organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-sec-butyl-2-(2-hy­droxy­phen­yl)-1H-benzimidazole-5-carboxyl­ate 0.25-hydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 April 2010; accepted 27 April 2010; online 8 May 2010)

In the title compound, C20H22N2O3·0.25H2O, the water mol­ecule (occupancy 0.25) is disordered across a crystallographic inversion center. The dihedral angle between the hydroxy­phenyl ring and the benzimidazole ring system is 59.31 (9)°. In the crystal structure, mol­ecules are connected by inter­molecular O—H⋯N and C—H⋯O hydrogen bonds. The crystal structure is further stabilized by a weak C—H⋯π inter­action involving the imidazole ring.

Related literature

For background to benzimidazoles and their biological importance, see: Garuti et al. (2004[Garuti, L., Roberti, M., Pizzirani, D., Pession, A., Leoncini, E., Cenci, V. & Hrelia, S. (2004). Il Farmaco, 59, 663-668.]); Bonfanti et al. (2008[Bonfanti, J.-F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Gevers, T., Janssens, P., Szel, H., Willebrords, R., Timmerman, P., Wuyts, K., Van Remoortere, P., Janssens, F., Wigerinck, P. & Andries, K. (2008). J. Med. Chem. 51, 875-896.]); Ozden et al. (2008[Ozden, S., Atabey, D., Yildiz, S. & Goker, H. (2008). Eur. J. Med. Chem. 43, 1390-1402.]); Shao et al. (2005[Shao, B., Huang, J., Sun, Q., Valenzani, K. J., Schmid, L. & Nolan, S. (2005). Bioorg. Med. Chem. Lett. 15, 719-723.]); Blythin et al. (1986[Blythin, D. J., Kaminski, J. J., Domalski, M. S., Spitler, J., Solomon, D. M., Conn, D. J., Wong, S. C., Verbiar, L. L., Bober, L. A., Chiu, P. J. S., Watnick, A. S., Siegel, M. I., Hilbert, J. M. & McPhail, A. T. (1986). J. Med. Chem. 29, 1099-1113.]); Snow (2007[Snow, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 3660-3666.]). For the synthesis of benzimidazoles, see: Arumugam et al. (2010a[Arumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o776-o777.],b[Arumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o796-o797.],c[Arumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o845.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O3·0.25H2O

  • Mr = 342.90

  • Monoclinic, P 21 /c

  • a = 7.0484 (11) Å

  • b = 27.262 (4) Å

  • c = 9.4673 (14) Å

  • β = 97.495 (3)°

  • V = 1803.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.34 × 0.21 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.996

  • 18277 measured reflections

  • 4738 independent reflections

  • 3152 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.232

  • S = 1.08

  • 4738 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,N2,C1,C2,N7 imidazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 0.96 (4) 1.75 (4) 2.691 (3) 168 (3)
C14—H14C⋯O1i 0.96 2.45 3.398 (3) 168
C17—H17ACg1ii 0.93 2.96 3.734 (3) 142
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles belong to one of the well known and most extensively studied class of compounds due to their biological activity such as antitumour (Garuti et al., 2004), antiviral (Bonfanti et al., 2008), antibacterial (Ozden et al., 2008) and analgesic properties (Shao et al., 2005). These derivatives are anti-inflammatory (Blythin et al., 1986) and can be carcinogenic (Snow et al., 2007). As the benzimidazole derivative is of much importance, we have undertaken the X-ray crystal structure determination of the title compound.

The asymmetric unit (Fig. 1) contains an ethyl-1-sec-butyl-2- (2-hydroxyphenyl)-1H-benzimidazole-5-carboxylate molecule and a water molecule(O1W), occupancy 0.25, which is disordered across a crystallographic inversion center (symmetry code = -x, -y+2, -z+1). The dihedral angle between the benzimidazole ring system (N1–N2/C1–C7) and the phenyl ring (C15–C20) is 59.31 (9)° .

In the crystal structure (Fig. 2), molecules are connected by intermolecular O1—H1O1···N1 and C14—H14C···O1 (Table 1) hydrogen bonds. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the imidazole ring, N1–N2/C1–C2/C7 (centroid Cg1).

Related literature top

For background to and the biological importance of benimidazoles, see: Garuti et al. (2004); Bonfanti et al. (2008); Ozden et al. (2008); Shao et al. (2005); Blythin et al. (1986); Snow (2007). For the synthesis of benzimidazoles, see: Arumugam et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesised according to the previous procedure described by us (Arumugam et al., 2010a,b,c). The product was recrystallized from EtOAc to yield the title compound as colourless crystals.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.97Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. In the final refinement cycles the occupancy of the water molecule, O1W, which is disordered over a crystallographic inversion centre, was fixed at 25%.

Structure description top

Benzimidazoles belong to one of the well known and most extensively studied class of compounds due to their biological activity such as antitumour (Garuti et al., 2004), antiviral (Bonfanti et al., 2008), antibacterial (Ozden et al., 2008) and analgesic properties (Shao et al., 2005). These derivatives are anti-inflammatory (Blythin et al., 1986) and can be carcinogenic (Snow et al., 2007). As the benzimidazole derivative is of much importance, we have undertaken the X-ray crystal structure determination of the title compound.

The asymmetric unit (Fig. 1) contains an ethyl-1-sec-butyl-2- (2-hydroxyphenyl)-1H-benzimidazole-5-carboxylate molecule and a water molecule(O1W), occupancy 0.25, which is disordered across a crystallographic inversion center (symmetry code = -x, -y+2, -z+1). The dihedral angle between the benzimidazole ring system (N1–N2/C1–C7) and the phenyl ring (C15–C20) is 59.31 (9)° .

In the crystal structure (Fig. 2), molecules are connected by intermolecular O1—H1O1···N1 and C14—H14C···O1 (Table 1) hydrogen bonds. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the imidazole ring, N1–N2/C1–C2/C7 (centroid Cg1).

For background to and the biological importance of benimidazoles, see: Garuti et al. (2004); Bonfanti et al. (2008); Ozden et al. (2008); Shao et al. (2005); Blythin et al. (1986); Snow (2007). For the synthesis of benzimidazoles, see: Arumugam et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network. H atoms not involved in hydrogen bond interactions are omitted for clarity.
Ethyl 1-sec-butyl-2-(2-hydroxyphenyl)-1H-benzimidazole-5-carboxylate 0.25-hydrate top
Crystal data top
C20H22N2O3·0.25H2OF(000) = 730
Mr = 342.90Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3454 reflections
a = 7.0484 (11) Åθ = 2.6–28.6°
b = 27.262 (4) ŵ = 0.09 mm1
c = 9.4673 (14) ÅT = 100 K
β = 97.495 (3)°Plate, colourless
V = 1803.6 (5) Å30.34 × 0.21 × 0.05 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4738 independent reflections
Radiation source: fine-focus sealed tube3152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 29.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.971, Tmax = 0.996k = 3736
18277 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1283P)2 + 0.731P]
where P = (Fo2 + 2Fc2)/3
4738 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C20H22N2O3·0.25H2OV = 1803.6 (5) Å3
Mr = 342.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0484 (11) ŵ = 0.09 mm1
b = 27.262 (4) ÅT = 100 K
c = 9.4673 (14) Å0.34 × 0.21 × 0.05 mm
β = 97.495 (3)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3152 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.996Rint = 0.064
18277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.232H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.35 e Å3
4738 reflectionsΔρmin = 0.46 e Å3
243 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3724 (2)0.72773 (6)0.28243 (18)0.0229 (4)
O20.2905 (3)0.97944 (7)0.0919 (2)0.0330 (5)
O30.1402 (3)0.95244 (8)0.2726 (2)0.0416 (5)
N10.3512 (3)0.83123 (7)0.0078 (2)0.0194 (4)
N20.3227 (3)0.83949 (7)0.2392 (2)0.0198 (4)
C10.4138 (3)0.81661 (8)0.1391 (2)0.0185 (4)
C20.1912 (3)0.87134 (8)0.1673 (2)0.0200 (5)
C30.0594 (3)0.90402 (10)0.2134 (3)0.0257 (5)
H3A0.04780.90800.30950.031*
C40.0530 (3)0.93018 (9)0.1083 (3)0.0258 (5)
H4A0.14240.95230.13490.031*
C50.0366 (3)0.92453 (9)0.0362 (3)0.0243 (5)
C60.0965 (3)0.89227 (9)0.0812 (3)0.0220 (5)
H6A0.10900.88860.17720.026*
C70.2102 (3)0.86571 (8)0.0232 (2)0.0191 (5)
C80.1585 (4)0.95277 (10)0.1479 (3)0.0284 (5)
C90.4223 (4)1.00752 (11)0.1914 (3)0.0356 (6)
H9A0.35731.01870.26970.043*
H9B0.46521.03620.14370.043*
C100.5894 (4)0.97724 (12)0.2473 (4)0.0468 (8)
H10A0.67970.99700.30720.070*
H10B0.64900.96460.16940.070*
H10C0.54810.95050.30180.070*
C110.3656 (3)0.83308 (9)0.3956 (2)0.0231 (5)
H11A0.45830.80630.41270.028*
C120.4596 (4)0.87887 (10)0.4644 (3)0.0286 (5)
H12A0.37420.90660.44300.034*
H12B0.47900.87450.56690.034*
C130.6503 (4)0.89027 (11)0.4137 (3)0.0350 (6)
H13A0.70750.91810.46480.053*
H13B0.63050.89750.31360.053*
H13C0.73360.86240.43050.053*
C140.1872 (3)0.81788 (11)0.4596 (3)0.0314 (6)
H14A0.12490.79140.40500.047*
H14B0.10130.84530.45800.047*
H14C0.22280.80740.55620.047*
C150.5701 (3)0.78084 (8)0.1704 (2)0.0187 (5)
C160.7463 (3)0.79107 (9)0.1229 (3)0.0217 (5)
H16A0.76270.82030.07530.026*
C170.8956 (3)0.75806 (10)0.1464 (3)0.0262 (5)
H17A1.01320.76530.11670.031*
C180.8696 (3)0.71439 (10)0.2137 (3)0.0259 (5)
H18A0.96970.69200.22820.031*
C190.6961 (3)0.70333 (9)0.2606 (3)0.0228 (5)
H19A0.68000.67360.30560.027*
C200.5463 (3)0.73679 (9)0.2401 (2)0.0195 (5)
H1O10.382 (5)0.7052 (13)0.361 (4)0.048 (10)*
O1W0.0628 (16)0.9740 (3)0.4867 (10)0.055 (3)0.25
H1W10.03250.98040.43200.083*0.25
H2W10.13850.99620.47850.083*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0148 (7)0.0317 (9)0.0230 (9)0.0007 (6)0.0046 (6)0.0064 (7)
O20.0285 (9)0.0373 (11)0.0324 (10)0.0122 (8)0.0006 (8)0.0084 (8)
O30.0423 (12)0.0533 (13)0.0275 (11)0.0139 (10)0.0021 (9)0.0073 (9)
N10.0160 (8)0.0256 (10)0.0167 (9)0.0001 (7)0.0026 (7)0.0001 (7)
N20.0157 (8)0.0273 (10)0.0164 (9)0.0032 (7)0.0013 (7)0.0018 (7)
C10.0149 (9)0.0238 (11)0.0169 (11)0.0005 (8)0.0024 (7)0.0014 (8)
C20.0156 (10)0.0261 (12)0.0180 (11)0.0011 (8)0.0010 (8)0.0021 (8)
C30.0202 (11)0.0323 (13)0.0247 (12)0.0062 (9)0.0039 (9)0.0006 (10)
C40.0194 (11)0.0302 (13)0.0281 (13)0.0060 (9)0.0034 (9)0.0020 (10)
C50.0211 (11)0.0251 (12)0.0255 (12)0.0014 (9)0.0016 (9)0.0034 (9)
C60.0222 (11)0.0259 (12)0.0175 (11)0.0005 (9)0.0012 (8)0.0013 (9)
C70.0152 (9)0.0223 (11)0.0197 (11)0.0006 (8)0.0013 (8)0.0006 (8)
C80.0259 (12)0.0295 (13)0.0285 (13)0.0034 (10)0.0012 (10)0.0046 (10)
C90.0289 (13)0.0371 (15)0.0392 (16)0.0106 (11)0.0018 (11)0.0118 (12)
C100.0392 (16)0.0443 (18)0.054 (2)0.0057 (13)0.0043 (14)0.0063 (15)
C110.0211 (10)0.0331 (13)0.0153 (11)0.0045 (9)0.0034 (8)0.0030 (9)
C120.0278 (12)0.0352 (14)0.0226 (12)0.0057 (10)0.0020 (9)0.0015 (10)
C130.0280 (13)0.0375 (15)0.0375 (16)0.0050 (11)0.0034 (11)0.0039 (12)
C140.0234 (12)0.0494 (16)0.0225 (13)0.0021 (11)0.0066 (9)0.0076 (11)
C150.0164 (10)0.0239 (11)0.0157 (10)0.0001 (8)0.0019 (8)0.0010 (8)
C160.0177 (10)0.0280 (12)0.0200 (11)0.0010 (9)0.0050 (8)0.0018 (9)
C170.0162 (10)0.0388 (14)0.0245 (12)0.0029 (9)0.0060 (9)0.0011 (10)
C180.0201 (11)0.0334 (13)0.0245 (12)0.0069 (9)0.0042 (9)0.0005 (10)
C190.0228 (11)0.0267 (12)0.0189 (11)0.0025 (9)0.0026 (8)0.0011 (9)
C200.0151 (10)0.0279 (12)0.0157 (10)0.0006 (8)0.0030 (7)0.0011 (8)
O1W0.099 (8)0.032 (4)0.046 (5)0.004 (5)0.052 (6)0.000 (4)
Geometric parameters (Å, º) top
O1—C201.361 (3)C10—H10C0.9600
O1—H1O10.96 (4)C11—C121.519 (4)
O2—C81.343 (3)C11—C141.523 (3)
O2—C91.452 (3)C11—H11A0.9800
O3—C81.204 (3)C12—C131.518 (4)
N1—C11.325 (3)C12—H12A0.9700
N1—C71.389 (3)C12—H12B0.9700
N2—C11.363 (3)C13—H13A0.9600
N2—C21.383 (3)C13—H13B0.9600
N2—C111.483 (3)C13—H13C0.9600
C1—C151.472 (3)C14—H14A0.9600
C2—C71.396 (3)C14—H14B0.9600
C2—C31.397 (3)C14—H14C0.9600
C3—C41.386 (3)C15—C201.391 (3)
C3—H3A0.9300C15—C161.403 (3)
C4—C51.396 (4)C16—C171.380 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.393 (3)C17—C181.374 (4)
C5—C81.487 (3)C17—H17A0.9300
C6—C71.392 (3)C18—C191.388 (3)
C6—H6A0.9300C18—H18A0.9300
C9—C101.479 (4)C19—C201.389 (3)
C9—H9A0.9700C19—H19A0.9300
C9—H9B0.9700O1W—O1Wi1.708 (18)
C10—H10A0.9600O1W—H1W10.8114
C10—H10B0.9600O1W—H2W10.8187
C20—O1—H1O1112 (2)C12—C11—C14112.9 (2)
C8—O2—C9116.6 (2)N2—C11—H11A107.4
C1—N1—C7105.09 (19)C12—C11—H11A107.4
C1—N2—C2106.95 (19)C14—C11—H11A107.4
C1—N2—C11125.96 (18)C13—C12—C11112.8 (2)
C2—N2—C11127.02 (19)C13—C12—H12A109.0
N1—C1—N2112.65 (19)C11—C12—H12A109.0
N1—C1—C15122.5 (2)C13—C12—H12B109.0
N2—C1—C15124.82 (19)C11—C12—H12B109.0
N2—C2—C7105.54 (19)H12A—C12—H12B107.8
N2—C2—C3132.6 (2)C12—C13—H13A109.5
C7—C2—C3121.9 (2)C12—C13—H13B109.5
C4—C3—C2116.4 (2)H13A—C13—H13B109.5
C4—C3—H3A121.8C12—C13—H13C109.5
C2—C3—H3A121.8H13A—C13—H13C109.5
C3—C4—C5122.3 (2)H13B—C13—H13C109.5
C3—C4—H4A118.8C11—C14—H14A109.5
C5—C4—H4A118.8C11—C14—H14B109.5
C6—C5—C4120.9 (2)H14A—C14—H14B109.5
C6—C5—C8117.4 (2)C11—C14—H14C109.5
C4—C5—C8121.7 (2)H14A—C14—H14C109.5
C7—C6—C5117.4 (2)H14B—C14—H14C109.5
C7—C6—H6A121.3C20—C15—C16119.4 (2)
C5—C6—H6A121.3C20—C15—C1122.27 (19)
N1—C7—C6129.1 (2)C16—C15—C1118.3 (2)
N1—C7—C2109.77 (19)C17—C16—C15120.5 (2)
C6—C7—C2121.1 (2)C17—C16—H16A119.8
O3—C8—O2124.0 (2)C15—C16—H16A119.8
O3—C8—C5124.6 (2)C18—C17—C16119.6 (2)
O2—C8—C5111.4 (2)C18—C17—H17A120.2
O2—C9—C10110.5 (2)C16—C17—H17A120.2
O2—C9—H9A109.5C17—C18—C19120.9 (2)
C10—C9—H9A109.5C17—C18—H18A119.6
O2—C9—H9B109.5C19—C18—H18A119.6
C10—C9—H9B109.5C18—C19—C20119.9 (2)
H9A—C9—H9B108.1C18—C19—H19A120.1
C9—C10—H10A109.5C20—C19—H19A120.1
C9—C10—H10B109.5O1—C20—C19122.5 (2)
H10A—C10—H10B109.5O1—C20—C15117.73 (19)
C9—C10—H10C109.5C19—C20—C15119.8 (2)
H10A—C10—H10C109.5O1Wi—O1W—H1W160.9
H10B—C10—H10C109.5O1Wi—O1W—H2W175.8
N2—C11—C12110.6 (2)H1W1—O1W—H2W1106.0
N2—C11—C14110.99 (19)
C7—N1—C1—N20.1 (2)C6—C5—C8—O35.9 (4)
C7—N1—C1—C15178.0 (2)C4—C5—C8—O3173.6 (3)
C2—N2—C1—N10.0 (3)C6—C5—C8—O2175.0 (2)
C11—N2—C1—N1176.9 (2)C4—C5—C8—O25.5 (3)
C2—N2—C1—C15177.8 (2)C8—O2—C9—C1087.3 (3)
C11—N2—C1—C150.8 (4)C1—N2—C11—C12109.2 (2)
C1—N2—C2—C70.1 (2)C2—N2—C11—C1267.2 (3)
C11—N2—C2—C7177.0 (2)C1—N2—C11—C14124.7 (2)
C1—N2—C2—C3179.9 (3)C2—N2—C11—C1459.0 (3)
C11—N2—C2—C32.9 (4)N2—C11—C12—C1362.2 (3)
N2—C2—C3—C4179.3 (2)C14—C11—C12—C13172.8 (2)
C7—C2—C3—C40.7 (4)N1—C1—C15—C20121.4 (2)
C2—C3—C4—C50.1 (4)N2—C1—C15—C2061.0 (3)
C3—C4—C5—C60.6 (4)N1—C1—C15—C1656.0 (3)
C3—C4—C5—C8179.9 (2)N2—C1—C15—C16121.5 (2)
C4—C5—C6—C70.7 (3)C20—C15—C16—C170.7 (3)
C8—C5—C6—C7179.8 (2)C1—C15—C16—C17178.3 (2)
C1—N1—C7—C6179.3 (2)C15—C16—C17—C181.5 (4)
C1—N1—C7—C20.2 (2)C16—C17—C18—C191.0 (4)
C5—C6—C7—N1179.4 (2)C17—C18—C19—C200.4 (4)
C5—C6—C7—C20.1 (3)C18—C19—C20—O1179.3 (2)
N2—C2—C7—N10.2 (2)C18—C19—C20—C151.2 (4)
C3—C2—C7—N1179.8 (2)C16—C15—C20—O1178.9 (2)
N2—C2—C7—C6179.3 (2)C1—C15—C20—O11.4 (3)
C3—C2—C7—C60.7 (4)C16—C15—C20—C190.6 (3)
C9—O2—C8—O32.8 (4)C1—C15—C20—C19176.8 (2)
C9—O2—C8—C5178.2 (2)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,N2,C1,C2,N7 imidazole ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1ii0.96 (4)1.75 (4)2.691 (3)168 (3)
C14—H14C···O1ii0.962.453.398 (3)168
C17—H17A···Cg1iii0.932.963.734 (3)142
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H22N2O3·0.25H2O
Mr342.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.0484 (11), 27.262 (4), 9.4673 (14)
β (°) 97.495 (3)
V3)1803.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.21 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
18277, 4738, 3152
Rint0.064
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.232, 1.08
No. of reflections4738
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,N2,C1,C2,N7 imidazole ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.96 (4)1.75 (4)2.691 (3)168 (3)
C14—H14C···O1i0.96002.45003.398 (3)167.60
C17—H17A···Cg1ii0.93002.96003.734 (3)142.00
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NA, ASAR and HO acknowledge Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under Research University Grant (1001/PFARMASI/815026). NA also thanks USM for the award of postdoctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012 and MH also thanks USM for a post-doctoral research fellowship.

References

First citationArumugam, N., Abd Hamid, S., Abdul Rahim, A. S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o776–o777.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Abd Hamid, S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o796–o797.  Web of Science CrossRef IUCr Journals Google Scholar
First citationArumugam, N., Abdul Rahim, A. S., Osman, H., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o845.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlythin, D. J., Kaminski, J. J., Domalski, M. S., Spitler, J., Solomon, D. M., Conn, D. J., Wong, S. C., Verbiar, L. L., Bober, L. A., Chiu, P. J. S., Watnick, A. S., Siegel, M. I., Hilbert, J. M. & McPhail, A. T. (1986). J. Med. Chem. 29, 1099–1113.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBonfanti, J.-F., Meyer, C., Doublet, F., Fortin, J., Muller, P., Queguiner, L., Gevers, T., Janssens, P., Szel, H., Willebrords, R., Timmerman, P., Wuyts, K., Van Remoortere, P., Janssens, F., Wigerinck, P. & Andries, K. (2008). J. Med. Chem. 51, 875–896.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M., Pizzirani, D., Pession, A., Leoncini, E., Cenci, V. & Hrelia, S. (2004). Il Farmaco, 59, 663–668.  CrossRef PubMed CAS Google Scholar
First citationOzden, S., Atabey, D., Yildiz, S. & Goker, H. (2008). Eur. J. Med. Chem. 43, 1390–1402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShao, B., Huang, J., Sun, Q., Valenzani, K. J., Schmid, L. & Nolan, S. (2005). Bioorg. Med. Chem. Lett. 15, 719–723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnow, R. J. (2007). Bioorg. Med. Chem. Lett. 17, 3660–3666.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds