metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4′-All­yl­oxy-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)(di­benzoyl­methanido-κ2O,O′)bis­­(nitrato-κ2O,O′)neodymium(III) aceto­nitrile solvate

aJiangsu Key Laboratory of Organic Electronics and Information Displays, and Institute of Advanced Materials (IAM), Nanjing University of Post and Telecommunications, Nanjing 210046, People's Republic of China, and bInstitute of Molecular Engineering and Applied Chemistry, College of Metallurgy and Resources, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: tongbihai@163.com

(Received 25 November 2009; accepted 2 December 2009; online 4 December 2009)

The title complex, [Nd(C15H11O2)(NO3)2(C18H15N3O)]·CH3CN or [Nd(altpy)(dbm)(NO3)2]·CH3CN (altpy = 4′-all­yl­oxy-2,2′:6′,2′′-terpyridine, dbm = dibenzoyl­methanide anion), has been synthesized from 4′-all­yloxy-2,2′:6′,2′′-terpyridine, dibenzoyl­methanate and neodymium nitrate. The Nd3+ atom is nine-coordinated by two O atoms from the bidentate dbm ligand, three N atoms from the tridentate altpy ligand and four O atoms from two nitrate anions that act as bidentate ligands and occupy mutually trans sites in a distorted monocapped square-anti­prismatic geometry.

Related literature

For the use of lanthanide complexes as shift reagents, functional materials and as catalysts, see: Su et al. (1999[Su, C. Y., Kang, B. S., Liu, H. Q., Wang, Q. G., Chen, Z. N., Lu, Z. L., Tong, Y. X. & Mal, T. C. W. (1999). Inorg. Chem. 38, 1374-1375.]); Sutter et al. (1998[Sutter, J. P., Kahn, M. L., Golhen, S., Ouahab, L. & Kahn, O. (1998). Chem. Eur. J. pp. 571-576.]); Aspinall et al. (1998[Aspinall, H. C., Dwyer, J. L. M., Greeves, N., Mciver, E. G. & Wooley, J. C. (1998). Organometallics, 17, 1884-1888.]). For related structures, see: Niu et al. (1997[Niu, S., Yang, Z., Yang, Q., Yang, B., Chao, J., Yang, G. & Shen, E. Z. (1997). Polyhedron, 16, 1629-1635.]); Chen et al. (1998[Chen, X. F., Liu, S., Duan, C., Xu, Y., You, X., Min, J. M. & Min, N. (1998). Polyhedron, 17, 1883-1889.]); Cotton et al. (2003[Cotton, S. A., Noy, O. E., Liesener, F. & Raithby, P. R. (2003). Inorg. Chim. Acta, 344, 37-42.]); Hunter et al. (2007[Hunter, A. P., Lees, A. M. J. & Platt, A. W. G. (2007). Polyhedron, 26, 4865-4876.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C15H11O2)(NO3)2(C18H15N3O)]·C2H3N

  • Mr = 821.88

  • Monoclinic, P 21 /n

  • a = 13.3711 (16) Å

  • b = 16.1009 (19) Å

  • c = 15.9490 (19) Å

  • β = 103.040 (2)°

  • V = 3345.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 569 K

  • 0.41 × 0.36 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.557, Tmax = 0.688

  • 6565 measured reflections

  • 6565 independent reflections

  • 5101 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.09

  • 6565 reflections

  • 461 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O2 2.343 (2)
Nd1—O3 2.354 (2)
Nd1—O6 2.550 (2)
Nd1—O9 2.558 (2)
Nd1—O8 2.559 (2)
Nd1—O5 2.571 (3)
Nd1—N3 2.578 (3)
Nd1—N1 2.603 (2)
Nd1—N2 2.605 (2)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lanthanide complexes are often used as shift reagents to probe metal-binding sites in solutions (Su et al., 1999) and they are also used in functional materials (Sutter et al., 1998) or catalysts (Aspinall et al., 1998). The ability of these elements to adopt coordination numbers from six to twelve provides a rich and variable structural chemistry. In the title compound, [Nd(altpy)(dbm)(NO3)2].CH3CN(altpy=4'-allyloxy-2, 2':6', 2''-terpyridine, dbm=dibenzoylmethanate), each Nd(III) atom is in a nine coordinate environment comprising two oxygen atoms from the bidentate dbm ligand, three nitrogen atoms from the tridentate altpy ligand and four oxygen atoms from two tertiary nitrate anions that act as bidentate ligands an occupy mutually trans sites in the coordination polyhedron. The coordination polyhedron is a distorted monocapped square antiprism. The Nd—O distances lie in two groups, those to the beta-diketone oxygen atoms in the range 2.343 (2)–2.354 (2) Å and those to nitrate O atoms in the range 2.550 (3)–2.573 (3) Å. These are comparable to those [2.485 (19), 2.600 (15) Å] in the nine-coordinate complex [Nd2(O2CMe)4(NO3)2(phen)2] (phen=1,10-phenanthroline) which also contains bidentate chelating nitrate anions (Niu et al., 1997). The O—Nd—O angle (73.64 (8) °) of the beta-diketonate ligand is somewhat higher as compared to those found in the neodymium tris(beta-diketonates) type of complexes (Chen et al., 1998). The average Nd—N distance (2.595 (3) Å) is slightly longer than that in the nine-coordinate complex [Eu(terpy)(NO3)3-(H2O)] (2.554 Å)(Cotton et al. (2003)).The geometrical parameters of the [NO3]- anions in the title complex are as expected with normal distances and angles, comparable to those reported by Hunter et al., (2007) for a complex also containing bidentate chelating nitrate anions

Related literature top

For the use of lanthanide complexes as shift reagents, functional materials and as catalysts, see: Su et al. (1999); Sutter et al. (1998); Aspinall et al. (1998). For related structures, see: Niu et al. (1997); Chen et al. (1998); Cotton et al. (2003); Hunter et al. (2007). Scheme - show solvate

Experimental top

The title compound was obtained by refluxing neodymium nitrate, 4'-allyloxy-2, 2':6',2''-terpyridine and dibenzoylmethanate in ethanol to give the title compound as a blue precipitate in 78% yield. Recrystallization from ethanol and acetonitrile (1:1) gave blue block-like crystals suitable for an X-ray diffraction determination. Anal.Calcd. for C35H30N6NdO9: C, 51.03, H, 3.64, N, 10.21%. Found:C, 51.10, H, 3.67, N, 10.12%.

Refinement top

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
(4'-Allyloxy-2,2':6',2''-terpyridine-κ3N,N',N'') (dibenzoylmethanido-κ2O,O')bis(nitrato-κ2O,O') neodymium(III) acetonitrile solvate top
Crystal data top
[Nd(C15H11O2)(NO3)2(C18H15N3O)]·C2H3NF(000) = 1652
Mr = 821.88Dx = 1.632 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4901 reflections
a = 13.3711 (16) Åθ = 2.2–27.1°
b = 16.1009 (19) ŵ = 1.62 mm1
c = 15.9490 (19) ÅT = 569 K
β = 103.040 (2)°Block, blue
V = 3345.1 (7) Å30.41 × 0.36 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6565 independent reflections
Radiation source: fine-focus sealed tube5101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
SADABS (Bruker, 1997)
h = 1616
Tmin = 0.557, Tmax = 0.688k = 019
6565 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0298P)2 + 2.1769P]
where P = (Fo2 + 2Fc2)/3
6565 reflections(Δ/σ)max = 0.002
461 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Nd(C15H11O2)(NO3)2(C18H15N3O)]·C2H3NV = 3345.1 (7) Å3
Mr = 821.88Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.3711 (16) ŵ = 1.62 mm1
b = 16.1009 (19) ÅT = 569 K
c = 15.9490 (19) Å0.41 × 0.36 × 0.25 mm
β = 103.040 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6565 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 1997)
5101 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.688Rint = 0.000
6565 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.09Δρmax = 0.91 e Å3
6565 reflectionsΔρmin = 0.46 e Å3
461 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.754510 (13)0.201262 (9)0.532547 (11)0.02286 (6)
O10.65947 (18)0.20624 (13)0.48248 (16)0.0353 (6)
O20.66289 (17)0.31699 (12)0.56350 (14)0.0284 (5)
O30.87760 (16)0.30266 (12)0.59043 (15)0.0297 (5)
O40.7676 (2)0.26540 (18)0.28068 (18)0.0557 (8)
O50.8192 (2)0.18627 (14)0.39321 (17)0.0406 (6)
O60.73546 (19)0.29852 (13)0.40375 (16)0.0359 (6)
O70.6621 (2)0.11468 (16)0.75275 (16)0.0447 (7)
O80.78009 (18)0.16492 (16)0.69217 (15)0.0381 (6)
O90.62830 (17)0.14135 (14)0.61564 (15)0.0343 (6)
N10.91391 (19)0.10513 (15)0.57890 (17)0.0253 (6)
N20.73078 (19)0.04405 (15)0.49459 (17)0.0226 (6)
N30.5878 (2)0.15850 (15)0.42526 (17)0.0272 (6)
N40.7744 (2)0.25116 (18)0.3572 (2)0.0365 (7)
N50.6896 (2)0.13977 (17)0.68938 (19)0.0307 (6)
C11.0065 (2)0.1370 (2)0.6148 (2)0.0303 (8)
H1A1.01260.19450.61900.036*
C21.0924 (3)0.0903 (2)0.6457 (2)0.0316 (8)
H2A1.15500.11540.66940.038*
C31.0836 (3)0.0049 (2)0.6407 (2)0.0307 (8)
H3A1.14030.02890.66100.037*
C40.9891 (2)0.02924 (19)0.6049 (2)0.0292 (7)
H4A0.98170.08670.60150.035*
C50.9050 (2)0.02128 (18)0.57400 (19)0.0217 (7)
C60.8018 (2)0.01195 (18)0.53183 (19)0.0221 (7)
C70.7835 (2)0.09649 (19)0.5309 (2)0.0266 (7)
H7A0.83380.13310.55900.032*
C80.6886 (3)0.12537 (18)0.4872 (2)0.0273 (7)
C90.6162 (2)0.06896 (19)0.4457 (2)0.0268 (7)
H9A0.55290.08730.41430.032*
C100.6386 (2)0.01495 (18)0.45141 (19)0.0221 (7)
C110.5613 (2)0.07775 (19)0.4104 (2)0.0241 (7)
C120.4668 (2)0.0560 (2)0.3595 (2)0.0306 (8)
H12A0.45000.00030.34880.037*
C130.3977 (3)0.1170 (2)0.3246 (2)0.0345 (8)
H13A0.33320.10290.29180.041*
C140.4251 (3)0.1991 (2)0.3389 (2)0.0344 (8)
H14A0.38040.24140.31480.041*
C150.5201 (2)0.2169 (2)0.3894 (2)0.0312 (8)
H15A0.53850.27240.39940.037*
C160.7296 (3)0.2675 (2)0.5289 (2)0.0360 (9)
H16A0.69170.31750.53570.043*
H16B0.76020.24640.58590.043*
C170.8127 (3)0.2887 (2)0.4840 (3)0.0404 (9)
H17A0.79470.29850.42510.048*
C180.9096 (3)0.2942 (2)0.5230 (3)0.0482 (10)
H18A0.92970.28460.58190.058*
H18B0.95830.30760.49190.058*
C190.4968 (2)0.4175 (2)0.5694 (2)0.0303 (8)
H19A0.48500.36940.53640.036*
C200.4149 (3)0.4633 (2)0.5825 (2)0.0348 (8)
H20A0.34820.44630.55790.042*
C210.4313 (3)0.5348 (2)0.6323 (2)0.0354 (8)
H21A0.37610.56620.64070.042*
C220.5302 (3)0.5587 (2)0.6692 (2)0.0330 (8)
H22A0.54150.60580.70380.040*
C230.6124 (3)0.5138 (2)0.6556 (2)0.0308 (8)
H23A0.67870.53120.68060.037*
C240.5976 (2)0.44244 (19)0.6050 (2)0.0251 (7)
C250.6845 (2)0.39060 (19)0.5897 (2)0.0253 (7)
C260.7840 (2)0.4243 (2)0.6058 (2)0.0285 (7)
H260.79040.48090.61740.034*
C270.8732 (2)0.38068 (19)0.6059 (2)0.0256 (7)
C280.9738 (2)0.4246 (2)0.6312 (2)0.0281 (7)
C290.9844 (3)0.5074 (2)0.6094 (3)0.0413 (9)
H29A0.92800.53650.57850.050*
C301.0788 (3)0.5464 (2)0.6338 (3)0.0544 (12)
H30A1.08570.60120.61760.065*
C311.1621 (3)0.5051 (2)0.6814 (3)0.0474 (10)
H31A1.22480.53230.69850.057*
C321.1530 (3)0.4234 (2)0.7041 (2)0.0378 (9)
H32A1.20930.39530.73680.045*
C331.0595 (2)0.3832 (2)0.6780 (2)0.0304 (8)
H33A1.05400.32760.69190.036*
N60.6450 (3)0.3229 (2)0.7792 (2)0.0617 (10)
C340.5672 (3)0.2950 (2)0.7485 (2)0.0437 (9)
C350.4712 (3)0.2565 (3)0.7093 (3)0.0672 (14)
H35A0.46330.25530.64800.101*
H35B0.41590.28760.72330.101*
H35C0.47010.20070.73050.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01860 (9)0.01540 (8)0.03276 (10)0.00015 (7)0.00199 (7)0.00221 (8)
O10.0337 (13)0.0161 (11)0.0516 (15)0.0058 (10)0.0004 (11)0.0030 (11)
O20.0249 (12)0.0218 (11)0.0377 (13)0.0013 (9)0.0056 (10)0.0055 (10)
O30.0175 (11)0.0207 (11)0.0493 (14)0.0011 (9)0.0042 (10)0.0045 (11)
O40.077 (2)0.0503 (17)0.0436 (17)0.0050 (16)0.0222 (16)0.0098 (14)
O50.0416 (15)0.0335 (14)0.0478 (15)0.0110 (11)0.0128 (12)0.0039 (12)
O60.0406 (14)0.0231 (11)0.0472 (14)0.0069 (11)0.0168 (12)0.0005 (11)
O70.0451 (16)0.0499 (16)0.0405 (15)0.0039 (13)0.0128 (13)0.0123 (13)
O80.0231 (13)0.0509 (15)0.0372 (14)0.0033 (12)0.0001 (11)0.0041 (12)
O90.0273 (13)0.0358 (13)0.0363 (14)0.0086 (11)0.0000 (11)0.0002 (11)
N10.0224 (14)0.0195 (13)0.0330 (15)0.0005 (11)0.0038 (12)0.0016 (12)
N20.0212 (14)0.0163 (12)0.0287 (14)0.0015 (11)0.0022 (11)0.0001 (11)
N30.0249 (15)0.0216 (14)0.0329 (16)0.0029 (12)0.0022 (12)0.0002 (12)
N40.0354 (18)0.0287 (17)0.046 (2)0.0041 (14)0.0112 (15)0.0031 (14)
N50.0266 (16)0.0260 (14)0.0378 (18)0.0053 (12)0.0035 (14)0.0025 (13)
C10.0252 (18)0.0207 (16)0.043 (2)0.0014 (14)0.0024 (16)0.0021 (15)
C20.0236 (18)0.0329 (18)0.0362 (19)0.0023 (15)0.0023 (15)0.0035 (16)
C30.0244 (18)0.0315 (18)0.0323 (19)0.0083 (15)0.0019 (15)0.0017 (15)
C40.0295 (19)0.0203 (16)0.0364 (19)0.0010 (14)0.0045 (15)0.0007 (14)
C50.0232 (17)0.0187 (15)0.0232 (16)0.0002 (13)0.0051 (13)0.0002 (13)
C60.0171 (16)0.0218 (15)0.0276 (17)0.0012 (13)0.0052 (13)0.0031 (13)
C70.0253 (17)0.0203 (15)0.0325 (18)0.0027 (13)0.0030 (15)0.0014 (14)
C80.0304 (18)0.0180 (15)0.0339 (19)0.0020 (14)0.0081 (15)0.0037 (14)
C90.0204 (17)0.0250 (16)0.0330 (18)0.0030 (13)0.0016 (14)0.0031 (14)
C100.0201 (16)0.0207 (15)0.0248 (16)0.0021 (13)0.0035 (13)0.0019 (13)
C110.0224 (17)0.0255 (16)0.0238 (16)0.0017 (13)0.0043 (13)0.0025 (13)
C120.0250 (18)0.0301 (17)0.0347 (19)0.0038 (15)0.0026 (15)0.0000 (15)
C130.0221 (18)0.046 (2)0.0308 (19)0.0003 (16)0.0043 (15)0.0022 (16)
C140.0306 (19)0.0372 (19)0.0336 (19)0.0076 (17)0.0037 (15)0.0069 (17)
C150.0269 (18)0.0276 (18)0.0360 (19)0.0026 (14)0.0009 (15)0.0003 (14)
C160.038 (2)0.0177 (15)0.050 (2)0.0010 (15)0.0051 (19)0.0008 (16)
C170.050 (2)0.0289 (19)0.039 (2)0.0042 (17)0.0052 (18)0.0038 (16)
C180.055 (3)0.040 (2)0.053 (2)0.016 (2)0.017 (2)0.001 (2)
C190.0275 (18)0.0242 (17)0.039 (2)0.0009 (14)0.0061 (15)0.0052 (15)
C200.0235 (18)0.0361 (19)0.045 (2)0.0012 (15)0.0073 (16)0.0022 (17)
C210.035 (2)0.0285 (18)0.046 (2)0.0088 (16)0.0145 (17)0.0014 (16)
C220.037 (2)0.0238 (17)0.038 (2)0.0009 (15)0.0098 (17)0.0066 (15)
C230.0261 (18)0.0256 (17)0.039 (2)0.0000 (14)0.0037 (15)0.0037 (15)
C240.0260 (17)0.0242 (16)0.0257 (17)0.0034 (14)0.0072 (14)0.0007 (13)
C250.0266 (17)0.0226 (16)0.0252 (17)0.0001 (14)0.0024 (14)0.0010 (13)
C260.0213 (17)0.0234 (16)0.038 (2)0.0002 (14)0.0012 (15)0.0002 (14)
C270.0235 (17)0.0231 (16)0.0272 (17)0.0022 (13)0.0003 (14)0.0014 (13)
C280.0228 (17)0.0262 (17)0.0346 (19)0.0028 (14)0.0050 (15)0.0073 (14)
C290.027 (2)0.0290 (18)0.062 (3)0.0025 (16)0.0009 (18)0.0064 (18)
C300.040 (2)0.033 (2)0.085 (3)0.0126 (18)0.003 (2)0.007 (2)
C310.026 (2)0.045 (2)0.068 (3)0.0131 (18)0.0032 (19)0.003 (2)
C320.0223 (18)0.041 (2)0.046 (2)0.0005 (16)0.0007 (16)0.0059 (18)
C330.0257 (18)0.0282 (17)0.0362 (19)0.0008 (14)0.0048 (15)0.0040 (15)
N60.067 (3)0.061 (2)0.047 (2)0.009 (2)0.007 (2)0.0015 (18)
C340.050 (3)0.047 (2)0.033 (2)0.006 (2)0.0069 (19)0.0003 (19)
C350.044 (3)0.080 (4)0.074 (3)0.006 (3)0.006 (3)0.007 (3)
Geometric parameters (Å, º) top
Nd1—O22.343 (2)C12—H12A0.9300
Nd1—O32.354 (2)C13—C141.377 (5)
Nd1—O62.550 (2)C13—H13A0.9300
Nd1—O92.558 (2)C14—C151.373 (5)
Nd1—O82.559 (2)C14—H14A0.9300
Nd1—O52.571 (3)C15—H15A0.9300
Nd1—N32.578 (3)C16—C171.491 (5)
Nd1—N12.603 (2)C16—H16A0.9700
Nd1—N22.605 (2)C16—H16B0.9700
Nd1—N42.979 (3)C17—C181.307 (5)
Nd1—N52.995 (3)C17—H17A0.9300
O1—C81.356 (3)C18—H18A0.9300
O1—C161.445 (4)C18—H18B0.9300
O2—C251.268 (4)C19—C201.374 (5)
O3—C271.284 (4)C19—C241.398 (4)
O4—N41.224 (4)C19—H19A0.9300
O5—N41.275 (4)C20—C211.388 (5)
O6—N41.257 (4)C20—H20A0.9300
O7—N51.220 (3)C21—C221.375 (5)
O8—N51.267 (3)C21—H21A0.9300
O9—N51.273 (3)C22—C231.373 (5)
N1—C11.343 (4)C22—H22A0.9300
N1—C51.356 (4)C23—C241.392 (4)
N2—C61.347 (4)C23—H23A0.9300
N2—C101.353 (4)C24—C251.495 (4)
N3—C151.341 (4)C25—C261.405 (4)
N3—C111.355 (4)C26—C271.384 (4)
C1—C21.368 (4)C26—H260.9300
C1—H1A0.9300C27—C281.493 (4)
C2—C31.382 (5)C28—C331.388 (5)
C2—H2A0.9300C28—C291.392 (5)
C3—C41.377 (4)C29—C301.384 (5)
C3—H3A0.9300C29—H29A0.9300
C4—C51.386 (4)C30—C311.371 (5)
C4—H4A0.9300C30—H30A0.9300
C5—C61.491 (4)C31—C321.377 (5)
C6—C71.383 (4)C31—H31A0.9300
C7—C81.383 (4)C32—C331.386 (5)
C7—H7A0.9300C32—H32A0.9300
C8—C91.382 (4)C33—H33A0.9300
C9—C101.382 (4)N6—C341.138 (5)
C9—H9A0.9300C34—C351.436 (6)
C10—C111.488 (4)C35—H35A0.9600
C11—C121.384 (4)C35—H35B0.9600
C12—C131.377 (5)C35—H35C0.9600
O2—Nd1—O373.64 (7)N1—C5—C6116.3 (3)
O2—Nd1—O673.70 (7)C4—C5—C6123.0 (3)
O3—Nd1—O679.86 (8)N2—C6—C7123.3 (3)
O2—Nd1—O975.72 (7)N2—C6—C5116.6 (3)
O3—Nd1—O9122.89 (8)C7—C6—C5120.1 (3)
O6—Nd1—O9133.74 (8)C6—C7—C8118.5 (3)
O2—Nd1—O886.05 (8)C6—C7—H7A120.8
O3—Nd1—O881.01 (8)C8—C7—H7A120.8
O6—Nd1—O8155.32 (8)O1—C8—C9116.3 (3)
O9—Nd1—O849.77 (7)O1—C8—C7124.7 (3)
O2—Nd1—O5123.40 (8)C9—C8—C7119.0 (3)
O3—Nd1—O593.58 (8)C10—C9—C8119.5 (3)
O6—Nd1—O549.70 (7)C10—C9—H9A120.2
O9—Nd1—O5143.33 (8)C8—C9—H9A120.2
O8—Nd1—O5147.45 (8)N2—C10—C9122.1 (3)
O2—Nd1—N386.42 (8)N2—C10—C11116.8 (3)
O3—Nd1—N3150.31 (8)C9—C10—C11121.1 (3)
O6—Nd1—N373.44 (8)N3—C11—C12121.0 (3)
O9—Nd1—N370.77 (8)N3—C11—C10116.5 (3)
O8—Nd1—N3120.05 (8)C12—C11—C10122.5 (3)
O5—Nd1—N379.05 (8)C13—C12—C11119.8 (3)
O2—Nd1—N1147.86 (8)C13—C12—H12A120.1
O3—Nd1—N181.13 (8)C11—C12—H12A120.1
O6—Nd1—N1121.37 (8)C14—C13—C12119.3 (3)
O9—Nd1—N1102.84 (8)C14—C13—H13A120.4
O8—Nd1—N170.39 (8)C12—C13—H13A120.4
O5—Nd1—N177.07 (8)C15—C14—C13118.3 (3)
N3—Nd1—N1124.02 (8)C15—C14—H14A120.8
O2—Nd1—N2141.22 (8)C13—C14—H14A120.8
O3—Nd1—N2143.39 (7)N3—C15—C14123.4 (3)
O6—Nd1—N2115.13 (8)N3—C15—H15A118.3
O9—Nd1—N272.18 (8)C14—C15—H15A118.3
O8—Nd1—N289.48 (8)O1—C16—C17112.2 (3)
O5—Nd1—N275.82 (8)O1—C16—H16A109.2
N3—Nd1—N262.91 (8)C17—C16—H16A109.2
N1—Nd1—N262.43 (8)O1—C16—H16B109.2
O2—Nd1—N498.34 (8)C17—C16—H16B109.2
O3—Nd1—N488.77 (8)H16A—C16—H16B107.9
O6—Nd1—N424.74 (7)C18—C17—C16123.5 (4)
O9—Nd1—N4142.86 (8)C18—C17—H17A118.2
O8—Nd1—N4167.30 (8)C16—C17—H17A118.2
O5—Nd1—N425.20 (7)C17—C18—H18A120.0
N3—Nd1—N472.29 (8)C17—C18—H18B120.0
N1—Nd1—N4100.72 (8)H18A—C18—H18B120.0
N2—Nd1—N494.35 (8)C20—C19—C24120.9 (3)
O2—Nd1—N579.81 (7)C20—C19—H19A119.6
O3—Nd1—N5102.15 (8)C24—C19—H19A119.6
O6—Nd1—N5151.74 (7)C19—C20—C21120.2 (3)
O9—Nd1—N524.95 (7)C19—C20—H20A119.9
O8—Nd1—N524.82 (7)C21—C20—H20A119.9
O5—Nd1—N5155.25 (7)C22—C21—C20119.3 (3)
N3—Nd1—N595.51 (8)C22—C21—H21A120.3
N1—Nd1—N586.52 (8)C20—C21—H21A120.3
N2—Nd1—N580.20 (8)C23—C22—C21120.8 (3)
N4—Nd1—N5167.79 (8)C23—C22—H22A119.6
C8—O1—C16118.8 (3)C21—C22—H22A119.6
C25—O2—Nd1136.2 (2)C22—C23—C24120.8 (3)
C27—O3—Nd1134.1 (2)C22—C23—H23A119.6
N4—O5—Nd195.62 (19)C24—C23—H23A119.6
N4—O6—Nd197.14 (18)C23—C24—C19118.0 (3)
N5—O8—Nd197.23 (18)C23—C24—C25122.8 (3)
N5—O9—Nd197.11 (18)C19—C24—C25119.2 (3)
C1—N1—C5117.8 (3)O2—C25—C26123.8 (3)
C1—N1—Nd1120.7 (2)O2—C25—C24116.6 (3)
C5—N1—Nd1121.33 (19)C26—C25—C24119.6 (3)
C6—N2—C10117.6 (3)C27—C26—C25125.8 (3)
C6—N2—Nd1120.74 (19)C27—C26—H26117.1
C10—N2—Nd1120.26 (19)C25—C26—H26117.1
C15—N3—C11118.3 (3)O3—C27—C26125.0 (3)
C15—N3—Nd1119.7 (2)O3—C27—C28116.0 (3)
C11—N3—Nd1121.7 (2)C26—C27—C28118.9 (3)
O4—N4—O6121.9 (3)C33—C28—C29118.4 (3)
O4—N4—O5121.6 (3)C33—C28—C27120.1 (3)
O6—N4—O5116.5 (3)C29—C28—C27121.5 (3)
O4—N4—Nd1169.6 (2)C30—C29—C28120.2 (3)
O6—N4—Nd158.12 (16)C30—C29—H29A119.9
O5—N4—Nd159.18 (17)C28—C29—H29A119.9
O7—N5—O8122.7 (3)C31—C30—C29120.7 (4)
O7—N5—O9121.4 (3)C31—C30—H30A119.7
O8—N5—O9115.9 (3)C29—C30—H30A119.7
O7—N5—Nd1179.3 (2)C30—C31—C32120.0 (3)
O8—N5—Nd157.95 (16)C30—C31—H31A120.0
O9—N5—Nd157.94 (15)C32—C31—H31A120.0
N1—C1—C2124.2 (3)C31—C32—C33119.6 (3)
N1—C1—H1A117.9C31—C32—H32A120.2
C2—C1—H1A117.9C33—C32—H32A120.2
C1—C2—C3118.2 (3)C32—C33—C28121.1 (3)
C1—C2—H2A120.9C32—C33—H33A119.4
C3—C2—H2A120.9C28—C33—H33A119.4
C4—C3—C2118.6 (3)N6—C34—C35177.6 (5)
C4—C3—H3A120.7C34—C35—H35A109.5
C2—C3—H3A120.7C34—C35—H35B109.5
C3—C4—C5120.6 (3)H35A—C35—H35B109.5
C3—C4—H4A119.7C34—C35—H35C109.5
C5—C4—H4A119.7H35A—C35—H35C109.5
N1—C5—C4120.7 (3)H35B—C35—H35C109.5

Experimental details

Crystal data
Chemical formula[Nd(C15H11O2)(NO3)2(C18H15N3O)]·C2H3N
Mr821.88
Crystal system, space groupMonoclinic, P21/n
Temperature (K)569
a, b, c (Å)13.3711 (16), 16.1009 (19), 15.9490 (19)
β (°) 103.040 (2)
V3)3345.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.41 × 0.36 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 1997)
Tmin, Tmax0.557, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
6565, 6565, 5101
Rint0.000
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.09
No. of reflections6565
No. of parameters461
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.46

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Selected bond lengths (Å) top
Nd1—O22.343 (2)Nd1—O52.571 (3)
Nd1—O32.354 (2)Nd1—N32.578 (3)
Nd1—O62.550 (2)Nd1—N12.603 (2)
Nd1—O92.558 (2)Nd1—N22.605 (2)
Nd1—O82.559 (2)
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 50903001, 50803027), Jiangsu Natural Science Foundation (No. 08KJD430020) and Nanjing University of Post & Telecommunications [grant (NUPT) No. NY207039] for financial support.

References

First citationAspinall, H. C., Dwyer, J. L. M., Greeves, N., Mciver, E. G. & Wooley, J. C. (1998). Organometallics, 17, 1884–1888.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. F., Liu, S., Duan, C., Xu, Y., You, X., Min, J. M. & Min, N. (1998). Polyhedron, 17, 1883–1889.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotton, S. A., Noy, O. E., Liesener, F. & Raithby, P. R. (2003). Inorg. Chim. Acta, 344, 37–42.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, A. P., Lees, A. M. J. & Platt, A. W. G. (2007). Polyhedron, 26, 4865–4876.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, S., Yang, Z., Yang, Q., Yang, B., Chao, J., Yang, G. & Shen, E. Z. (1997). Polyhedron, 16, 1629–1635.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. Y., Kang, B. S., Liu, H. Q., Wang, Q. G., Chen, Z. N., Lu, Z. L., Tong, Y. X. & Mal, T. C. W. (1999). Inorg. Chem. 38, 1374–1375.  Web of Science CSD CrossRef CAS Google Scholar
First citationSutter, J. P., Kahn, M. L., Golhen, S., Ouahab, L. & Kahn, O. (1998). Chem. Eur. J. pp. 571–576.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds