0.0593 (6)
H31.31800.09120.22210.071*
C41.37472 (11)0.20353 (9)0.21024 (13)0.0602 (6)
H41.44740.18920.19800.072*
C51.34524 (11)0.28277 (8)0.21387 (13)0.0615 (6)
H51.39780.32250.20410.074*
C61.23890 (11)0.30381 (5)0.23181 (11)0.0451 (5)
H61.21870.35800.23430.054*
C71.03729 (10)0.36784 (5)0.31523 (7)0.0273 (3)
C81.12961 (9)0.38617 (6)0.39076 (8)0.0384 (4)
H81.19090.34890.41340.046*
C91.13219 (11)0.45907 (7)0.43318 (8)0.0477 (5)
H91.19530.47160.48480.057*
C101.04245 (12)0.51364 (5)0.40006 (9)0.0443 (5)
H101.04420.56350.42910.053*
C110.95013 (10)0.49531 (6)0.32453 (9)0.0442 (5)
H110.88880.53260.30190.053*
C120.94755 (9)0.42241 (6)0.28211 (7)0.0358 (4)
H120.88450.40990.23050.043*
C130.77590 (10)0.20421 (7)0.37647 (8)0.0303 (3)
C140.80666 (10)0.27162 (7)0.42952 (9)0.0432 (4)
H140.87760.29910.43010.052*
C150.73365 (13)0.29878 (7)0.48163 (10)0.0548 (6)
H150.75470.34490.51790.066*
C160.62987 (13)0.25853 (9)0.48071 (10)0.0575 (6)
H160.58000.27710.51630.069*
C170.59911 (10)0.19112 (9)0.42767 (11)0.0546 (6)
H170.52820.16360.42700.065*
C180.67212 (11)0.16396 (7)0.37555 (9)0.0437 (5)
H180.65110.11790.33930.052*
C190.86740 (11)0.06762 (5)0.30367 (8)0.0292 (3)
C200.87356 (12)0.02481 (7)0.38262 (7)0.0428 (4)
H200.87420.05160.43750.051*
C210.87878 (14)0.05718 (7)0.38123 (9)0.0565 (6)
H210.88300.08640.43520.068*
C220.87785 (14)0.09636 (5)0.30090 (12)0.0593 (7)
H220.88140.15240.29990.071*
C230.87169 (14)0.05356 (7)0.22195 (9)0.0582 (6)
H230.87100.08030.16700.070*
C240.86646 (13)0.02843 (7)0.22334 (7)0.0417 (4)
H240.86230.05770.16940.050*
C250.3215 (2)1.00146 (18)0.44188 (18)0.0617 (6)
H25A0.33870.96470.49430.074*
H25B0.33281.05590.46630.074*
N11.00533 (12)0.20686 (8)0.34971 (9)0.0261 (3)
N21.07577 (14)0.18939 (9)0.43796 (10)0.0320 (3)
H2A1.149 (2)0.1760 (13)0.4333 (15)0.038*
H2B1.082 (2)0.2285 (14)0.4706 (16)0.038*
P11.02368 (4)0.27021 (2)0.26825 (3)0.02381 (8)
P20.86725 (4)0.17321 (2)0.30531 (3)0.02387 (8)
Cl10.86063 (4)0.30782 (3)0.04595 (3)0.04087 (11)
Cl20.65519 (4)0.18738 (2)0.11563 (3)0.03397 (9)
Cl30.42219 (6)0.98440 (5)0.37823 (5)0.06769 (18)
Cl40.17481 (5)0.98982 (4)0.38098 (5)0.05934 (15)
Pd10.84858 (2)0.23671 (2)0.17587 (2)0.02260 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (8)0.0348 (8)0.0307 (8)0.0029 (6)0.0063 (6)0.0013 (6)
C20.0492 (12)0.0383 (10)0.0525 (12)0.0087 (9)0.0224 (10)0.0052 (9)
C30.0608 (15)0.0577 (14)0.0662 (15)0.0288 (12)0.0289 (13)0.0071 (12)
C40.0356 (12)0.0852 (18)0.0626 (15)0.0183 (12)0.0181 (11)0.0026 (13)
C50.0354 (12)0.0726 (16)0.0837 (18)0.0063 (11)0.0284 (12)0.0042 (14)
C60.0316 (10)0.0434 (11)0.0644 (14)0.0029 (8)0.0198 (9)0.0007 (9)
C70.0269 (8)0.0264 (7)0.0297 (8)0.0012 (6)0.0096 (6)0.0032 (6)
C80.0397 (10)0.0319 (9)0.0380 (10)0.0008 (7)0.0003 (8)0.0004 (7)
C90.0589 (14)0.0376 (10)0.0408 (11)0.0066 (9)0.0030 (10)0.0066 (8)
C100.0595 (14)0.0299 (9)0.0502 (12)0.0036 (9)0.0262 (11)0.0057 (8)
C110.0431 (12)0.0321 (9)0.0623 (13)0.0081 (8)0.0226 (10)0.0041 (9)
C120.0296 (9)0.0345 (9)0.0440 (10)0.0024 (7)0.0108 (8)0.0028 (7)
C130.0280 (8)0.0382 (9)0.0242 (7)0.0013 (7)0.0064 (6)0.0041 (7)
C140.0450 (12)0.0463 (11)0.0414 (11)0.0047 (9)0.0169 (9)0.0047 (9)
C150.0620 (15)0.0597 (14)0.0487 (12)0.0002 (12)0.0251 (11)0.0140 (11)
C160.0557 (15)0.0773 (16)0.0489 (13)0.0082 (12)0.0305 (11)0.0038 (11)
C170.0401 (12)0.0717 (15)0.0587 (14)0.0052 (10)0.0250 (11)0.0033 (12)
C180.0334 (10)0.0561 (12)0.0433 (11)0.0075 (9)0.0129 (8)0.0069 (9)
C190.0225 (8)0.0276 (8)0.0355 (9)0.0022 (6)0.0039 (7)0.0054 (6)
C200.0383 (11)0.0418 (10)0.0480 (11)0.0009 (8)0.0109 (9)0.0156 (9)
C210.0400 (12)0.0423 (11)0.0863 (18)0.0007 (9)0.0152 (12)0.0338 (12)
C220.0352 (11)0.0272 (9)0.113 (2)0.0012 (8)0.0159 (13)0.0108 (12)
C230.0567 (14)0.0352 (10)0.0802 (18)0.0027 (10)0.0138 (13)0.0131 (11)
C240.0462 (12)0.0316 (9)0.0459 (11)0.0012 (8)0.0095 (9)0.0015 (8)
C250.0455 (14)0.0845 (18)0.0543 (14)0.0003 (12)0.0115 (11)0.0174 (13)
N10.0234 (7)0.0290 (6)0.0225 (6)0.0021 (5)0.0001 (5)0.0062 (5)
N20.0322 (8)0.0340 (8)0.0233 (7)0.0010 (6)0.0044 (6)0.0040 (6)
P10.02071 (19)0.02514 (18)0.02432 (18)0.00050 (15)0.00374 (15)0.00298 (15)
P20.0231 (2)0.02573 (19)0.02144 (18)0.00157 (15)0.00356 (15)0.00300 (14)
Cl10.0304 (2)0.0578 (3)0.0335 (2)0.00264 (19)0.00691 (17)0.01967 (19)
Cl20.0289 (2)0.0367 (2)0.0316 (2)0.00911 (16)0.00041 (16)0.00507 (16)
Cl30.0422 (3)0.0957 (5)0.0652 (4)0.0064 (3)0.0142 (3)0.0215 (3)
Cl40.0398 (3)0.0707 (4)0.0663 (4)0.0047 (3)0.0119 (3)0.0001 (3)
Pd10.02080 (6)0.02542 (6)0.02001 (6)0.00052 (4)0.00263 (4)0.00301 (4)
Geometric parameters (Å, º) top
C1—C21.3900C16—C171.3900
C1—C61.3900C16—H160.9500
C1—P11.7888C17—C181.3900
C2—C31.3900C17—H170.9500
C2—H20.9500C18—H180.9500
C3—C41.3900C19—C201.3900
C3—H30.9500C19—C241.3900
C4—C51.3900C19—P21.7880
C4—H40.9500C20—C211.3900
C5—C61.3900C20—H200.9500
C5—H50.9500C21—C221.3900
C6—H60.9500C21—H210.9500
C7—C81.3900C22—C231.3900
C7—C121.3900C22—H220.9500
C7—P11.7917C23—C241.3900
C8—C91.3900C23—H230.9500
C8—H80.9500C24—H240.9500
C9—C101.3900C25—Cl41.734 (3)
C9—H90.9500C25—Cl31.738 (3)
C10—C111.3900C25—H25A0.9900
C10—H100.9500C25—H25B0.9900
C11—C121.3900N1—N21.4108 (18)
C11—H110.9500N1—P21.6787 (14)
C12—H120.9500N1—P11.6968 (13)
C13—C141.3900N2—H2A0.91 (2)
C13—C181.3900N2—H2B0.82 (2)
C13—P21.7912P1—Pd12.2319 (4)
C14—C151.3900P1—P22.6303 (6)
C14—H140.9500P2—Pd12.2063 (4)
C15—C161.3900Cl1—Pd12.3531 (4)
C15—H150.9500Cl2—Pd12.3599 (4)
C2—C1—C6120.0C20—C19—P2120.62 (7)
C2—C1—P1118.62 (7)C24—C19—P2119.33 (7)
C6—C1—P1121.38 (7)C19—C20—C21120.0
C3—C2—C1120.0C19—C20—H20120.0
C3—C2—H2120.0C21—C20—H20120.0
C1—C2—H2120.0C22—C21—C20120.0
C4—C3—C2120.0C22—C21—H21120.0
C4—C3—H3120.0C20—C21—H21120.0
C2—C3—H3120.0C21—C22—C23120.0
C3—C4—C5120.0C21—C22—H22120.0
C3—C4—H4120.0C23—C22—H22120.0
C5—C4—H4120.0C24—C23—C22120.0
C6—C5—C4120.0C24—C23—H23120.0
C6—C5—H5120.0C22—C23—H23120.0
C4—C5—H5120.0C23—C24—C19120.0
C5—C6—C1120.0C23—C24—H24120.0
C5—C6—H6120.0C19—C24—H24120.0
C1—C6—H6120.0Cl4—C25—Cl3113.86 (14)
C8—C7—C12120.0Cl4—C25—H25A108.8
C8—C7—P1120.30 (6)Cl3—C25—H25A108.8
C12—C7—P1119.30 (6)Cl4—C25—H25B108.8
C9—C8—C7120.0Cl3—C25—H25B108.8
C9—C8—H8120.0H25A—C25—H25B107.7
C7—C8—H8120.0N2—N1—P2124.84 (11)
C8—C9—C10120.0N2—N1—P1132.44 (11)
C8—C9—H9120.0P2—N1—P1102.38 (7)
C10—C9—H9120.0N1—N2—H2A107.7 (14)
C9—C10—C11120.0N1—N2—H2B110.1 (16)
C9—C10—H10120.0H2A—N2—H2B109 (2)
C11—C10—H10120.0N1—P1—C1106.66 (6)
C12—C11—C10120.0N1—P1—C7107.82 (6)
C12—C11—H11120.0C1—P1—C7107.50 (6)
C10—C11—H11120.0N1—P1—Pd191.61 (5)
C11—C12—C7120.0C1—P1—Pd1123.27 (5)
C11—C12—H12120.0C7—P1—Pd1117.16 (4)
C7—C12—H12120.0N1—P1—P238.56 (5)
C14—C13—C18120.0C1—P1—P2127.72 (4)
C14—C13—P2119.23 (7)C7—P1—P2118.93 (4)
C18—C13—P2120.69 (7)Pd1—P1—P253.206 (12)
C13—C14—C15120.0N1—P2—C19109.91 (7)
C13—C14—H14120.0N1—P2—C13108.79 (6)
C15—C14—H14120.0C19—P2—C13107.73 (6)
C14—C15—C16120.0N1—P2—Pd192.99 (5)
C14—C15—H15120.0C19—P2—Pd1118.36 (4)
C16—C15—H15120.0C13—P2—Pd1117.68 (5)
C17—C16—C15120.0N1—P2—P139.06 (5)
C17—C16—H16120.0C19—P2—P1128.18 (5)
C15—C16—H16120.0C13—P2—P1120.53 (4)
C16—C17—C18120.0Pd1—P2—P154.104 (13)
C16—C17—H17120.0P2—Pd1—P172.689 (15)
C18—C17—H17120.0P2—Pd1—Cl1171.075 (16)
C17—C18—C13120.0P1—Pd1—Cl198.708 (16)
C17—C18—H18120.0P2—Pd1—Cl291.915 (15)
C13—C18—H18120.0P1—Pd1—Cl2164.224 (16)
C20—C19—C24120.0Cl1—Pd1—Cl296.807 (16)
C6—C1—C2—C30.0C2—C1—P1—N140.69 (10)
P1—C1—C2—C3179.37 (11)C6—C1—P1—N1139.95 (9)
C1—C2—C3—C40.0C2—C1—P1—C7156.12 (8)
C2—C3—C4—C50.0C6—C1—P1—C724.52 (10)
C3—C4—C5—C60.0C2—C1—P1—Pd162.69 (9)
C4—C5—C6—C10.0C6—C1—P1—Pd1116.67 (8)
C2—C1—C6—C50.0C2—C1—P1—P23.85 (11)
P1—C1—C6—C5179.35 (11)C6—C1—P1—P2176.79 (7)
C12—C7—C8—C90.0C8—C7—P1—N161.04 (9)
P1—C7—C8—C9172.65 (9)C12—C7—P1—N1111.66 (8)
C7—C8—C9—C100.0C8—C7—P1—C153.62 (9)
C8—C9—C10—C110.0C12—C7—P1—C1133.68 (8)
C9—C10—C11—C120.0C8—C7—P1—Pd1162.46 (6)
C10—C11—C12—C70.0C12—C7—P1—Pd110.24 (8)
C8—C7—C12—C110.0C8—C7—P1—P2101.51 (7)
P1—C7—C12—C11172.72 (9)C12—C7—P1—P271.19 (8)
C18—C13—C14—C150.0N2—N1—P2—C1959.36 (15)
P2—C13—C14—C15176.77 (10)P1—N1—P2—C19126.65 (7)
C13—C14—C15—C160.0N2—N1—P2—C1358.37 (15)
C14—C15—C16—C170.0P1—N1—P2—C13115.63 (7)
C15—C16—C17—C180.0N2—N1—P2—Pd1178.98 (14)
C16—C17—C18—C130.0P1—N1—P2—Pd14.98 (7)
C14—C13—C18—C170.0N2—N1—P2—P1173.99 (19)
P2—C13—C18—C17176.72 (10)C20—C19—P2—N177.91 (9)
C24—C19—C20—C210.0C24—C19—P2—N199.32 (9)
P2—C19—C20—C21177.21 (10)C20—C19—P2—C1340.47 (9)
C19—C20—C21—C220.0C24—C19—P2—C13142.30 (8)
C20—C21—C22—C230.0C20—C19—P2—Pd1177.10 (6)
C21—C22—C23—C240.0C24—C19—P2—Pd15.67 (9)
C22—C23—C24—C190.0C20—C19—P2—P1117.93 (7)
C20—C19—C24—C230.0C24—C19—P2—P159.30 (9)
P2—C19—C24—C23177.25 (10)C14—C13—P2—N125.72 (10)
N2—N1—P1—C156.23 (17)C18—C13—P2—N1157.53 (8)
P2—N1—P1—C1130.46 (7)C14—C13—P2—C19144.83 (8)
N2—N1—P1—C758.99 (17)C18—C13—P2—C1938.43 (9)
P2—N1—P1—C7114.33 (7)C14—C13—P2—Pd178.21 (8)
N2—N1—P1—Pd1178.24 (16)C18—C13—P2—Pd198.54 (8)
P2—N1—P1—Pd14.92 (7)C14—C13—P2—P115.55 (10)
N2—N1—P1—P2173.3 (2)C18—C13—P2—P1161.20 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.91 (2)2.63 (2)3.3066 (16)132.0 (17)
N2—H2B···Cl2i0.82 (2)2.58 (2)3.3495 (17)157 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Funding information

The publication of this article was funded by the Open Access Fund of the Leibniz Association.

References

First citationGholivand, K., Kahnouji, M., Latifi, R., Fadaei, F. T., Gholami, A. & Schenk, K. J. (2016). Inorg. Chim. Acta, 448, 61–69.  CrossRef CAS Google Scholar
First citationHöhne, M., Aluri, B. R., Spannenberg, A., Müller, B. H., Peulecke, N. & Rosenthal, U. (2018). IUCrData, 3, x181784.  Google Scholar
First citationPyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2012). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds