organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,4-Di­bromo-2,2,5,5-tetra­phenyl-2,5-di­hydro­furan

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

Edited by J. Simpson, University of Otago, New Zealand (Received 5 February 2018; accepted 12 March 2018; online 6 April 2018)

The crystal structure of the title compound, C28H20Br2O, was solved in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit. The phenyl rings are nearly planar and inclined at angles of 67.7 (1), 68.8 (1), 79.3 (1) and 62.3 (1)° to the plane of the 2,5-di­hydro­furan ring. The crystal structure features C—H⋯π and Br⋯Br inter­actions, which connect the mol­ecules to a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was obtained as an unexpected product in a bromination reaction of 1,1-diphenylprop-2-yne-1-ol in order to obtain 1,1-diphenyl-3-bromo-2-propyne-1-ol. Performance of this transformation using potassium hydroxide dissolved in water, bromine and 1,1-diphenyl-2-propyne-1-ol (Maraval et al., 2008[Maraval, V., Duhayon, C., Coppel, Y. & Chauvin, R. (2008). Eur. J. Org. Chem. pp. 5144-5156.]) added as a solution in n-pentane at 273 K following conditions of a described procedure (Saalfrank et al., 1996[Saalfrank, R. W., Welsch, A., Haubner, M. & Bauer, U. (1996). Liebigs Ann. Chem. pp. 171-181.]) yielded the intended product. However, when applying the same synthesis but heating the reaction mixture to reflux for 12 h instead of stirring for 60 h at room temperature, the modified reaction condition surprisingly led to the formation of the title compound as the main product. Nevertheless, upon closer inspection of the circumstances, a potential course of the reaction may be assumed in a first step by base-induced abstraction of a proton from the starting compound (1,1-di­phenyl­prop-2-yne-1-ol) to yield an equilibrium mixture of both corresponding alkoxide and acetyl­ide species. Deprotonation of the acetyl­ide species following a retro Favorskii-type reaction (Wuts & Greene, 2007[Wuts, P. G. M. & Greene, T. (2007). Greene's Protective Groups in Organic Synthesis, ch. 8, pp. 932, Hoboken: Wiley.]) gives rise to the formation of diphenyl ketone as an inter­mediate, which on nucleophilic attack by the acetyl­ide species may produce a mono-deprotonated acetyl­enic diol (1,1,4,4-tetra­phenyl­but-2-yne-1,4-diol) (Kostikov et al., 1996[Kostikov, R. R., Varakin, G. S., Molchanov, A. P. & Oglobin, K. A. (1996). Russ. J. Org. Chem. 32, 31-35.]). Subsequent hydrolysis and addition of bromine may then give a di­bromo-substituted secondary product (2,3-di­bromo-1,1,4,4-tetra­phenyl­but-2-ene-1,4-diol), which finally via dehydration and ring closure reactions (Salkind & Teterin, 1929[Salkind, J. & Teterin, V. (1929). Ber. Deutsch. Chem. Ges. 62, 1748-1750.]) ends up with the formation of the title compound. Crystals of this latter compound were used for X-ray crystal structure analysis.

The asymmetric unit contains one mol­ecule (Fig. 1[link]). The furan ring deviates slightly from planarity with maximum atomic distances from the the least-squares plane being −0.044 (2) Å for O1 and 0.042 (1) Å for C28. In addition, the aromatic rings are not perfectly planar. The maximum distances from the least-squares plane are 0.012 (2) and 0.015 (2) for atoms C1 and C6 of ring A. The phenyl rings A, B, C and D are inclined at angles of 67.7 (1), 68.8 (1), 79.3 (1) and 62.3 (1)°, respectively, to the plane of the 2,5-di­hydro­furan ring.

[Figure 1]
Figure 1
Perspective view of the title compound including atom labelling and ring specification. Non-hydrogen atoms are shown with 50% probability displacement ellipsoids.

In the crystal structure, mol­ecules are connected by C—H⋯π inter­actions (Nishio et al. 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]) with the aromatic rings A and B acting as acceptors (Table 1[link], Fig. 2[link]). Moreover, type I Br⋯Br contacts (Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]) [d(Br⋯Br) 3.814 (4) Å; θ1 = 136.0°, θ2 = 135.1°] connect the mol­ecules into a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg2i 0.95 2.82 3.701 (3) 155
C10—H10⋯Cg1ii 0.95 2.96 3.835 (3) 154
C16—H16⋯Cg1iii 0.95 2.75 3.508 (3) 137
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the packing of the title compound viewed along the a-axis. Oxygen atoms are displayed as dotted circles (red) and bromine atoms as cross-hatched circles. The inter­molecular contacts are shown as dashed lines.

Synthesis and crystallization

To a solution of potassium hydroxide (5.46 g, 140 mmol) in water (26 ml), bromine (2.3 g, 13.91 mmol) was added at 277 K. 1,1-Di­phenyl­prop-2-yne-1-ol (3.90 g, 18.72 mmol) dissolved in n-pentane (35 ml) was added dropwise at 273 K and the mixture was then heated to reflux for 12 h. After cooling and extraction with di­chloro­methane, the combined organic layers were washed with water, dried over sodium sulfate and evaporated. Crystallization from n-hexane yielded 6.9 g (70%) red crystals with m.p. 371 K. 1H NMR (500.1 MHz, CDCl3): δ = 7.21–7.35 (m, 20H, ArH) p.p.m.; 13C NMR (125.8 MHz, CDCl3): δ = 83.8 (C—O), 113.4 (C—Br), 127.5, 128.1, 129.3, 142.2 (Ar) p.p.m. Yellow scaly crystals were grown by slow evaporation of the solvent from a 1:1 solvent mixture of ethanol and THF.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H20Br2O
Mr 532.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 153
a, b, c (Å) 9.4301 (5), 9.4561 (5), 24.8572 (12)
V3) 2216.6 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.68
Crystal size (mm) 0.43 × 0.24 × 0.09
 
Data collection
Diffractometer Bruker Kappa goniometer with an APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.301, 0.733
No. of measured, independent and observed [I > 2σ(I)] reflections 39405, 4867, 4510
Rint 0.031
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.047, 1.06
No. of reflections 4867
No. of parameters 280
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.36
Absolute structure Flack x determined using 1813 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.014 (3)
Computer programs: APEX2 and SAINT-NT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT-NT (Bruker, 2014); data reduction: SAINT-NT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

3,4-Dibromo-2,2,5,5-tetraphenyl-2,5-dihydrofuran top
Crystal data top
C28H20Br2ODx = 1.595 Mg m3
Mr = 532.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9991 reflections
a = 9.4301 (5) Åθ = 2.3–25.3°
b = 9.4561 (5) ŵ = 3.68 mm1
c = 24.8572 (12) ÅT = 153 K
V = 2216.6 (2) Å3Column, yellow
Z = 40.43 × 0.24 × 0.09 mm
F(000) = 1064
Data collection top
Bruker Kappa goniometer with an APEXII CCD area detector
diffractometer
4510 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
θmax = 27.1°, θmin = 3.1°
Tmin = 0.301, Tmax = 0.733h = 1212
39405 measured reflectionsk = 1212
4867 independent reflectionsl = 3131
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.686P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.50 e Å3
4867 reflectionsΔρmin = 0.36 e Å3
280 parametersAbsolute structure: Flack x determined using 1813 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.014 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89406 (3)0.13600 (3)0.75235 (2)0.03301 (8)
Br20.81193 (4)0.16441 (3)0.67457 (2)0.04367 (10)
O10.72096 (19)0.21958 (19)0.60295 (8)0.0221 (4)
C10.8180 (3)0.0195 (3)0.55259 (11)0.0227 (5)
C20.9027 (3)0.1164 (3)0.52542 (11)0.0249 (6)
H20.89870.21370.53480.030*
C30.9935 (3)0.0718 (3)0.48454 (12)0.0287 (6)
H31.05050.13900.46610.034*
C41.0009 (3)0.0690 (4)0.47076 (13)0.0309 (7)
H41.06390.09940.44320.037*
C50.9164 (3)0.1659 (3)0.49715 (12)0.0350 (7)
H50.92200.26320.48790.042*
C60.8235 (3)0.1225 (3)0.53706 (11)0.0306 (6)
H60.76320.18970.55400.037*
C70.5668 (3)0.0223 (3)0.59101 (11)0.0242 (6)
C80.5012 (3)0.0558 (3)0.54270 (12)0.0256 (6)
H80.55530.09540.51420.031*
C90.3571 (3)0.0319 (3)0.53566 (13)0.0299 (7)
H90.31260.05860.50290.036*
C100.2784 (3)0.0302 (3)0.57589 (13)0.0334 (7)
H100.18000.04730.57090.040*
C110.3431 (4)0.0672 (4)0.62314 (14)0.0426 (9)
H110.28960.11140.65080.051*
C120.4873 (3)0.0405 (4)0.63092 (13)0.0367 (8)
H120.53090.06580.66400.044*
C130.9269 (3)0.3462 (3)0.63427 (10)0.0222 (5)
C141.0550 (3)0.2743 (3)0.63200 (12)0.0298 (7)
H141.06050.17930.64420.036*
C151.1751 (3)0.3406 (4)0.61195 (12)0.0347 (7)
H151.26200.29000.60980.042*
C161.1693 (3)0.4786 (4)0.59515 (12)0.0356 (7)
H161.25240.52410.58210.043*
C171.0433 (3)0.5508 (4)0.59718 (12)0.0336 (7)
H171.03910.64640.58550.040*
C180.9221 (3)0.4851 (3)0.61623 (11)0.0277 (6)
H180.83490.53540.61700.033*
C190.6891 (3)0.3723 (3)0.68066 (10)0.0228 (5)
C200.5465 (3)0.3771 (3)0.66836 (12)0.0305 (6)
H200.50840.31450.64220.037*
C210.4587 (3)0.4733 (4)0.69428 (13)0.0411 (8)
H210.36040.47540.68600.049*
C220.5128 (4)0.5661 (4)0.73193 (13)0.0390 (8)
H220.45300.63460.74830.047*
C230.6546 (3)0.5585 (3)0.74557 (13)0.0343 (7)
H230.69170.61940.77250.041*
C240.7425 (3)0.4628 (3)0.72030 (11)0.0275 (6)
H240.83990.45820.72990.033*
C250.7222 (3)0.0655 (3)0.59914 (11)0.0226 (6)
C260.7833 (3)0.0246 (3)0.65326 (12)0.0252 (6)
C270.8166 (3)0.1362 (3)0.68208 (10)0.0246 (5)
C280.7898 (3)0.2722 (3)0.65141 (11)0.0213 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02996 (13)0.03975 (17)0.02930 (14)0.00078 (13)0.01210 (13)0.00297 (15)
Br20.0640 (2)0.02275 (15)0.04424 (18)0.00568 (16)0.01158 (17)0.00825 (14)
O10.0226 (10)0.0183 (9)0.0254 (10)0.0006 (7)0.0052 (8)0.0013 (8)
C10.0222 (13)0.0213 (13)0.0246 (14)0.0017 (12)0.0060 (11)0.0013 (11)
C20.0244 (13)0.0213 (14)0.0289 (14)0.0016 (12)0.0047 (12)0.0024 (11)
C30.0237 (15)0.0326 (16)0.0297 (16)0.0018 (12)0.0023 (12)0.0014 (12)
C40.0233 (16)0.0391 (18)0.0303 (17)0.0071 (14)0.0012 (12)0.0045 (13)
C50.0416 (17)0.0240 (15)0.0394 (17)0.0099 (14)0.0092 (14)0.0064 (13)
C60.0338 (15)0.0228 (14)0.0352 (16)0.0004 (13)0.0035 (13)0.0002 (12)
C70.0239 (14)0.0201 (14)0.0285 (15)0.0018 (11)0.0025 (11)0.0039 (11)
C80.0256 (15)0.0211 (15)0.0301 (16)0.0004 (12)0.0000 (12)0.0002 (12)
C90.0265 (15)0.0269 (16)0.0364 (17)0.0018 (12)0.0075 (12)0.0015 (13)
C100.0216 (15)0.0390 (19)0.0397 (18)0.0056 (13)0.0001 (13)0.0111 (14)
C110.0357 (18)0.058 (2)0.0344 (18)0.0193 (16)0.0068 (14)0.0028 (16)
C120.0346 (17)0.049 (2)0.0266 (17)0.0114 (15)0.0028 (13)0.0017 (14)
C130.0195 (12)0.0250 (14)0.0222 (13)0.0029 (11)0.0006 (9)0.0058 (12)
C140.0253 (15)0.0289 (16)0.0351 (17)0.0013 (12)0.0022 (12)0.0059 (13)
C150.0189 (13)0.0455 (19)0.0398 (17)0.0019 (15)0.0009 (12)0.0100 (15)
C160.0250 (15)0.051 (2)0.0309 (17)0.0106 (15)0.0055 (13)0.0035 (14)
C170.0367 (17)0.0339 (18)0.0303 (17)0.0051 (14)0.0049 (14)0.0048 (13)
C180.0253 (15)0.0320 (16)0.0258 (15)0.0004 (12)0.0019 (11)0.0013 (12)
C190.0222 (12)0.0238 (13)0.0222 (12)0.0036 (12)0.0002 (11)0.0028 (11)
C200.0252 (13)0.0380 (17)0.0283 (15)0.0018 (12)0.0022 (12)0.0062 (14)
C210.0248 (15)0.060 (2)0.0387 (18)0.0095 (16)0.0014 (13)0.0068 (16)
C220.0375 (18)0.046 (2)0.0339 (18)0.0114 (15)0.0093 (14)0.0067 (14)
C230.0403 (16)0.0347 (16)0.0280 (16)0.0054 (13)0.0053 (14)0.0054 (14)
C240.0240 (14)0.0319 (17)0.0266 (15)0.0056 (12)0.0003 (12)0.0007 (13)
C250.0246 (14)0.0178 (13)0.0255 (15)0.0018 (11)0.0035 (12)0.0004 (11)
C260.0239 (14)0.0208 (14)0.0310 (15)0.0001 (11)0.0008 (12)0.0057 (11)
C270.0202 (12)0.0279 (14)0.0257 (13)0.0011 (12)0.0036 (11)0.0032 (12)
C280.0199 (13)0.0219 (13)0.0222 (13)0.0021 (11)0.0036 (11)0.0020 (11)
Geometric parameters (Å, º) top
Br1—C271.894 (3)C13—C141.387 (4)
Br2—C261.884 (3)C13—C181.389 (4)
O1—C281.456 (3)C13—C281.530 (4)
O1—C251.460 (3)C14—C151.387 (4)
C1—C21.390 (4)C14—H140.9500
C1—C61.399 (4)C15—C161.372 (5)
C1—C251.531 (4)C15—H150.9500
C2—C31.394 (4)C16—C171.371 (5)
C2—H20.9500C16—H160.9500
C3—C41.377 (5)C17—C181.385 (4)
C3—H30.9500C17—H170.9500
C4—C51.380 (5)C18—H180.9500
C4—H40.9500C19—C201.379 (4)
C5—C61.386 (4)C19—C241.399 (4)
C5—H50.9500C19—C281.526 (4)
C6—H60.9500C20—C211.389 (4)
C7—C121.378 (4)C20—H200.9500
C7—C81.388 (4)C21—C221.380 (5)
C7—C251.535 (4)C21—H210.9500
C8—C91.388 (4)C22—C231.381 (4)
C8—H80.9500C22—H220.9500
C9—C101.377 (4)C23—C241.379 (4)
C9—H90.9500C23—H230.9500
C10—C111.369 (5)C24—H240.9500
C10—H100.9500C25—C261.514 (4)
C11—C121.396 (4)C26—C271.313 (4)
C11—H110.9500C27—C281.517 (4)
C12—H120.9500
C28—O1—C25113.0 (2)C17—C16—C15119.8 (3)
C2—C1—C6118.5 (3)C17—C16—H16120.1
C2—C1—C25121.3 (2)C15—C16—H16120.1
C6—C1—C25120.2 (3)C16—C17—C18120.3 (3)
C1—C2—C3120.5 (3)C16—C17—H17119.9
C1—C2—H2119.7C18—C17—H17119.9
C3—C2—H2119.7C17—C18—C13120.5 (3)
C4—C3—C2120.3 (3)C17—C18—H18119.7
C4—C3—H3119.8C13—C18—H18119.7
C2—C3—H3119.8C20—C19—C24119.1 (3)
C3—C4—C5119.6 (3)C20—C19—C28121.5 (2)
C3—C4—H4120.2C24—C19—C28119.4 (2)
C5—C4—H4120.2C19—C20—C21120.0 (3)
C4—C5—C6120.6 (3)C19—C20—H20120.0
C4—C5—H5119.7C21—C20—H20120.0
C6—C5—H5119.7C22—C21—C20120.7 (3)
C5—C6—C1120.3 (3)C22—C21—H21119.6
C5—C6—H6119.8C20—C21—H21119.6
C1—C6—H6119.8C21—C22—C23119.4 (3)
C12—C7—C8118.6 (3)C21—C22—H22120.3
C12—C7—C25122.6 (3)C23—C22—H22120.3
C8—C7—C25118.6 (3)C24—C23—C22120.3 (3)
C7—C8—C9120.5 (3)C24—C23—H23119.9
C7—C8—H8119.7C22—C23—H23119.9
C9—C8—H8119.7C23—C24—C19120.4 (3)
C10—C9—C8120.4 (3)C23—C24—H24119.8
C10—C9—H9119.8C19—C24—H24119.8
C8—C9—H9119.8O1—C25—C26101.5 (2)
C11—C10—C9119.4 (3)O1—C25—C1109.7 (2)
C11—C10—H10120.3C26—C25—C1112.0 (2)
C9—C10—H10120.3O1—C25—C7105.5 (2)
C10—C11—C12120.5 (3)C26—C25—C7114.3 (2)
C10—C11—H11119.8C1—C25—C7112.9 (2)
C12—C11—H11119.8C27—C26—C25111.8 (2)
C7—C12—C11120.5 (3)C27—C26—Br2125.1 (2)
C7—C12—H12119.7C25—C26—Br2123.1 (2)
C11—C12—H12119.7C26—C27—C28111.6 (2)
C14—C13—C18118.6 (3)C26—C27—Br1126.5 (2)
C14—C13—C28121.5 (3)C28—C27—Br1121.91 (19)
C18—C13—C28119.6 (2)O1—C28—C27101.5 (2)
C13—C14—C15120.3 (3)O1—C28—C19109.2 (2)
C13—C14—H14119.9C27—C28—C19113.0 (2)
C15—C14—H14119.9O1—C28—C13107.6 (2)
C16—C15—C14120.4 (3)C27—C28—C13112.8 (2)
C16—C15—H15119.8C19—C28—C13112.1 (2)
C14—C15—H15119.8
C6—C1—C2—C31.5 (4)C2—C1—C25—C7125.6 (3)
C25—C1—C2—C3177.5 (2)C6—C1—C25—C755.4 (3)
C1—C2—C3—C40.4 (4)C12—C7—C25—O1106.8 (3)
C2—C3—C4—C50.9 (4)C8—C7—C25—O169.0 (3)
C3—C4—C5—C60.5 (5)C12—C7—C25—C263.9 (4)
C4—C5—C6—C12.5 (5)C8—C7—C25—C26179.7 (2)
C2—C1—C6—C52.9 (4)C12—C7—C25—C1133.5 (3)
C25—C1—C6—C5176.1 (3)C8—C7—C25—C150.7 (3)
C12—C7—C8—C92.6 (4)O1—C25—C26—C272.3 (3)
C25—C7—C8—C9173.3 (3)C1—C25—C26—C27114.7 (3)
C7—C8—C9—C102.4 (5)C7—C25—C26—C27115.3 (3)
C8—C9—C10—C110.6 (5)O1—C25—C26—Br2179.54 (18)
C9—C10—C11—C120.9 (5)C1—C25—C26—Br263.5 (3)
C8—C7—C12—C111.2 (5)C7—C25—C26—Br266.5 (3)
C25—C7—C12—C11174.7 (3)C25—C26—C27—C282.5 (3)
C10—C11—C12—C70.6 (5)Br2—C26—C27—C28175.6 (2)
C18—C13—C14—C150.1 (4)C25—C26—C27—Br1179.32 (19)
C28—C13—C14—C15174.5 (3)Br2—C26—C27—Br12.5 (4)
C13—C14—C15—C161.3 (5)C25—O1—C28—C277.8 (3)
C14—C15—C16—C171.3 (5)C25—O1—C28—C19127.3 (2)
C15—C16—C17—C180.2 (5)C25—O1—C28—C13110.9 (2)
C16—C17—C18—C131.0 (5)C26—C27—C28—O16.2 (3)
C14—C13—C18—C171.0 (4)Br1—C27—C28—O1175.57 (17)
C28—C13—C18—C17175.7 (3)C26—C27—C28—C19123.0 (3)
C24—C19—C20—C211.6 (4)Br1—C27—C28—C1958.8 (3)
C28—C19—C20—C21177.5 (3)C26—C27—C28—C13108.7 (3)
C19—C20—C21—C220.8 (5)Br1—C27—C28—C1369.5 (3)
C20—C21—C22—C232.9 (5)C20—C19—C28—O115.0 (3)
C21—C22—C23—C242.5 (5)C24—C19—C28—O1164.0 (2)
C22—C23—C24—C190.1 (5)C20—C19—C28—C2797.1 (3)
C20—C19—C24—C232.0 (4)C24—C19—C28—C2783.8 (3)
C28—C19—C24—C23177.1 (3)C20—C19—C28—C13134.2 (3)
C28—O1—C25—C266.5 (3)C24—C19—C28—C1344.9 (3)
C28—O1—C25—C1112.2 (2)C14—C13—C28—O192.0 (3)
C28—O1—C25—C7126.0 (2)C18—C13—C28—O182.5 (3)
C2—C1—C25—O18.3 (4)C14—C13—C28—C2719.1 (4)
C6—C1—C25—O1172.7 (2)C18—C13—C28—C27166.3 (2)
C2—C1—C25—C26103.6 (3)C14—C13—C28—C19147.9 (2)
C6—C1—C25—C2675.4 (3)C18—C13—C28—C1937.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.952.823.701 (3)155
C10—H10···Cg1ii0.952.963.835 (3)154
C16—H16···Cg1iii0.952.753.508 (3)137
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x1, y, z; (iii) x, y+1/2, z+3/2.
 

Funding information

We acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKostikov, R. R., Varakin, G. S., Molchanov, A. P. & Oglobin, K. A. (1996). Russ. J. Org. Chem. 32, 31–35.  Google Scholar
First citationMaraval, V., Duhayon, C., Coppel, Y. & Chauvin, R. (2008). Eur. J. Org. Chem. pp. 5144–5156.  Web of Science CSD CrossRef Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaalfrank, R. W., Welsch, A., Haubner, M. & Bauer, U. (1996). Liebigs Ann. Chem. pp. 171–181.  Google Scholar
First citationSalkind, J. & Teterin, V. (1929). Ber. Deutsch. Chem. Ges. 62, 1748–1750.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWuts, P. G. M. & Greene, T. (2007). Greene's Protective Groups in Organic Synthesis, ch. 8, pp. 932, Hoboken: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds