organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-{3-[2-(2-Chloro­phen­yl)eth­yl]-2-oxo-1,2-di­hydro­quinoxalin-1-yl}acetohydrazide

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, bLaboratory of Agrophysiology, Biotechnology, Environnement and Quality, Faculty of Science, Ibn Tofail University, Kenitra, Morocco, cLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mohcinemissioui@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 30 September 2017; accepted 2 October 2017; online 6 October 2017)

In the title compound, C18H17ClN4O2, the di­hydro­quinoxaline moiety deviates slightly from planarity. The benzene ring and its chloro and methyl­ene substituents are disordered over two sets of sites, with an occupancy ratio of 0.675 (3):0.325 (3). In the crystal, corrugated sheets parallel to (100) are formed by N—H⋯O, N—H⋯Cl and N—H⋯N hydrogen bonds. The structure was refined as a two-component inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Among the various classes of nitro­gen heterocyclic compounds, quinoxaline derivatives display a broad spectrum of biological activities (Ramli et al., 2014[Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1-21.]). Some analogs have been synthesized and evaluated for their anti­microbial activity and many possess diverse biological activities including insecticidal, fungicidal, herbicidal, anthelmintic and anti­viral (Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109-160.]). As a continuation of our work on the development of N-substituted quinoxaline-2-one derivatives in order to evaluate their pharmacological activity, we have studied the condensation reaction of ethyl 2-[3-(2-chloro­pheneth­yl)-2-oxoquinoxalin-1(2H)-yl]acetate with hydrazine hydrate in ethanol to form the title compound (Fig. 1[link]) in good yield (Ramli et al., 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.]; Caleb et al., 2016[Caleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Mar. Chim. Heterocycl, 15, 109-123.]).

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability displacement ellipsoids. Only the major disorder component is shown for clarity.

The bicyclic core of the title compound is not quite planar, as indicated by the dihedral angle of 1.52 (16)° between the pyrazinone and the benzene rings. The pyrazinone ring is inclined to the major disorder component of the chloro­phenyl ring by 24.80 (19)°. In the crystal, the mol­ecules form zigzag chains running along the c-axis direction through N4—H4A⋯N2 hydrogen bonds together with weak N4—H4B⋯Cl1 inter­actions (Table 1[link] and Fig. 2[link]). N3—H3A⋯O2 hydrogen bonds form chains along b (Table 1[link] and Fig. 2[link]) and combine with the sheets shown in Fig. 3[link] to form corrugated sheets parallel to (100).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.91 1.96 2.842 (4) 163
N4—H4A⋯N2ii 0.91 2.35 3.256 (4) 175
N4—H4B⋯Cl1ii 0.91 2.92 3.539 (3) 126
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Chains of mol­ecules formed along b by N—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
A view of the zigzag chains formed by N—H⋯N (light-blue dashed lines) and N—H⋯Cl (purple dashed lines) hydrogen bonds projected onto [010].

Synthesis and crystallization

To a solution of ethyl 2-[3-(2-chloro­pheneth­yl)-2-oxoquinoxalin-1(2H)-yl]acetate (2.70 mmol, 1 g) in 20 ml of ethanol, hydrazine hydrate (4.58 mmol, 229.49 mg) was added. The mixture was stirred at room temperature for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colorless block-like crystals of the title compound (yield 63%).

Refinement

Crystal and refinement details are presented in Table 2[link]. The 2-chloro­benzyl group is disordered over several closely spaced positions. After several attempts, the only feasible model was a two-site one, treating the rings as rigid hexa­gons. The structure was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C18H17ClN4O2
Mr 356.80
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 24.258 (3), 4.6484 (5), 14.7708 (16)
V3) 1665.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.25 × 0.16 × 0.05
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.94, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 7372, 4036, 3379
Rint 0.027
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.07
No. of reflections 4036
No. of parameters 231
No. of restraints 84
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.30
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.49 (16)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-{3-[2-(2-Chlorophenyl)ethyl]-2-oxo-1,2-dihydroquinoxalin-1-yl}acetohydrazide top
Crystal data top
C18H17ClN4O2Dx = 1.423 Mg m3
Mr = 356.80Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 6865 reflections
a = 24.258 (3) Åθ = 2.2–27.5°
b = 4.6484 (5) ŵ = 0.25 mm1
c = 14.7708 (16) ÅT = 100 K
V = 1665.6 (3) Å3Block, colorless
Z = 40.25 × 0.16 × 0.05 mm
F(000) = 744
Data collection top
Bruker SMART APEX CCD
diffractometer
4036 independent reflections
Radiation source: fine-focus sealed tube3379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.7°
ω scansh = 3232
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 66
Tmin = 0.94, Tmax = 0.99l = 1919
7372 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.3986P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4036 reflectionsΔρmax = 0.77 e Å3
231 parametersΔρmin = 0.30 e Å3
84 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.49 (16)
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 180 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The 2-chlorobenzyl group is disordered over several closely spaced positions. After several attempts, the only feasible model was a 2-site one treating the rings as rigid hexagons. H-atoms attached to carbon were placed in idealized positions while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 %A. All were included as riding contributions. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.57433 (10)0.7964 (6)0.42015 (17)0.0305 (6)
O20.43551 (10)0.6782 (5)0.38490 (17)0.0267 (5)
N10.50239 (11)0.8913 (6)0.51467 (18)0.0231 (6)
N20.54455 (12)0.4766 (6)0.63241 (19)0.0242 (6)
N30.41985 (12)1.1092 (6)0.3195 (2)0.0263 (6)
H3A0.42451.30140.32830.034 (11)*
N40.38670 (13)0.9972 (7)0.2490 (2)0.0317 (7)
H4A0.40430.85690.21730.044 (13)*
H4B0.35590.93450.27810.038 (12)*
C10.49487 (13)0.6127 (7)0.6508 (2)0.0233 (6)
C20.46541 (15)0.5374 (8)0.7293 (2)0.0293 (7)
H20.47990.39500.76880.035*
C30.41607 (16)0.6664 (9)0.7498 (2)0.0339 (8)
H30.39690.61610.80360.041*
C40.39449 (15)0.8702 (9)0.6914 (3)0.0374 (9)
H40.36020.95810.70560.045*
C50.42163 (15)0.9485 (8)0.6132 (3)0.0312 (8)
H50.40591.08810.57400.037*
C60.47239 (14)0.8223 (7)0.5917 (2)0.0234 (7)
C70.55016 (14)0.7508 (7)0.4917 (2)0.0234 (6)
C80.57052 (13)0.5406 (7)0.5594 (2)0.0237 (7)
C90.48067 (14)1.0949 (7)0.4481 (2)0.0246 (7)
H9A0.51161.18480.41470.030*
H9B0.46001.24910.47950.030*
C100.44243 (13)0.9402 (7)0.3812 (2)0.0215 (6)
C110.62385 (13)0.3913 (7)0.5368 (2)0.0261 (7)
H11A0.62050.30040.47640.031*
H11B0.63050.23680.58160.031*
Cl10.74190 (7)0.3151 (6)0.69305 (14)0.0692 (6)0.675 (3)
C120.6744 (3)0.6004 (17)0.5363 (5)0.0297 (18)0.675 (3)
H12A0.66890.75250.49030.036*0.675 (3)
H12B0.67830.69340.59630.036*0.675 (3)
C130.72605 (16)0.4260 (10)0.5144 (3)0.0332 (14)0.675 (3)
C140.75662 (17)0.2843 (10)0.5803 (3)0.0384 (14)0.675 (3)
C150.80138 (15)0.1150 (10)0.5555 (4)0.0494 (16)0.675 (3)
H150.82230.01820.60050.059*0.675 (3)
C160.81556 (16)0.0875 (11)0.4647 (4)0.054 (2)0.675 (3)
H160.84620.02810.44770.065*0.675 (3)
C170.7850 (2)0.2293 (13)0.3988 (3)0.061 (2)0.675 (3)
H170.79470.21050.33670.073*0.675 (3)
C180.7402 (2)0.3985 (12)0.4236 (3)0.0528 (18)0.675 (3)
H180.71930.49530.37860.063*0.675 (3)
Cl1A0.71901 (15)0.5143 (12)0.3615 (3)0.0692 (6)0.325 (3)
C12A0.6753 (6)0.566 (4)0.5630 (14)0.0297 (18)0.325 (3)
H12C0.67660.74740.52790.036*0.325 (3)
H12D0.67420.61460.62820.036*0.325 (3)
C13A0.7262 (4)0.383 (2)0.5423 (8)0.0332 (14)0.325 (3)
C14A0.7474 (4)0.345 (2)0.4556 (7)0.0384 (14)0.325 (3)
C15A0.7933 (4)0.171 (2)0.4423 (6)0.0494 (16)0.325 (3)
H15A0.80770.14510.38300.059*0.325 (3)
C16A0.8180 (4)0.035 (2)0.5155 (8)0.054 (2)0.325 (3)
H16A0.84940.08400.50640.065*0.325 (3)
C17A0.7969 (4)0.073 (3)0.6022 (7)0.061 (2)0.325 (3)
H17A0.81380.02030.65230.073*0.325 (3)
C18A0.7510 (5)0.247 (3)0.6156 (6)0.0528 (18)0.325 (3)
H18A0.73650.27250.67480.063*0.325 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (13)0.0295 (13)0.0259 (12)0.0008 (10)0.0010 (10)0.0006 (10)
O20.0348 (12)0.0148 (10)0.0304 (12)0.0028 (9)0.0054 (10)0.0007 (9)
N10.0264 (13)0.0183 (12)0.0245 (13)0.0020 (11)0.0054 (11)0.0004 (11)
N20.0259 (13)0.0234 (14)0.0232 (13)0.0003 (11)0.0059 (11)0.0006 (11)
N30.0324 (14)0.0174 (13)0.0292 (15)0.0031 (11)0.0085 (11)0.0012 (11)
N40.0362 (16)0.0261 (15)0.0328 (16)0.0027 (13)0.0106 (13)0.0001 (12)
C10.0261 (15)0.0233 (15)0.0204 (14)0.0009 (12)0.0041 (12)0.0023 (12)
C20.0308 (18)0.0328 (18)0.0244 (16)0.0013 (14)0.0047 (13)0.0016 (15)
C30.0319 (18)0.045 (2)0.0244 (17)0.0014 (16)0.0015 (14)0.0027 (16)
C40.0275 (17)0.043 (2)0.042 (2)0.0081 (16)0.0027 (15)0.0094 (18)
C50.0309 (18)0.0278 (19)0.0349 (19)0.0032 (14)0.0048 (14)0.0001 (14)
C60.0278 (16)0.0187 (15)0.0237 (15)0.0005 (12)0.0061 (12)0.0018 (12)
C70.0272 (16)0.0187 (15)0.0243 (15)0.0028 (12)0.0031 (11)0.0032 (12)
C80.0227 (15)0.0202 (15)0.0281 (16)0.0022 (12)0.0061 (12)0.0025 (13)
C90.0303 (16)0.0157 (15)0.0278 (16)0.0013 (13)0.0063 (12)0.0034 (12)
C100.0248 (14)0.0176 (15)0.0221 (14)0.0005 (11)0.0016 (12)0.0009 (12)
C110.0271 (15)0.0237 (16)0.0276 (16)0.0028 (13)0.0033 (13)0.0019 (13)
Cl10.0429 (8)0.1067 (17)0.0581 (9)0.0183 (9)0.0076 (7)0.0194 (11)
C120.0289 (18)0.025 (3)0.036 (5)0.0000 (18)0.001 (3)0.000 (3)
C130.0282 (18)0.026 (2)0.045 (4)0.0052 (17)0.005 (2)0.004 (3)
C140.023 (2)0.035 (3)0.057 (4)0.004 (2)0.001 (2)0.003 (3)
C150.023 (2)0.040 (3)0.085 (4)0.003 (2)0.000 (3)0.002 (3)
C160.033 (2)0.043 (3)0.086 (6)0.004 (2)0.017 (4)0.023 (4)
C170.051 (3)0.062 (4)0.068 (4)0.015 (3)0.019 (3)0.014 (3)
C180.043 (3)0.053 (4)0.062 (4)0.011 (3)0.005 (3)0.001 (3)
Cl1A0.0429 (8)0.1067 (17)0.0581 (9)0.0183 (9)0.0076 (7)0.0194 (11)
C12A0.0289 (18)0.025 (3)0.036 (5)0.0000 (18)0.001 (3)0.000 (3)
C13A0.0282 (18)0.026 (2)0.045 (4)0.0052 (17)0.005 (2)0.004 (3)
C14A0.023 (2)0.035 (3)0.057 (4)0.004 (2)0.001 (2)0.003 (3)
C15A0.023 (2)0.040 (3)0.085 (4)0.003 (2)0.000 (3)0.002 (3)
C16A0.033 (2)0.043 (3)0.086 (6)0.004 (2)0.017 (4)0.023 (4)
C17A0.051 (3)0.062 (4)0.068 (4)0.015 (3)0.019 (3)0.014 (3)
C18A0.043 (3)0.053 (4)0.062 (4)0.011 (3)0.005 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C71.227 (4)C11—H11B0.9900
O2—C101.231 (4)Cl1—C141.709 (4)
N1—C71.373 (4)C12—C131.528 (8)
N1—C61.389 (4)C12—H12A0.9900
N1—C91.463 (4)C12—H12B0.9900
N2—C81.284 (5)C13—C141.3900
N2—C11.388 (4)C13—C181.3900
N3—C101.323 (4)C14—C151.3900
N3—N41.414 (4)C15—C161.3900
N3—H3A0.9099C15—H150.9500
N4—H4A0.9100C16—C171.3900
N4—H4B0.9100C16—H160.9500
C1—C21.407 (5)C17—C181.3900
C1—C61.416 (4)C17—H170.9500
C2—C31.372 (5)C18—H180.9500
C2—H20.9500Cl1A—C14A1.740 (9)
C3—C41.384 (6)C12A—C13A1.533 (18)
C3—H30.9500C12A—H12C0.9900
C4—C51.378 (6)C12A—H12D0.9900
C4—H40.9500C13A—C14A1.3900
C5—C61.401 (5)C13A—C18A1.3900
C5—H50.9500C14A—C15A1.3900
C7—C81.483 (5)C15A—C16A1.3900
C8—C111.506 (4)C15A—H15A0.9500
C9—C101.533 (4)C16A—C17A1.3900
C9—H9A0.9900C16A—H16A0.9500
C9—H9B0.9900C17A—C18A1.3900
C11—C12A1.538 (16)C17A—H17A0.9500
C11—C121.564 (8)C18A—H18A0.9500
C11—H11A0.9900
C7—N1—C6122.4 (3)H11A—C11—H11B107.8
C7—N1—C9116.4 (3)C13—C12—C11108.3 (5)
C6—N1—C9120.8 (3)C13—C12—H12A110.0
C8—N2—C1119.0 (3)C11—C12—H12A110.0
C10—N3—N4121.6 (3)C13—C12—H12B110.0
C10—N3—H3A115.7C11—C12—H12B110.0
N4—N3—H3A122.5H12A—C12—H12B108.4
N3—N4—H4A112.1C14—C13—C18120.0
N3—N4—H4B103.7C14—C13—C12122.7 (4)
H4A—N4—H4B113.5C18—C13—C12117.2 (4)
N2—C1—C2119.2 (3)C15—C14—C13120.0
N2—C1—C6121.8 (3)C15—C14—Cl1117.9 (3)
C2—C1—C6118.9 (3)C13—C14—Cl1122.1 (3)
C3—C2—C1121.0 (3)C14—C15—C16120.0
C3—C2—H2119.5C14—C15—H15120.0
C1—C2—H2119.5C16—C15—H15120.0
C2—C3—C4119.5 (3)C17—C16—C15120.0
C2—C3—H3120.3C17—C16—H16120.0
C4—C3—H3120.3C15—C16—H16120.0
C5—C4—C3121.5 (3)C16—C17—C18120.0
C5—C4—H4119.3C16—C17—H17120.0
C3—C4—H4119.3C18—C17—H17120.0
C4—C5—C6120.0 (3)C17—C18—C13120.0
C4—C5—H5120.0C17—C18—H18120.0
C6—C5—H5120.0C13—C18—H18120.0
N1—C6—C5123.4 (3)C13A—C12A—C11108.1 (11)
N1—C6—C1117.5 (3)C13A—C12A—H12C110.1
C5—C6—C1119.1 (3)C11—C12A—H12C110.1
O1—C7—N1122.3 (3)C13A—C12A—H12D110.1
O1—C7—C8122.4 (3)C11—C12A—H12D110.1
N1—C7—C8115.3 (3)H12C—C12A—H12D108.4
N2—C8—C7123.8 (3)C14A—C13A—C18A120.0
N2—C8—C11120.1 (3)C14A—C13A—C12A123.5 (10)
C7—C8—C11116.1 (3)C18A—C13A—C12A116.5 (10)
N1—C9—C10110.3 (3)C15A—C14A—C13A120.0
N1—C9—H9A109.6C15A—C14A—Cl1A117.8 (6)
C10—C9—H9A109.6C13A—C14A—Cl1A122.2 (6)
N1—C9—H9B109.6C14A—C15A—C16A120.0
C10—C9—H9B109.6C14A—C15A—H15A120.0
H9A—C9—H9B108.1C16A—C15A—H15A120.0
O2—C10—N3124.2 (3)C15A—C16A—C17A120.0
O2—C10—C9121.2 (3)C15A—C16A—H16A120.0
N3—C10—C9114.6 (3)C17A—C16A—H16A120.0
C8—C11—C12A113.4 (8)C18A—C17A—C16A120.0
C8—C11—C12112.8 (4)C18A—C17A—H17A120.0
C8—C11—H11A109.0C16A—C17A—H17A120.0
C12—C11—H11A109.0C17A—C18A—C13A120.0
C8—C11—H11B109.0C17A—C18A—H18A120.0
C12—C11—H11B109.0C13A—C18A—H18A120.0
C8—N2—C1—C2178.2 (3)N2—C8—C11—C12A97.9 (9)
C8—N2—C1—C60.7 (5)C7—C8—C11—C12A84.3 (9)
N2—C1—C2—C3179.8 (3)N2—C8—C11—C12115.1 (4)
C6—C1—C2—C30.9 (5)C7—C8—C11—C1267.1 (4)
C1—C2—C3—C41.1 (6)C8—C11—C12—C13179.0 (4)
C2—C3—C4—C50.4 (6)C11—C12—C13—C1486.4 (5)
C3—C4—C5—C60.4 (6)C11—C12—C13—C1889.8 (4)
C7—N1—C6—C5175.4 (3)C18—C13—C14—C150.0
C9—N1—C6—C53.0 (5)C12—C13—C14—C15176.2 (5)
C7—N1—C6—C14.5 (4)C18—C13—C14—Cl1178.8 (4)
C9—N1—C6—C1176.9 (3)C12—C13—C14—Cl15.0 (5)
C4—C5—C6—N1179.5 (3)C13—C14—C15—C160.0
C4—C5—C6—C10.6 (5)Cl1—C14—C15—C16178.9 (4)
N2—C1—C6—N11.0 (5)C14—C15—C16—C170.0
C2—C1—C6—N1179.8 (3)C15—C16—C17—C180.0
N2—C1—C6—C5178.9 (3)C16—C17—C18—C130.0
C2—C1—C6—C50.1 (5)C14—C13—C18—C170.0
C6—N1—C7—O1174.3 (3)C12—C13—C18—C17176.4 (4)
C9—N1—C7—O11.6 (5)C8—C11—C12A—C13A176.3 (8)
C6—N1—C7—C85.9 (4)C11—C12A—C13A—C14A77.5 (13)
C9—N1—C7—C8178.6 (3)C11—C12A—C13A—C18A101.4 (12)
C1—N2—C8—C71.0 (5)C18A—C13A—C14A—C15A0.0
C1—N2—C8—C11178.6 (3)C12A—C13A—C14A—C15A178.9 (9)
O1—C7—C8—N2176.0 (3)C18A—C13A—C14A—Cl1A178.8 (9)
N1—C7—C8—N24.2 (5)C12A—C13A—C14A—Cl1A2.3 (11)
O1—C7—C8—C111.8 (4)C13A—C14A—C15A—C16A0.0
N1—C7—C8—C11178.1 (3)Cl1A—C14A—C15A—C16A178.9 (8)
C7—N1—C9—C1088.2 (3)C14A—C15A—C16A—C17A0.0
C6—N1—C9—C1084.6 (3)C15A—C16A—C17A—C18A0.0
N4—N3—C10—O22.4 (5)C16A—C17A—C18A—C13A0.0
N4—N3—C10—C9175.5 (3)C14A—C13A—C18A—C17A0.0
N1—C9—C10—O23.5 (4)C12A—C13A—C18A—C17A179.0 (8)
N1—C9—C10—N3178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.911.962.842 (4)163
N4—H4A···N2ii0.912.353.256 (4)175
N4—H4B···Cl1ii0.912.923.539 (3)126
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Ramli, Y., Benabdelkame, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Mar. Chim. Heterocycl, 15, 109–123.  Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]