organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3-methyl-1-oxo-4H-1,4-benzo­thia­zine-2-carboxyl­ate monohydrate

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia, cLaboratoire de Chimie Organique et Etudes Physicochimique, ENS Takaddoum, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: y.baryala@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 13 June 2018; accepted 17 June 2018; online 26 June 2018)

The organic molecule in the title hydrate, C12H13NO3S·H2O, is folded across the S⋯N vector. Chains two molecules thick extending along the a-axis direction are formed by N—H⋯O and O—H⋯O hydrogen bonds. These inter­actions are reinforced by C—H⋯S hydrogen bonds and offset π-stacking inter­actions between centrosymmetrically related benzene rings. The chains are associated through C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzo­thia­zine derivatives constitute an important class of natural products possessing a wide range of biological and pharmaceutical activity due to the presence of the nitro­gen–sulfur axis, which is considered to be one of the structural features important for their activities (Nitin et al., 2013[Nitin, P. J., Chandrashekhar, D. U. & Usha, N. J. (2013). Int. J. Pharm. Phytopharmacol. Res. 3, 2250-1029.]; Gupta & Gupta, 2011[Gupta, R. & Gupta, A. (2011). Hetero. Letters. 1, 351-358.]). The 1,4-benzo­thia­zine moiety is the pharmacophore of pheno­thia­zines, which are well established anti-psychotic drugs (Barker & Miller, 1969[Barker, J. C. & Miller, M. (1969). Br. J. Psychiatry, 115, 169-172.]), and is also known as the basic unit for their utility as dyestuffs (Bhikan & Bhata, 2015[Bhikan, J. K. & Bhata, R. C. (2015). J. Chem. Pharm. Res. 7, 253-256.]), photographic developers (Dabholkar & Gavande, 2016[Dabholkar, V. V. & Gavande, R. P. (2016). Arab. J. Chem. 9, S225-S229.]), ultraviolet light absorbers and anti­oxidants (Dabholkar & Gavande, 2010[Dabholkar, V. V. & Gavande, R. P. (2010). Rasayan J. Chem. 3, 655-659.]).

The overall shape of the title mol­ecule (Fig. 1[link]) may be described as an `open butterfly' hinged about the S1⋯N1 vector. A puckering analysis of the heterocyclic ring gave the parameters Q = 0.301 (1) Å, θ = 65.7 (2)° and φ = 1.7 (3)°.

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The O—H⋯O hydrogen bond is shown as a dashed line.

In the crystal, N1—H1⋯O4, O4—H4A⋯O1 and O4—H4B⋯O1 hydrogen bonds (Table 1[link]) generate generate chains two molecules thick extending along the a-axis direction and inclined at approximately 56° to [001] (Fig. 2[link]). Reinforcing the above inter­actions are C2—H2⋯S1 hydrogen bonds (Table 1[link]) and offset π-stacking inter­actions between benzene rings across centers of symmetry with centroid–centroid distances of 3.8263 (8) Å and inter­planar spacings of 3.4260 (6) Å (Fig. 2[link]). Finally, the chains are tied together via C4—H4⋯O2 hydrogen bonds (Table 2[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 (2) 1.98 (2) 2.8504 (16) 170.7 (19)
C2—H2⋯S1ii 0.964 (19) 2.898 (19) 3.6729 (15) 138.2 (14)
O4—H4A⋯O1 0.82 (2) 2.05 (2) 2.8458 (15) 164 (2)
O4—H4B⋯O1iii 0.89 (2) 1.90 (2) 2.7841 (15) 175 (2)
C4—H4⋯O2iv 0.985 (19) 2.283 (17) 3.0694 (15) 136.1 (13)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Experimental details

Crystal data
Chemical formula C12H13NO3S·H2O
Mr 269.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.8340 (3), 18.6849 (6), 7.6927 (3)
β (°) 91.478 (1)
V3) 1269.35 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.35
Crystal size (mm) 0.31 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.74, 0.90
No. of measured, independent and observed [I > 2σ(I)] reflections 9610, 2466, 2332
Rint 0.028
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.09
No. of reflections 2466
No. of parameters 223
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.21, −0.42
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 2]
Figure 2
A portion of one chain viewed along the b-axis direction. O—H⋯O, N—H⋯O and C—H⋯S hydrogen bonds are depicted, respectively, as red, dark-blue and black dashed lines. The offset π-stacking inter­actions are shown as orange dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link] with the addition of light-blue dashed lines for the C—H⋯O hydrogen bonds.

Synthesis and crystallization

A mixture of 2,2-disulfanediyldianiline (0.5 g, 2 mmol) and ethyl aceto­acetate (0.5 ml, 4 mmol) was refluxed at 453 K for 3 h in xylene. After cooling and filtration, the solution was then concentrated to dryness under reduced pressure. The residue obtained was chromatographed on silica gel using di­chloro­methane/ether (9/1) as eluent. The title compound was isolated in 36% yield and recrystallized from ethanol solution to give colorless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 3-methyl-1-oxo-4H-1λ4,4-benzothiazine-2-carboxylate monohydrate top
Crystal data top
C12H13NO3S·H2OF(000) = 568
Mr = 269.31Dx = 1.409 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.8340 (3) ÅCell parameters from 8322 reflections
b = 18.6849 (6) Åθ = 5.0–72.3°
c = 7.6927 (3) ŵ = 2.35 mm1
β = 91.478 (1)°T = 100 K
V = 1269.35 (8) Å3Plate, colourless
Z = 40.31 × 0.15 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2466 independent reflections
Radiation source: INCOATEC IµS micro-focus source2332 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 4.7°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2123
Tmin = 0.74, Tmax = 0.90l = 99
9610 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.078All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.6004P]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66513 (4)0.40943 (2)0.17180 (4)0.01696 (11)
O10.57044 (11)0.42958 (5)0.32582 (13)0.0221 (2)
O20.86274 (14)0.22973 (6)0.2877 (2)0.0436 (3)
O30.63340 (11)0.26569 (5)0.19465 (14)0.0253 (2)
N10.98546 (14)0.45089 (6)0.31178 (15)0.0204 (3)
H11.074 (2)0.4638 (11)0.355 (3)0.038 (5)*
C10.77255 (15)0.48632 (7)0.12616 (17)0.0182 (3)
C20.70433 (17)0.53641 (8)0.01453 (18)0.0224 (3)
H20.612 (2)0.5229 (10)0.046 (2)0.029 (5)*
C30.76857 (18)0.60286 (8)0.0078 (2)0.0259 (3)
H30.720 (2)0.6385 (11)0.081 (2)0.032 (5)*
C40.90414 (17)0.61925 (8)0.08057 (19)0.0251 (3)
H40.952 (2)0.6665 (10)0.068 (2)0.031 (5)*
C50.97550 (17)0.56955 (8)0.18726 (19)0.0225 (3)
H51.073 (2)0.5811 (9)0.245 (2)0.023 (4)*
C60.91021 (15)0.50198 (7)0.21074 (17)0.0187 (3)
C70.94695 (15)0.38111 (8)0.32003 (17)0.0197 (3)
C80.81306 (15)0.35467 (7)0.24803 (18)0.0192 (3)
C91.06292 (17)0.33497 (9)0.4119 (2)0.0266 (3)
H9A1.015 (2)0.3080 (11)0.505 (3)0.038 (5)*
H9B1.103 (2)0.2996 (11)0.334 (3)0.039 (5)*
H9C1.142 (2)0.3650 (12)0.458 (3)0.041 (5)*
C100.77751 (16)0.27792 (8)0.24753 (19)0.0232 (3)
C110.58618 (19)0.19092 (8)0.1915 (2)0.0301 (3)
H11A0.596 (2)0.1731 (11)0.308 (3)0.041 (5)*
H11B0.656 (2)0.1661 (11)0.112 (3)0.044 (6)*
C120.4257 (2)0.18889 (10)0.1244 (3)0.0348 (4)
H12A0.360 (3)0.2185 (13)0.195 (3)0.051 (6)*
H12B0.422 (3)0.2062 (12)0.006 (3)0.049 (6)*
H12C0.391 (2)0.1366 (12)0.124 (3)0.046 (6)*
O40.28682 (12)0.49043 (7)0.41229 (16)0.0331 (3)
H4A0.359 (3)0.4700 (12)0.370 (3)0.043 (6)*
H4B0.327 (3)0.5176 (12)0.496 (3)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01205 (18)0.01823 (18)0.02045 (18)0.00045 (11)0.00286 (12)0.00170 (11)
O10.0151 (5)0.0248 (5)0.0265 (5)0.0017 (4)0.0029 (4)0.0026 (4)
O20.0310 (7)0.0222 (6)0.0762 (9)0.0054 (5)0.0220 (6)0.0006 (6)
O30.0195 (5)0.0185 (5)0.0375 (6)0.0020 (4)0.0066 (4)0.0006 (4)
N10.0131 (6)0.0242 (6)0.0236 (6)0.0004 (5)0.0038 (5)0.0044 (5)
C10.0145 (7)0.0199 (7)0.0203 (6)0.0003 (5)0.0002 (5)0.0025 (5)
C20.0170 (7)0.0264 (7)0.0236 (7)0.0011 (5)0.0007 (5)0.0008 (6)
C30.0250 (8)0.0247 (7)0.0280 (7)0.0005 (6)0.0015 (6)0.0042 (6)
C40.0251 (8)0.0220 (7)0.0284 (7)0.0042 (6)0.0051 (6)0.0030 (6)
C50.0176 (7)0.0249 (7)0.0252 (7)0.0037 (5)0.0021 (5)0.0067 (6)
C60.0154 (7)0.0213 (7)0.0195 (6)0.0015 (5)0.0011 (5)0.0044 (5)
C70.0157 (7)0.0237 (7)0.0198 (6)0.0024 (5)0.0005 (5)0.0035 (5)
C80.0146 (7)0.0198 (7)0.0230 (7)0.0017 (5)0.0017 (5)0.0016 (5)
C90.0171 (7)0.0292 (8)0.0332 (8)0.0031 (6)0.0076 (6)0.0008 (6)
C100.0187 (7)0.0224 (7)0.0282 (7)0.0016 (5)0.0040 (6)0.0029 (5)
C110.0319 (9)0.0194 (7)0.0384 (9)0.0055 (6)0.0066 (7)0.0007 (6)
C120.0293 (9)0.0318 (9)0.0429 (10)0.0094 (7)0.0049 (7)0.0019 (8)
O40.0149 (6)0.0489 (7)0.0355 (6)0.0018 (5)0.0026 (5)0.0184 (5)
Geometric parameters (Å, º) top
S1—O11.5154 (10)C5—C61.402 (2)
S1—C81.7490 (14)C5—H50.986 (19)
S1—C11.7621 (14)C7—C81.3842 (19)
O2—C101.2088 (19)C7—C91.5015 (19)
O3—C101.3460 (18)C8—C101.468 (2)
O3—C111.4581 (18)C9—H9A0.98 (2)
N1—C71.3494 (19)C9—H9B0.96 (2)
N1—C61.3895 (18)C9—H9C0.96 (2)
N1—H10.88 (2)C11—C121.497 (2)
C1—C61.3953 (19)C11—H11A0.96 (2)
C1—C21.396 (2)C11—H11B0.99 (2)
C2—C31.378 (2)C12—H12A0.97 (2)
C2—H20.964 (19)C12—H12B0.97 (2)
C3—C41.396 (2)C12—H12C1.02 (2)
C3—H30.97 (2)O4—H4A0.82 (2)
C4—C51.381 (2)O4—H4B0.89 (2)
C4—H40.985 (19)
O1—S1—C8107.82 (6)C8—C7—C9123.30 (13)
O1—S1—C1105.32 (6)C7—C8—C10122.02 (13)
C8—S1—C198.18 (6)C7—C8—S1123.28 (11)
C10—O3—C11115.82 (11)C10—C8—S1114.37 (10)
C7—N1—C6124.93 (12)C7—C9—H9A109.8 (12)
C7—N1—H1118.1 (14)C7—C9—H9B111.0 (12)
C6—N1—H1115.6 (14)H9A—C9—H9B105.9 (17)
C6—C1—C2120.22 (13)C7—C9—H9C108.7 (13)
C6—C1—S1123.06 (11)H9A—C9—H9C110.5 (17)
C2—C1—S1116.29 (10)H9B—C9—H9C110.8 (17)
C3—C2—C1120.54 (14)O2—C10—O3121.94 (14)
C3—C2—H2121.5 (11)O2—C10—C8126.52 (14)
C1—C2—H2118.0 (11)O3—C10—C8111.54 (12)
C2—C3—C4119.21 (14)O3—C11—C12107.35 (13)
C2—C3—H3121.1 (11)O3—C11—H11A107.3 (12)
C4—C3—H3119.7 (11)C12—C11—H11A112.3 (13)
C5—C4—C3120.98 (14)O3—C11—H11B106.1 (12)
C5—C4—H4118.0 (11)C12—C11—H11B111.9 (12)
C3—C4—H4121.0 (11)H11A—C11—H11B111.5 (17)
C4—C5—C6119.95 (13)C11—C12—H12A111.5 (14)
C4—C5—H5120.2 (10)C11—C12—H12B109.2 (14)
C6—C5—H5119.8 (10)H12A—C12—H12B108.9 (19)
N1—C6—C1121.02 (12)C11—C12—H12C107.8 (12)
N1—C6—C5119.89 (13)H12A—C12—H12C111.0 (18)
C1—C6—C5119.04 (13)H12B—C12—H12C108.4 (17)
N1—C7—C8122.67 (13)H4A—O4—H4B104 (2)
N1—C7—C9114.02 (12)
O1—S1—C1—C685.12 (12)C6—N1—C7—C810.1 (2)
C8—S1—C1—C625.97 (13)C6—N1—C7—C9169.10 (13)
O1—S1—C1—C287.29 (11)N1—C7—C8—C10175.71 (13)
C8—S1—C1—C2161.62 (11)C9—C7—C8—C103.5 (2)
C6—C1—C2—C32.8 (2)N1—C7—C8—S111.2 (2)
S1—C1—C2—C3169.89 (11)C9—C7—C8—S1169.57 (11)
C1—C2—C3—C41.0 (2)O1—S1—C8—C783.78 (13)
C2—C3—C4—C51.1 (2)C1—S1—C8—C725.27 (13)
C3—C4—C5—C61.3 (2)O1—S1—C8—C1089.75 (11)
C7—N1—C6—C19.2 (2)C1—S1—C8—C10161.20 (11)
C7—N1—C6—C5168.34 (13)C11—O3—C10—O20.9 (2)
C2—C1—C6—N1175.06 (12)C11—O3—C10—C8179.32 (12)
S1—C1—C6—N112.82 (18)C7—C8—C10—O29.4 (2)
C2—C1—C6—C52.5 (2)S1—C8—C10—O2177.01 (15)
S1—C1—C6—C5169.63 (10)C7—C8—C10—O3170.85 (12)
C4—C5—C6—N1177.08 (13)S1—C8—C10—O32.77 (16)
C4—C5—C6—C10.5 (2)C10—O3—C11—C12178.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.88 (2)1.98 (2)2.8504 (16)170.7 (19)
C2—H2···S1ii0.964 (19)2.898 (19)3.6729 (15)138.2 (14)
O4—H4A···O10.82 (2)2.05 (2)2.8458 (15)164 (2)
O4—H4B···O1iii0.89 (2)1.90 (2)2.7841 (15)175 (2)
C4—H4···O2iv0.985 (19)2.283 (17)3.0694 (15)136.1 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1/2, z+1/2.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBarker, J. C. & Miller, M. (1969). Br. J. Psychiatry, 115, 169–172.  CrossRef Web of Science Google Scholar
First citationBhikan, J. K. & Bhata, R. C. (2015). J. Chem. Pharm. Res. 7, 253–256.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDabholkar, V. V. & Gavande, R. P. (2016). Arab. J. Chem. 9, S225–S229.  Web of Science CrossRef Google Scholar
First citationDabholkar, V. V. & Gavande, R. P. (2010). Rasayan J. Chem. 3, 655–659.  Google Scholar
First citationGupta, R. & Gupta, A. (2011). Hetero. Letters. 1, 351–358.  Google Scholar
First citationNitin, P. J., Chandrashekhar, D. U. & Usha, N. J. (2013). Int. J. Pharm. Phytopharmacol. Res. 3, 2250–1029.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds