organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-Methyl-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 8 March 2017; accepted 8 March 2017; online 9 January 2017)

The title compound, C9H7NO2, has a single mol­ecule in the asymmetric unit, with the non-H atoms possessing a mean deviation from planarity of 0.034 Å. In the crystal, the mol­ecules dimerize through pairs of N—H⋯O hydrogen bonds. The nine-membered rings of the isatins stack along the b axis, through parallel slipped ππ inter­actions [inter­centroid distance = 3.8832 (4) Å, inter­planar distance = 3.4038 (7) Å and slippage = 1.8690 (12) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our continuing study of the inter­molecular inter­actions of substituted isatins, we report the crystal structure of 7-methyl-1H-indole-2,3-dione (Fig. 1[link]). The mol­ecule is nearly planar, with the non-H atoms in the structure demonstrating a mean deviation from planarity of 0.034 Å. The bond lengths and angles are consistent with those observed in the reported N-substituted derivative of 7-methyl-1H-indole-2,3-dione (Mironova et al., 2015[Mironova, E. V., Bogdanov, A. V., Krivolapov, D. B., Musin, L. I., Litvinov, I. A. & Mironov, V. F. (2015). J. Mol. Struct. 1079, 87-93.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystal, the mol­ecules dimerize through pairs of N1—H1⋯O1i hydrogen bonds (Table 1[link]). This dimerization is observed in other 7-substituted isatin compounds (Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]; Golen & Manke, 2016a[Golen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160268.],b[Golen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160412.]; Mohamed et al., 2008[Mohamed, S., Barnett, S. A., Tocher, D. A., Price, S. L., Shankland, K. & Leech, C. K. (2008). CrystEngComm, 10, 399-404.]). The one reported exception is 7-chloro­isatin, which forms a tetra­meric assembly though its N—H⋯O hydrogen bonds (Sun & Cai, 2010[Sun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.]). The nine-membered rings of the 7-methyl­isatin units stack along [010] with parallel slipped ππ inter­actions [inter­centroid distance = 3.8832 (4) Å, inter­planar distance = 3.4038 (7) Å and slippage = 1.8690 (12) Å]. The packing of the title compound, including hydrogen bonding, is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (1) 2.03 (1) 2.8907 (17) 170 (2)
Symmetry code: (i) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound along the b axis, with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A commercial sample (AK Scientific) of 7-methyl­isatin was recrystallized by the slow evaporation of an aceto­nitrile solution to yield orange plates suitable for single-crystal diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H7NO2
Mr 161.16
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 7.8114 (10), 3.8832 (4), 24.362 (3)
β (°) 99.055 (5)
V3) 729.76 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.19 × 0.18 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.701, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18978, 1342, 1147
Rint 0.050
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.09
No. of reflections 1342
No. of parameters 114
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.17
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

7-Methyl-1H-indole-2,3-dione top
Crystal data top
C9H7NO2F(000) = 336
Mr = 161.16Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8114 (10) ÅCell parameters from 7064 reflections
b = 3.8832 (4) Åθ = 2.9–25.2°
c = 24.362 (3) ŵ = 0.11 mm1
β = 99.055 (5)°T = 200 K
V = 729.76 (15) Å3Plate, orange
Z = 40.19 × 0.18 × 0.04 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1147 reflections with I > 2σ(I)
φ and ω scansRint = 0.050
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.5°, θmin = 3.4°
Tmin = 0.701, Tmax = 0.745h = 99
18978 measured reflectionsk = 44
1342 independent reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.036P)2 + 0.3841P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.20 e Å3
1342 reflectionsΔρmin = 0.17 e Å3
114 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.035 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71863 (14)0.0390 (3)0.54254 (4)0.0339 (3)
O20.86187 (14)0.1882 (3)0.65601 (5)0.0368 (3)
N10.47768 (16)0.2518 (4)0.56258 (5)0.0245 (3)
H10.4086 (18)0.206 (5)0.5316 (5)0.029*
C10.64162 (19)0.1320 (4)0.57297 (6)0.0247 (4)
C20.71578 (19)0.2489 (4)0.63341 (6)0.0249 (4)
C30.57186 (19)0.4265 (4)0.65299 (6)0.0227 (4)
C40.5546 (2)0.5703 (4)0.70413 (6)0.0273 (4)
H40.64910.57300.73390.033*
C50.3958 (2)0.7094 (4)0.71040 (7)0.0303 (4)
H50.38040.80890.74490.036*
C60.2585 (2)0.7045 (4)0.66648 (7)0.0286 (4)
H60.15150.80490.67190.034*
C70.27078 (19)0.5583 (4)0.61465 (6)0.0245 (4)
C80.43097 (19)0.4204 (4)0.60971 (6)0.0217 (4)
C90.1214 (2)0.5477 (5)0.56768 (7)0.0332 (4)
H9A0.02480.68280.57760.050*
H9B0.08430.30850.56060.050*
H9C0.15750.64470.53420.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (6)0.0463 (8)0.0293 (6)0.0072 (5)0.0062 (5)0.0098 (5)
O20.0240 (6)0.0523 (8)0.0326 (6)0.0067 (6)0.0001 (5)0.0013 (6)
N10.0217 (7)0.0307 (7)0.0208 (7)0.0019 (6)0.0023 (5)0.0027 (6)
C10.0209 (7)0.0282 (8)0.0258 (8)0.0013 (7)0.0061 (6)0.0003 (7)
C20.0233 (8)0.0273 (8)0.0243 (8)0.0005 (7)0.0045 (6)0.0022 (6)
C30.0235 (8)0.0226 (8)0.0226 (8)0.0008 (6)0.0051 (6)0.0013 (6)
C40.0302 (9)0.0282 (8)0.0233 (8)0.0022 (7)0.0036 (6)0.0007 (7)
C50.0393 (10)0.0280 (9)0.0263 (8)0.0002 (7)0.0133 (7)0.0033 (7)
C60.0290 (8)0.0243 (8)0.0356 (9)0.0034 (7)0.0146 (7)0.0013 (7)
C70.0237 (8)0.0212 (8)0.0294 (8)0.0010 (6)0.0070 (6)0.0047 (6)
C80.0248 (8)0.0198 (8)0.0218 (7)0.0007 (6)0.0077 (6)0.0025 (6)
C90.0243 (8)0.0364 (10)0.0389 (10)0.0063 (7)0.0044 (7)0.0018 (8)
Geometric parameters (Å, º) top
O1—C11.2219 (18)C4—C51.383 (2)
O2—C21.2096 (18)C5—H50.9500
N1—H10.875 (9)C5—C61.391 (2)
N1—C11.348 (2)C6—H60.9500
N1—C81.4184 (19)C6—C71.401 (2)
C1—C21.562 (2)C7—C81.384 (2)
C2—C31.461 (2)C7—C91.501 (2)
C3—C41.391 (2)C9—H9A0.9800
C3—C81.399 (2)C9—H9B0.9800
C4—H40.9500C9—H9C0.9800
C1—N1—H1122.1 (11)C6—C5—H5119.8
C1—N1—C8111.40 (12)C5—C6—H6118.5
C8—N1—H1126.2 (11)C5—C6—C7123.01 (15)
O1—C1—N1128.12 (14)C7—C6—H6118.5
O1—C1—C2125.78 (13)C6—C7—C9122.86 (14)
N1—C1—C2106.09 (12)C8—C7—C6115.23 (14)
O2—C2—C1123.77 (14)C8—C7—C9121.90 (14)
O2—C2—C3131.48 (15)C3—C8—N1110.23 (13)
C3—C2—C1104.74 (12)C7—C8—N1126.90 (14)
C4—C3—C2132.06 (14)C7—C8—C3122.87 (14)
C4—C3—C8120.39 (14)C7—C9—H9A109.5
C8—C3—C2107.47 (13)C7—C9—H9B109.5
C3—C4—H4121.0C7—C9—H9C109.5
C5—C4—C3118.09 (14)H9A—C9—H9B109.5
C5—C4—H4121.0H9A—C9—H9C109.5
C4—C5—H5119.8H9B—C9—H9C109.5
C4—C5—C6120.40 (15)
O1—C1—C2—O22.2 (3)C3—C4—C5—C60.1 (2)
O1—C1—C2—C3176.68 (16)C4—C3—C8—N1178.04 (14)
O2—C2—C3—C42.8 (3)C4—C3—C8—C71.0 (2)
O2—C2—C3—C8179.42 (17)C4—C5—C6—C70.9 (3)
N1—C1—C2—O2179.03 (16)C5—C6—C7—C80.7 (2)
N1—C1—C2—C32.08 (16)C5—C6—C7—C9178.84 (15)
C1—N1—C8—C32.46 (18)C6—C7—C8—N1178.62 (14)
C1—N1—C8—C7176.57 (15)C6—C7—C8—C30.3 (2)
C1—C2—C3—C4175.98 (16)C8—N1—C1—O1175.98 (16)
C1—C2—C3—C80.66 (16)C8—N1—C1—C22.74 (17)
C2—C3—C4—C5177.07 (16)C8—C3—C4—C50.8 (2)
C2—C3—C8—N10.94 (17)C9—C7—C8—N10.9 (2)
C2—C3—C8—C7178.13 (14)C9—C7—C8—C3179.79 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)2.03 (1)2.8907 (17)170 (2)
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016a). IUCrData, 1, x160268.  Google Scholar
First citationGolen, J. A. & Manke, D. R. (2016b). IUCrData, 1, x160412.  Google Scholar
First citationMironova, E. V., Bogdanov, A. V., Krivolapov, D. B., Musin, L. I., Litvinov, I. A. & Mironov, V. F. (2015). J. Mol. Struct. 1079, 87–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohamed, S., Barnett, S. A., Tocher, D. A., Price, S. L., Shankland, K. & Leech, C. K. (2008). CrystEngComm, 10, 399–404.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, J. & Cai, Z.-S. (2010). Acta Cryst. E66, o25.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds