organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[(3-methyl­quinoxalin-2-yl)sulfan­yl]acetate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP, 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco
*Correspondence e-mail: mohcinemissioui@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 29 November 2017; accepted 9 December 2017; online 12 December 2017)

In the title mol­ecule, C13H14N2O2S, the dihedral angle between the pyrazine and benzene ring planes is 2.21 (5)°. The mean plane of the quinoxaline ring system is inclined to the sufanyl­acetate substituent by 81.74 (2)°. In the crystal, inversion-related C—H⋯N hydrogen bonds form dimers, which are linked into oblique stacks along the a-axis direction by C—H⋯O hydrogen bonds and ππ-stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Among the various classes of nitro­gen heterocyclic compounds, quinoxaline derivatives display a broad spectrum of biological activity (Ramli et al., 2014[Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1-21.]). The chemistry of quinoxaline and its derivatives has attracted increasing attention because of their diverse pharmacological properties. These include use as cytotoxic, anti-inflammatory, anti­microbial, anti­oxidant, anti­fungal and anti­viral agents (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109-160.]). In light of these facts and as a continuation of our work on the synthesis of quinoxaline-2-thione derivatives in order to evaluate their pharmacological activity (Ramli et al., 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013a[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013a). Acta Cryst. E69, o1320-o1321.],b[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013b). Acta Cryst. E69, o1320-o1321.], 2017[Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.]; Caleb et al., 2016[Caleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109-123.]), the title compound (Fig. 1[link]) was synthesized and its structure is reported here.

[Figure 1]
Figure 1
The title mol­ecule with the atom-labeling scheme and 50% probability ellipsoids.

The dihedral angle between the mean planes (r.m.s. deviation = 0.001 Å for each) of the N1/C1/C8/N2/C7/C2 and C2–C7 rings is 2.21 (5)°. The plane through all atoms of the methyl­quinoxaline ring system is inclined to the plane through the S1/O1/O2/C10–C13 atoms of the sulfanyl­acetate substituent by 81.74 (2)°.

In the crystal, centrosymmetric dimers form through inversion-related C6—H6⋯N2 hydrogen bonds with the mean plane of the dimer inclined at 69.15 (6)° to [001] (Table 1[link] and Fig. 2[link]). The dimers are formed into oblique stacks extending along the a-axis direction by a combination of C10—H10B⋯O1 hydrogen bonds and π-stacking inter­actions between the C2–C7 ring of one mol­ecule and an adjacent C1/N1/C2/C7/N2/C8 ring (Table 1[link] and Figs. 2[link] and 3[link]). The dihedral angle between these planes is 2.12 (5)°, and the centroid–centroid distance is 3.7756 (6) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N2i 0.956 (14) 2.584 (14) 3.5398 (15) 179.1 (12)
C10—H10B⋯O1ii 0.959 (14) 2.320 (15) 3.2770 (14) 175.2 (12)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z.
[Figure 2]
Figure 2
One of the oblique stacks viewed along the c-axis direction. C—H⋯O hydrogen bonds and π-stacking inter­actions are shown, respectively, by black and orange dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction showing the C—H⋯O and inversion-related C—H⋯N hydrogen bonds.

Synthesis and crystallization

To a solution of 3-methyl­quinoxaline-2(1H)-thione (5. 67 mmol, 1 g) in 20 ml of DMF was added ethyl bromo acetate (5. 67 mmol), K2CO3 (5. 67 mmol) and a catalytic amount of tetra­butyl­ammonium bromide. The mixture was stirred at room temperature for 4 h. Progress was monitored by TLC and, when complete, the solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colourless block-like crystals of the title compound (yield 70%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H14N2O2S
Mr 262.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 4.8078 (3), 7.7314 (4), 17.8011 (10)
α, β, γ (°) 93.412 (1), 94.564 (1), 103.050 (1)
V3) 640.50 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.24 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 12471, 3429, 2989
Rint 0.022
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.13
No. of reflections 3429
No. of parameters 219
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.51, −0.24
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-[(3-methylquinoxalin-2-yl)sulfanyl]acetate top
Crystal data top
C13H14N2O2SZ = 2
Mr = 262.32F(000) = 276
Triclinic, P1Dx = 1.360 Mg m3
a = 4.8078 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7314 (4) ÅCell parameters from 7128 reflections
c = 17.8011 (10) Åθ = 2.3–29.2°
α = 93.412 (1)°µ = 0.25 mm1
β = 94.564 (1)°T = 100 K
γ = 103.050 (1)°Block, colourless
V = 640.50 (6) Å30.24 × 0.19 × 0.14 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3429 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 2.3°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.90, Tmax = 0.97l = 2424
12471 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.106All H-atom parameters refined
S = 1.13 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.0147P]
where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36572 (5)0.83809 (3)0.22771 (2)0.01635 (10)
O10.77627 (17)0.92958 (11)0.37270 (5)0.02107 (19)
O20.48291 (17)0.75362 (11)0.44375 (4)0.02113 (19)
N10.62989 (18)0.57047 (11)0.23657 (5)0.01322 (19)
N20.77521 (19)0.59410 (12)0.08561 (5)0.01459 (19)
C10.5584 (2)0.68682 (14)0.19277 (6)0.0128 (2)
C20.7772 (2)0.45609 (14)0.20461 (6)0.0126 (2)
C30.8533 (2)0.32286 (14)0.24738 (6)0.0166 (2)
H30.787 (3)0.3094 (18)0.2980 (8)0.022 (3)*
C41.0070 (2)0.21126 (15)0.21664 (7)0.0183 (2)
H41.050 (3)0.128 (2)0.2451 (10)0.038 (4)*
C51.0920 (2)0.22905 (15)0.14311 (6)0.0184 (2)
H51.194 (4)0.148 (3)0.1226 (11)0.049 (5)*
C61.0180 (2)0.35609 (15)0.09980 (6)0.0168 (2)
H61.076 (3)0.3690 (19)0.0499 (8)0.023 (3)*
C70.8555 (2)0.47049 (14)0.12995 (6)0.0135 (2)
C80.6262 (2)0.69891 (14)0.11535 (6)0.0141 (2)
C90.5263 (3)0.82984 (16)0.06723 (6)0.0194 (2)
H9A0.314 (4)0.817 (2)0.0642 (10)0.040 (4)*
H9B0.594 (3)0.949 (2)0.0911 (9)0.031 (4)*
H9C0.588 (3)0.820 (2)0.0185 (9)0.034 (4)*
C100.3034 (2)0.76191 (15)0.31903 (6)0.0160 (2)
H10A0.251 (3)0.637 (2)0.3185 (8)0.025 (4)*
H10B0.145 (3)0.8045 (19)0.3360 (8)0.025 (4)*
C110.5520 (2)0.82636 (14)0.37907 (6)0.0158 (2)
C120.6999 (3)0.80583 (19)0.50825 (7)0.0264 (3)
H12A0.860 (3)0.764 (2)0.4947 (9)0.033 (4)*
H12B0.751 (3)0.938 (2)0.5145 (8)0.026 (4)*
C130.5698 (4)0.7234 (2)0.57545 (8)0.0343 (3)
H13A0.699 (4)0.756 (2)0.6176 (10)0.041 (5)*
H13B0.539 (4)0.601 (3)0.5704 (12)0.063 (6)*
H13C0.389 (4)0.768 (2)0.5829 (10)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01682 (16)0.01777 (16)0.01610 (15)0.00755 (11)0.00186 (10)0.00039 (10)
O10.0150 (4)0.0250 (4)0.0216 (4)0.0024 (3)0.0022 (3)0.0026 (3)
O20.0207 (4)0.0253 (4)0.0158 (4)0.0030 (3)0.0007 (3)0.0010 (3)
N10.0118 (4)0.0152 (4)0.0127 (4)0.0029 (3)0.0018 (3)0.0013 (3)
N20.0131 (4)0.0170 (4)0.0129 (4)0.0019 (3)0.0011 (3)0.0015 (3)
C10.0106 (5)0.0140 (5)0.0132 (5)0.0023 (4)0.0005 (4)0.0001 (4)
C20.0113 (4)0.0139 (5)0.0122 (5)0.0019 (4)0.0010 (4)0.0010 (3)
C30.0172 (5)0.0173 (5)0.0160 (5)0.0045 (4)0.0029 (4)0.0035 (4)
C40.0202 (5)0.0150 (5)0.0207 (5)0.0064 (4)0.0000 (4)0.0030 (4)
C50.0172 (5)0.0177 (5)0.0208 (5)0.0064 (4)0.0020 (4)0.0029 (4)
C60.0155 (5)0.0193 (5)0.0147 (5)0.0031 (4)0.0016 (4)0.0020 (4)
C70.0122 (5)0.0152 (5)0.0122 (5)0.0011 (4)0.0010 (4)0.0004 (4)
C80.0127 (5)0.0156 (5)0.0130 (5)0.0017 (4)0.0001 (4)0.0015 (4)
C90.0217 (6)0.0221 (6)0.0162 (5)0.0078 (5)0.0013 (4)0.0053 (4)
C100.0119 (5)0.0204 (6)0.0158 (5)0.0039 (4)0.0026 (4)0.0012 (4)
C110.0161 (5)0.0173 (5)0.0159 (5)0.0086 (4)0.0027 (4)0.0027 (4)
C120.0250 (6)0.0356 (7)0.0178 (6)0.0087 (5)0.0046 (5)0.0014 (5)
C130.0503 (9)0.0335 (8)0.0195 (6)0.0115 (7)0.0006 (6)0.0034 (5)
Geometric parameters (Å, º) top
S1—C11.7626 (10)C5—H50.954 (19)
S1—C101.7863 (11)C6—C71.4153 (14)
O1—C111.2057 (13)C6—H60.956 (14)
O2—C111.3438 (13)C8—C91.4986 (14)
O2—C121.4607 (14)C9—H9A1.001 (17)
N1—C11.3100 (13)C9—H9B0.966 (16)
N1—C21.3762 (13)C9—H9C0.944 (16)
N2—C81.3121 (13)C10—C111.5111 (15)
N2—C71.3760 (13)C10—H10A0.938 (15)
C1—C81.4448 (14)C10—H10B0.959 (14)
C2—C31.4121 (14)C12—C131.5029 (19)
C2—C71.4138 (14)C12—H12A0.945 (16)
C3—C41.3734 (15)C12—H12B0.997 (16)
C3—H30.983 (14)C13—H13A0.921 (18)
C4—C51.4071 (16)C13—H13B0.92 (2)
C4—H40.892 (18)C13—H13C1.02 (2)
C5—C61.3748 (16)
C1—S1—C10100.96 (5)C8—C9—H9A113.1 (10)
C11—O2—C12115.87 (9)C8—C9—H9B110.2 (9)
C1—N1—C2115.99 (9)H9A—C9—H9B101.0 (13)
C8—N2—C7117.64 (9)C8—C9—H9C109.9 (10)
N1—C1—C8123.63 (9)H9A—C9—H9C110.8 (13)
N1—C1—S1119.73 (8)H9B—C9—H9C111.5 (13)
C8—C1—S1116.64 (8)C11—C10—S1114.95 (8)
N1—C2—C3119.39 (9)C11—C10—H10A107.2 (9)
N1—C2—C7121.19 (9)S1—C10—H10A113.0 (9)
C3—C2—C7119.42 (9)C11—C10—H10B106.9 (9)
C4—C3—C2119.76 (10)S1—C10—H10B108.0 (9)
C4—C3—H3121.7 (8)H10A—C10—H10B106.2 (12)
C2—C3—H3118.5 (8)O1—C11—O2123.78 (10)
C3—C4—C5120.75 (10)O1—C11—C10127.14 (10)
C3—C4—H4117.3 (11)O2—C11—C10109.05 (9)
C5—C4—H4121.9 (11)O2—C12—C13107.04 (11)
C6—C5—C4120.79 (10)O2—C12—H12A106.0 (10)
C6—C5—H5120.1 (12)C13—C12—H12A113.7 (10)
C4—C5—H5119.0 (12)O2—C12—H12B107.2 (9)
C5—C6—C7119.34 (10)C13—C12—H12B112.8 (9)
C5—C6—H6121.1 (9)H12A—C12—H12B109.7 (13)
C7—C6—H6119.6 (9)C12—C13—H13A109.5 (11)
N2—C7—C2121.00 (9)C12—C13—H13B111.4 (13)
N2—C7—C6119.11 (9)H13A—C13—H13B103.8 (16)
C2—C7—C6119.89 (10)C12—C13—H13C108.0 (10)
N2—C8—C1120.45 (9)H13A—C13—H13C110.2 (15)
N2—C8—C9118.66 (9)H13B—C13—H13C113.9 (17)
C1—C8—C9120.88 (9)
C2—N1—C1—C80.08 (15)C3—C2—C7—C62.32 (15)
C2—N1—C1—S1179.30 (7)C5—C6—C7—N2178.20 (10)
C10—S1—C1—N14.60 (10)C5—C6—C7—C21.54 (16)
C10—S1—C1—C8174.83 (8)C7—N2—C8—C11.87 (15)
C1—N1—C2—C3177.86 (9)C7—N2—C8—C9177.65 (9)
C1—N1—C2—C72.65 (15)N1—C1—C8—N22.29 (16)
N1—C2—C3—C4178.24 (10)S1—C1—C8—N2178.31 (8)
C7—C2—C3—C41.26 (16)N1—C1—C8—C9177.21 (9)
C2—C3—C4—C50.57 (17)S1—C1—C8—C92.19 (14)
C3—C4—C5—C61.36 (17)C1—S1—C10—C1181.32 (9)
C4—C5—C6—C70.29 (17)C12—O2—C11—O10.45 (16)
C8—N2—C7—C20.66 (15)C12—O2—C11—C10178.80 (9)
C8—N2—C7—C6179.60 (9)S1—C10—C11—O14.50 (15)
N1—C2—C7—N23.08 (16)S1—C10—C11—O2177.22 (7)
C3—C2—C7—N2177.42 (9)C11—O2—C12—C13175.03 (10)
N1—C2—C7—C6177.18 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.956 (14)2.584 (14)3.5398 (15)179.1 (12)
C10—H10B···O1ii0.959 (14)2.320 (15)3.2770 (14)175.2 (12)
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109–123.  Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013a). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013b). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.  Google Scholar
First citationRamli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]