metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m385-m386

catena-Poly[[aqua­cadmium(II)]-bis­­(μ2-4-chloro­benzoato)]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 12 February 2010; accepted 2 March 2010; online 6 March 2010)

In the title complex, [Cd(C7H4ClO2)2(H2O)]n, the Cd atom lies on a twofold axis and adopts a square-pyramidal coordination geometry. The water mol­ecule occupies the axial site with O atoms from four different 4-chloro­benzoato ligands in the equatorial plane. Pairs of 4-chloro­benzoato ligands bridge adjacent CdII ions, generating an infinite chain structure along the c axis. Parallel polymeric chains are further inter­connected through water–acetate O—H⋯O hydrogen bonds, forming layers in the bc plane.

Related literature

For the use of organic acids in constructing metal-organic frameworks, see: Zhao et al. (2003[Zhao, B., Cheng, B., Dai, Y., Cheng, C., Liao, D., Yan, S., Jiang, Z. & Wang, G. (2003). Angew. Chem. Int. Ed. 42, 934-936.]); Cao et al. (2002[Cao, R., Shi, Q., Sun, D.-F., Hong, M.-C., Bi, W. H. & Zhao, Y.-J. (2002). Inorg. Chem. 41, 6161-6168.]); Zhang et al. (2004[Zhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Wu, X.-T. (2004). Inorg. Chem. 43, 5472-5478.]). The related six-coordinate CdII complex with two coordinated water mol­ecules has a distorted octa­hedral geometry, see: Rodesiler et al. (1985[Rodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985). Acta Cryst. C41, 673-678.]). For other related structures involving the 4-chloro­benzoato anion, see: Turpeinen et al. (1999[Turpeinen, U., Hämälänen, R. & Mutikainen, I. (1999). Acta Cryst. C55, 50-52.]); Xue et al. (2006[Xue, L., Che, Y.-X. & Zheng, J.-M. (2006). Acta Cryst. E62, m2750-m2752.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H4ClO2)2(H2O)]

  • Mr = 441.52

  • Monoclinic, C 2/c

  • a = 32.525 (2) Å

  • b = 6.4769 (5) Å

  • c = 7.1419 (6) Å

  • β = 98.883 (3)°

  • V = 1486.48 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 296 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.567, Tmax = 0.746

  • 9459 measured reflections

  • 1334 independent reflections

  • 1308 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.042

  • S = 1.12

  • 1334 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1i 2.2210 (14)
Cd1—O1W 2.233 (2)
Cd1—O2ii 2.3896 (14)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2iii 0.89 1.88 2.699 (2) 153
Symmetry code: (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic acids are widely used as versatile building blocks in many metal- organic frameworks with diverse structural motifs (Zhao et al., 2003; Cao et al., 2002; Zhang et al., 2004). In metal complexes the 4-chlorobenzoato anion can function both to balance charge and as a bridging ligand. Several structures incorporating this ligand have been investigated (Turpeinen, et al., 1999; Xue et al., 2006).

Herein we report a new compound [Cd(C7H4ClO2)2.H2O] derived from 4-chlorobenzoic acid, which exhibits an one-dimensional infinite chain structure. In the title complex the CdII atom lies on a two-fold axis and adopts a square pyramidal coordination geometry (Fig. 1). The water molecule occupies the axial site with oxygen atoms from four different 4-chlorobenzoato ligands in the equatorial plane. The Cd—O1W bond length is 2.233 (2)Å and the Cd—O(acetate) distances lie in the range 2.221 (1)-2.390 (1) Å, Table 1. Pairs of 4-chlorobenzoato ligands bridge two adjacent CdII ions generating an infinite chain structure along the c axis. Parallel polymeric chains are further interconnected through O1W—H1WA···O2 hydrogen bonds forming layers in the bc plane (Fig. 2, Table 2), with an O1W···O2 (D···A) distance of 2.699 (2) Å. This structure is entirely different from that of [Cd(C7H4ClO2)2.(H2O)2], in which the CdII ion adopts a distorted six-coordination geometry (Rodesiler et al., 1985).

Related literature top

For the use of organic acids in constructing metal-organic frameworks, see: Zhao et al. (2003); Cao et al. (2002); Zhang et al. (2004). The related six-coordinate CdII complex with two coordinated water molecules has a distorted octahedral geometry, see: Rodesiler et al. (1985). For other related structures involving the 4-chlorobenzoato anion, see: Turpeinen et al. (1999); Xue et al. (2006).

Experimental top

4-chlorobenzoic acid (0.040 g, 0.3 mmol) was dissolved in a mixture of methanol, 2 ml, and acetonitrile, 2 ml. Sodium hydroxide was subsequently added at room temperature to adjust the pH to 7. Then, Cd(ClO4)2.6H2O (0.371 g, 0.1 mmol) was added and the solution stirred for an hour. The clear solution was filtered and then left to stand in air. After 6 days colorless rod-like crystals were deposited (260 mg, 72% yield).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C— H = 0.93 Å and Uĩso~(H) = 1.2Ueq(C). The position of the hydrogen atom of the coordinated water molecule was obtained from a difference Fourier map, with the O—H distances restrained to 0.89 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as rods of arbitrary radius. [Symmetry Codes: (i) –x, y, –z + 1/2; (ii) –x, –y, –z + 1; (iii) x, –y, z – 1/2]
[Figure 2] Fig. 2. Hydrogen-bonding interactions (dashed lines) between parallel chains along the c axis of complex (I).
catena-Poly[[aquacadmium(II)]-bis(µ2-4-chlorobenzoato)] top
Crystal data top
[Cd(C7H4ClO2)2(H2O)]F(000) = 864
Mr = 441.52Dx = 1.973 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 543 reflections
a = 32.525 (2) Åθ = 2.3–26.7°
b = 6.4769 (5) ŵ = 1.85 mm1
c = 7.1419 (6) ÅT = 296 K
β = 98.883 (3)°Rod, colorless
V = 1486.48 (19) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1334 independent reflections
Radiation source: fine-focus sealed tube1308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3838
Tmin = 0.567, Tmax = 0.746k = 77
9459 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0231P)2 + 1.3036P] P = (Fo2 + 2Fc2)/3
1334 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cd(C7H4ClO2)2(H2O)]V = 1486.48 (19) Å3
Mr = 441.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 32.525 (2) ŵ = 1.85 mm1
b = 6.4769 (5) ÅT = 296 K
c = 7.1419 (6) Å0.4 × 0.3 × 0.2 mm
β = 98.883 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1334 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1308 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.746Rint = 0.021
9459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.12Δρmax = 0.26 e Å3
1334 reflectionsΔρmin = 0.34 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.15461 (2)0.25000.02841 (8)
Cl10.222718 (19)0.55886 (13)0.63416 (9)0.0652 (2)
O10.06477 (4)0.0960 (2)0.3902 (2)0.0444 (3)
O20.02952 (4)0.1741 (2)0.4642 (2)0.0361 (3)
C10.06390 (6)0.0837 (3)0.4530 (2)0.0306 (4)
C20.10373 (6)0.1976 (3)0.5081 (2)0.0298 (4)
C30.10333 (6)0.4005 (3)0.5697 (3)0.0355 (4)
H3A0.07820.46300.58360.043*
C40.14008 (6)0.5103 (3)0.6107 (3)0.0405 (5)
H4A0.13980.64680.65100.049*
C50.17716 (6)0.4147 (4)0.5911 (3)0.0407 (5)
C60.17853 (6)0.2115 (4)0.5343 (3)0.0421 (5)
H6A0.20380.14850.52490.050*
C70.14156 (6)0.1033 (3)0.4914 (3)0.0363 (4)
H7A0.14200.03320.45130.044*
O1W0.00000.4993 (3)0.25000.0527 (6)
H1WA0.01060.57560.34940.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02668 (12)0.02429 (12)0.03493 (12)0.0000.00687 (8)0.000
Cl10.0426 (3)0.0929 (5)0.0609 (4)0.0347 (3)0.0102 (3)0.0183 (3)
O10.0365 (8)0.0428 (8)0.0546 (9)0.0097 (6)0.0093 (6)0.0179 (7)
O20.0272 (7)0.0388 (7)0.0420 (8)0.0023 (5)0.0047 (6)0.0094 (5)
C10.0300 (9)0.0369 (10)0.0252 (8)0.0059 (8)0.0047 (7)0.0034 (7)
C20.0282 (9)0.0356 (9)0.0260 (8)0.0046 (7)0.0047 (7)0.0006 (7)
C30.0316 (10)0.0396 (10)0.0360 (9)0.0026 (8)0.0075 (8)0.0046 (8)
C40.0434 (11)0.0411 (11)0.0377 (10)0.0117 (9)0.0081 (8)0.0080 (8)
C50.0323 (10)0.0579 (13)0.0315 (9)0.0160 (9)0.0036 (8)0.0014 (9)
C60.0273 (10)0.0556 (12)0.0434 (11)0.0006 (9)0.0055 (8)0.0032 (10)
C70.0328 (10)0.0374 (10)0.0390 (10)0.0000 (8)0.0069 (8)0.0016 (8)
O1W0.0701 (15)0.0225 (10)0.0564 (13)0.0000.0190 (11)0.000
Geometric parameters (Å, º) top
Cd1—O1i2.2210 (14)C2—C71.395 (3)
Cd1—O12.2210 (14)C3—C41.383 (3)
Cd1—O1W2.233 (2)C3—H3A0.9300
Cd1—O2ii2.3896 (14)C4—C51.382 (3)
Cd1—O2iii2.3896 (14)C4—H4A0.9300
Cl1—C51.738 (2)C5—C61.380 (3)
O1—C11.249 (2)C6—C71.385 (3)
O2—C11.276 (2)C6—H6A0.9300
O2—Cd1iii2.3896 (14)C7—H7A0.9300
C1—C21.490 (3)O1W—H1WA0.8900
C2—C31.386 (3)
O1i—Cd1—O1160.33 (8)C7—C2—C1120.18 (18)
O1i—Cd1—O1W99.84 (4)C4—C3—C2120.30 (18)
O1—Cd1—O1W99.84 (4)C4—C3—H3A119.9
O1i—Cd1—O2ii95.88 (5)C2—C3—H3A119.9
O1—Cd1—O2ii85.16 (5)C5—C4—C3119.15 (19)
O1W—Cd1—O2ii86.97 (3)C5—C4—H4A120.4
O1i—Cd1—O2iii85.16 (5)C3—C4—H4A120.4
O1—Cd1—O2iii95.88 (5)C6—C5—C4121.72 (18)
O1W—Cd1—O2iii86.97 (3)C6—C5—Cl1119.92 (16)
O2ii—Cd1—O2iii173.94 (6)C4—C5—Cl1118.34 (17)
C1—O1—Cd1104.39 (12)C5—C6—C7118.77 (19)
C1—O2—Cd1iii120.07 (11)C5—C6—H6A120.6
O1—C1—O2121.26 (17)C7—C6—H6A120.6
O1—C1—C2119.30 (17)C6—C7—C2120.4 (2)
O2—C1—C2119.39 (17)C6—C7—H7A119.8
C3—C2—C7119.59 (18)C2—C7—H7A119.8
C3—C2—C1120.18 (17)Cd1—O1W—H1WA123.7
O1i—Cd1—O1—C121.30 (11)O2—C1—C2—C7178.09 (17)
O1W—Cd1—O1—C1158.70 (11)C7—C2—C3—C41.4 (3)
O2ii—Cd1—O1—C1115.23 (12)C1—C2—C3—C4176.33 (18)
O2iii—Cd1—O1—C170.77 (12)C2—C3—C4—C50.6 (3)
Cd1—O1—C1—O214.4 (2)C3—C4—C5—C60.9 (3)
Cd1—O1—C1—C2162.92 (13)C3—C4—C5—Cl1177.43 (16)
Cd1iii—O2—C1—O192.47 (18)C4—C5—C6—C71.6 (3)
Cd1iii—O2—C1—C290.19 (17)Cl1—C5—C6—C7176.69 (16)
O1—C1—C2—C3176.98 (18)C5—C6—C7—C20.8 (3)
O2—C1—C2—C30.4 (3)C3—C2—C7—C60.6 (3)
O1—C1—C2—C70.7 (3)C1—C2—C7—C6177.07 (18)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iv0.891.882.699 (2)153
Symmetry code: (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd(C7H4ClO2)2(H2O)]
Mr441.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)32.525 (2), 6.4769 (5), 7.1419 (6)
β (°) 98.883 (3)
V3)1486.48 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.567, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9459, 1334, 1308
Rint0.021
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.042, 1.12
No. of reflections1334
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—O1i2.2210 (14)Cd1—O2ii2.3896 (14)
Cd1—O1W2.233 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.891.882.699 (2)152.74
Symmetry code: (iii) x, y1, z.
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, R., Shi, Q., Sun, D.-F., Hong, M.-C., Bi, W. H. & Zhao, Y.-J. (2002). Inorg. Chem. 41, 6161–6168.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985). Acta Cryst. C41, 673–678.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurpeinen, U., Hämälänen, R. & Mutikainen, I. (1999). Acta Cryst. C55, 50–52.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXue, L., Che, Y.-X. & Zheng, J.-M. (2006). Acta Cryst. E62, m2750–m2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Wu, X.-T. (2004). Inorg. Chem. 43, 5472–5478.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, B., Dai, Y., Cheng, C., Liao, D., Yan, S., Jiang, Z. & Wang, G. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m385-m386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds