metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(6-carb­oxy­picolinato-κ3O2,N,O6)(μ3-pyridine-2,6-di­carboxyl­ato-κ5O2,N,O6:O2′:O6′)dysprosium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China., and bSouth China Normal University, Key Laboratory of Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: luoyf2004@yahoo.com.cn

(Received 15 September 2009; accepted 26 September 2009; online 3 October 2009)

In the title complex, [Dy(C7H3NO4)(C7H4NO4)]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxyl­ate and two 6-carboxy­picolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxyl­ate ligands, forming a layer in (100). These layers are further connected by ππ stacking inter­actions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3) Å] and C—H⋯O hydrogen-bonding inter­actions, assembling a three-dimensional supra­molecular network. Within each layer, there are other ππ stacking inter­actions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2) Å] and O—H⋯O and C—H⋯O hydrogen-bonding inter­actions, which further stabilize the structure.

Related literature

For the isotypic holmium analogue, see: Fernandes et al. (2001[Fernandes, A., Jaud, J., Dexpert-Ghys, J. & Brouca-Cabarrecq, C. (2001). Polyhedron, 20, 2385-2391.]). For other related structures, see: Hong (2007[Hong, M. C. (2007). Cryst. Growth Des. 7, 10-14.]); Huang et al. (2008[Huang, Y.-G., Yuan, D.-Q., Gong, Y.-Q., Jiang, F.-L. & Hong, M.-C. (2008). J. Mol. Struct. 872, 99-104.]); Idrees et al. (2009[Idrees, M., Shadab, S. M. & Kumar, S. (2009). Acta Cryst. E65, o1492-o1493.]); Rafizadeh & Amani (2006[Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90-m91.]); Thallapally et al. (2008[Thallapally, P. K., Tian, J., Kishan, M. R., Fernandez, C. A., Dalgarno, S. J., McGrail, P. B., Warren, J. E. & Atwood, J. L. (2008). J. Am. Chem. Soc. 130, 16842-16843.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(C7H3NO4)(C7H4NO4)]

  • Mr = 493.72

  • Monoclinic, P 21 /c

  • a = 12.2151 (14) Å

  • b = 8.3703 (10) Å

  • c = 13.4698 (16) Å

  • β = 102.332 (1)°

  • V = 1345.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.61 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.359, Tmax = 0.415

  • 6670 measured reflections

  • 2413 independent reflections

  • 2305 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.12

  • 2413 reflections

  • 229 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −1.43 e Å−3

Table 1
Selected bond lengths (Å)

Dy1—O8i 2.266 (2)
Dy1—O6ii 2.314 (3)
Dy1—O1 2.328 (2)
Dy1—O5 2.385 (3)
Dy1—O7 2.405 (2)
Dy1—N2 2.469 (3)
Dy1—N1 2.488 (3)
Dy1—O4 2.513 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O4iii 0.811 (19) 1.73 (2) 2.518 (3) 164 (5)
O2—H2A⋯O3iii 0.811 (19) 2.65 (3) 3.303 (4) 139 (4)
C9—H9⋯O1iv 0.93 2.42 3.332 (4) 165
C1—H1⋯O5v 0.93 2.42 3.123 (5) 133
C2—H2⋯O3iii 0.93 2.47 3.393 (5) 174
Symmetry code: (iii) x, y+1, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Research on the design and synthesis of metal-organic frameworks (MOFs) in recent years has become an active area in the fields of crystal engineering and supramolecular chemistry, not only because of their tremendous potential applications in gas storage, chemical separations, ion exchange, microelectronics, nonlinear optics, and heterogeneous catalysis, but also because of their intriguing variety of architectures and topologies (Hong, 2007; Thallapally et al., 2008). The synthesis of such species is often based on the self-assembly of suitable building blocks to give supramolecular networks constructed by coordination or/and hydrogen bonds or other weaker supromolecular interactions, such as π-π stacking interactions. As a building block, the pyridine-2,6-dicarboxylic acid is a good ligand with multifunctional coordination sites providing intriguing architectures and topologies (Fernandes et al., 2001; Rafizadeh & Amani, 2006; Huang et al., 2008; Idrees et al., 2009). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the structure of the title compound (Fig. 1), one of the ligands is fully deprotonated while the second carries an OH group. Each DyIII centre is eight -coordinated by six oxygen atoms two N atoms from two pyridine-2,6-dicarboxylato and two 6-carboxypicolinato ligands, and can described as having a bicapped trigonal prismatic geometry with Dy—O distances and O—Dy—O angles ranging from 2.266 (2) Å to 2.513 (2) Å (Table 1) and 76.75.30 (8) %A to 153.60 (9) %A, respectively. It is of interest that the Dy···O and Dy···N distances are slightly longer than the corresponding values in the isostructural Ho complex (Fernandes et al., 2001). Indeed the average Dy—O bond distance is 2.396 Å, some 0.1 Å longer than the corresponding distance (Ho—O = 2.385Å) in the isomorphous holmium complex as anticipated due to the lanthanide contraction. The pyridine-2,6-dicarboxylato ligands act as bridges linking adjacent DyIII metal centres into a layer parallel to the (1 0 0) plane. Within the layer, the 6-carboxypicolinato ligands are both hydrogen bond donors and hydrogen bond acceptors with O—H···O and C—H···O hydrogen bonding interactions stabilizing the crystal structure (Table 2). π-π stacking interactions (the centroid-centroid distance between neighboring pyridyl rings is 3.827 (3) Å) and C—H···O hydrogen bonding interactions connect those layers to produce a three-dimensional supramolecular motif (Fig. 2). Other π-π stacking interactions between neighboring pyridyl rings are also present in each layer, the centroid-centroid distance is 3.501 (2) Å.

Related literature top

For the isomorphous holmium analogue, see: Fernandes et al. (2001). For other related structures, see: Hong (2007); Huang et al. (2008); Idrees et al. (2009); Rafizadeh & Amani (2006); Thallapally et al. (2008).

Experimental top

A mixture of Dy2O3 (0.375 g; 1 mmol), pyridine-2,6-dicarboxylic acid (0.167 g; 1 mmol), water (10 ml) and HNO3 (0.024 g; 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h-1 to yield colorless block-like crystals.

Refinement top

The H atom of the 6-carboxypicolinate ligand was located in a difference Fourier map and refined with a distance restraint of O–H = 0.82 Å, and with Uiso(H) = 1.5 Ueq(O). H atoms attached to C were placed at calculated positions and were treated as riding on their parent atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Structure description top

Research on the design and synthesis of metal-organic frameworks (MOFs) in recent years has become an active area in the fields of crystal engineering and supramolecular chemistry, not only because of their tremendous potential applications in gas storage, chemical separations, ion exchange, microelectronics, nonlinear optics, and heterogeneous catalysis, but also because of their intriguing variety of architectures and topologies (Hong, 2007; Thallapally et al., 2008). The synthesis of such species is often based on the self-assembly of suitable building blocks to give supramolecular networks constructed by coordination or/and hydrogen bonds or other weaker supromolecular interactions, such as π-π stacking interactions. As a building block, the pyridine-2,6-dicarboxylic acid is a good ligand with multifunctional coordination sites providing intriguing architectures and topologies (Fernandes et al., 2001; Rafizadeh & Amani, 2006; Huang et al., 2008; Idrees et al., 2009). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the structure of the title compound (Fig. 1), one of the ligands is fully deprotonated while the second carries an OH group. Each DyIII centre is eight -coordinated by six oxygen atoms two N atoms from two pyridine-2,6-dicarboxylato and two 6-carboxypicolinato ligands, and can described as having a bicapped trigonal prismatic geometry with Dy—O distances and O—Dy—O angles ranging from 2.266 (2) Å to 2.513 (2) Å (Table 1) and 76.75.30 (8) %A to 153.60 (9) %A, respectively. It is of interest that the Dy···O and Dy···N distances are slightly longer than the corresponding values in the isostructural Ho complex (Fernandes et al., 2001). Indeed the average Dy—O bond distance is 2.396 Å, some 0.1 Å longer than the corresponding distance (Ho—O = 2.385Å) in the isomorphous holmium complex as anticipated due to the lanthanide contraction. The pyridine-2,6-dicarboxylato ligands act as bridges linking adjacent DyIII metal centres into a layer parallel to the (1 0 0) plane. Within the layer, the 6-carboxypicolinato ligands are both hydrogen bond donors and hydrogen bond acceptors with O—H···O and C—H···O hydrogen bonding interactions stabilizing the crystal structure (Table 2). π-π stacking interactions (the centroid-centroid distance between neighboring pyridyl rings is 3.827 (3) Å) and C—H···O hydrogen bonding interactions connect those layers to produce a three-dimensional supramolecular motif (Fig. 2). Other π-π stacking interactions between neighboring pyridyl rings are also present in each layer, the centroid-centroid distance is 3.501 (2) Å.

For the isomorphous holmium analogue, see: Fernandes et al. (2001). For other related structures, see: Hong (2007); Huang et al. (2008); Idrees et al. (2009); Rafizadeh & Amani (2006); Thallapally et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme, with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (#1) x, 0.5-y, -0.5+z; (#2) -x, 0.5+y, 1.5-z.
[Figure 2] Fig. 2. A view of the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Poly[(6-carboxypicolinato-κ3O2,N,O6)(µ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2':O6')dysprosium(III)] top
Crystal data top
[Dy(C7H3NO4)(C7H4NO4)]F(000) = 940
Mr = 493.72Dx = 2.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5626 reflections
a = 12.2151 (14) Åθ = 2.4–27.8°
b = 8.3703 (10) ŵ = 5.61 mm1
c = 13.4698 (16) ÅT = 296 K
β = 102.332 (1)°Block, colourless
V = 1345.4 (3) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2413 independent reflections
Radiation source: fine-focus sealed tube2305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1412
Tmin = 0.359, Tmax = 0.415k = 810
6670 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.92P]
where P = (Fo2 + 2Fc2)/3
2413 reflections(Δ/σ)max = 0.002
229 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 1.43 e Å3
Crystal data top
[Dy(C7H3NO4)(C7H4NO4)]V = 1345.4 (3) Å3
Mr = 493.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2151 (14) ŵ = 5.61 mm1
b = 8.3703 (10) ÅT = 296 K
c = 13.4698 (16) Å0.23 × 0.21 × 0.19 mm
β = 102.332 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
2413 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2305 reflections with I > 2σ(I)
Tmin = 0.359, Tmax = 0.415Rint = 0.024
6670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.58 e Å3
2413 reflectionsΔρmin = 1.43 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.197015 (13)0.232131 (18)0.818183 (11)0.00903 (7)
C20.5158 (3)0.5574 (5)0.8746 (3)0.0243 (9)
H20.52470.66770.87500.029*
C30.4095 (3)0.4901 (4)0.8567 (3)0.0184 (8)
C40.4836 (3)0.2361 (4)0.8735 (3)0.0187 (8)
C10.6084 (3)0.4572 (5)0.8919 (3)0.0282 (9)
H10.68050.49900.90300.034*
C50.5912 (3)0.2933 (5)0.8922 (3)0.0274 (9)
H50.65180.22330.90490.033*
N10.3933 (2)0.3321 (3)0.8555 (2)0.0136 (6)
C60.3019 (3)0.5872 (4)0.8367 (3)0.0201 (8)
O10.2131 (2)0.5091 (3)0.82690 (18)0.0180 (6)
O20.3085 (3)0.7328 (3)0.8293 (3)0.0452 (10)
C70.4611 (3)0.0608 (4)0.8716 (3)0.0203 (8)
O40.3508 (2)0.0270 (3)0.8468 (2)0.0202 (6)
O30.5333 (2)0.0385 (3)0.8889 (3)0.0368 (8)
C130.2072 (3)0.1845 (4)1.0625 (2)0.0128 (7)
C80.1581 (3)0.0254 (4)1.0222 (2)0.0122 (7)
O50.2310 (2)0.2782 (3)0.9969 (2)0.0200 (6)
N20.1355 (2)0.0186 (3)0.9205 (2)0.0107 (6)
C110.0664 (3)0.2478 (4)0.9275 (3)0.0171 (8)
H110.03390.33860.89370.021*
C120.0876 (3)0.1133 (4)0.8745 (2)0.0115 (7)
O70.1092 (2)0.0071 (3)0.72203 (17)0.0148 (5)
O60.2198 (2)0.2145 (3)1.15526 (19)0.0184 (6)
C140.0590 (3)0.0988 (4)0.7607 (2)0.0115 (7)
C90.1386 (3)0.1020 (4)1.0812 (3)0.0152 (7)
H90.15390.09451.15170.018*
C100.0953 (3)0.2420 (4)1.0324 (3)0.0183 (8)
H100.08580.33171.07030.022*
O80.0153 (2)0.1898 (3)0.71176 (18)0.0171 (5)
H2A0.334 (3)0.822 (3)0.838 (3)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.00974 (11)0.00762 (10)0.01008 (11)0.00032 (5)0.00291 (7)0.00052 (5)
C20.026 (2)0.0179 (19)0.030 (2)0.0111 (16)0.0069 (17)0.0045 (16)
C30.022 (2)0.0131 (17)0.0203 (19)0.0011 (15)0.0048 (15)0.0002 (14)
C40.015 (2)0.0168 (18)0.024 (2)0.0005 (14)0.0039 (16)0.0011 (14)
C10.019 (2)0.025 (2)0.040 (3)0.0099 (16)0.0056 (18)0.0064 (17)
C50.015 (2)0.023 (2)0.042 (3)0.0006 (16)0.0021 (18)0.0035 (18)
N10.0122 (15)0.0120 (14)0.0171 (15)0.0013 (12)0.0043 (12)0.0005 (11)
C60.025 (2)0.0145 (18)0.0207 (19)0.0017 (15)0.0048 (16)0.0005 (14)
O10.0183 (14)0.0111 (13)0.0251 (14)0.0001 (10)0.0057 (11)0.0010 (9)
O20.039 (2)0.0065 (14)0.088 (3)0.0048 (12)0.009 (2)0.0015 (15)
C70.016 (2)0.0165 (18)0.029 (2)0.0006 (15)0.0053 (16)0.0004 (15)
O40.0121 (13)0.0105 (12)0.0378 (16)0.0023 (10)0.0048 (11)0.0001 (10)
O30.0185 (15)0.0197 (15)0.070 (2)0.0055 (12)0.0043 (15)0.0011 (14)
C130.0114 (17)0.0152 (17)0.0122 (18)0.0025 (13)0.0031 (14)0.0011 (13)
C80.0097 (17)0.0157 (17)0.0124 (17)0.0037 (13)0.0049 (13)0.0021 (13)
O50.0295 (16)0.0178 (13)0.0137 (14)0.0094 (11)0.0066 (12)0.0016 (10)
N20.0102 (14)0.0123 (14)0.0102 (14)0.0009 (11)0.0036 (11)0.0004 (11)
C110.024 (2)0.0125 (17)0.017 (2)0.0039 (13)0.0096 (17)0.0024 (13)
C120.0103 (17)0.0112 (16)0.0143 (17)0.0011 (13)0.0053 (13)0.0000 (13)
O70.0177 (13)0.0146 (12)0.0131 (12)0.0036 (10)0.0054 (10)0.0004 (9)
O60.0262 (15)0.0182 (13)0.0119 (13)0.0017 (11)0.0064 (11)0.0037 (10)
C140.0093 (17)0.0120 (16)0.0139 (17)0.0019 (13)0.0043 (13)0.0033 (13)
C90.0166 (18)0.0191 (18)0.0107 (17)0.0001 (14)0.0044 (14)0.0015 (13)
C100.019 (2)0.0191 (18)0.018 (2)0.0012 (14)0.0068 (16)0.0061 (13)
O80.0159 (13)0.0198 (13)0.0163 (13)0.0061 (11)0.0052 (10)0.0045 (10)
Geometric parameters (Å, º) top
Dy1—O8i2.266 (2)O2—H2A0.811 (19)
Dy1—O6ii2.314 (3)C7—O31.198 (5)
Dy1—O12.328 (2)C7—O41.347 (4)
Dy1—O52.385 (3)C13—O61.251 (4)
Dy1—O72.405 (2)C13—O51.261 (4)
Dy1—N22.469 (3)C13—C81.513 (5)
Dy1—N12.488 (3)C8—N21.341 (4)
Dy1—O42.513 (2)C8—C91.381 (5)
C2—C11.388 (6)N2—C121.338 (4)
C2—C31.389 (6)C11—C101.382 (6)
C2—H20.9300C11—C121.387 (5)
C3—N11.336 (4)C11—H110.9300
C3—C61.519 (5)C12—C141.502 (5)
C4—N11.344 (5)O7—C141.253 (4)
C4—C51.371 (6)O6—Dy1iii2.314 (3)
C4—C71.492 (5)C14—O81.257 (4)
C1—C51.388 (6)C9—C101.392 (5)
C1—H10.9300C9—H90.9300
C5—H50.9300C10—H100.9300
C6—O21.226 (4)O8—Dy1iv2.266 (2)
C6—O11.250 (5)
O8i—Dy1—O6ii95.01 (9)C1—C5—H5120.5
O8i—Dy1—O177.91 (9)C3—N1—C4118.4 (3)
O6ii—Dy1—O180.18 (9)C3—N1—Dy1117.9 (2)
O8i—Dy1—O594.91 (9)C4—N1—Dy1123.6 (2)
O6ii—Dy1—O5153.60 (9)O2—C6—O1125.5 (4)
O1—Dy1—O578.08 (8)O2—C6—C3118.5 (4)
O8i—Dy1—O779.79 (9)O1—C6—C3115.9 (3)
O6ii—Dy1—O776.74 (8)C6—O1—Dy1126.0 (2)
O1—Dy1—O7146.15 (8)C6—O2—H2A159 (3)
O5—Dy1—O7129.18 (8)O3—C7—O4124.0 (3)
O8i—Dy1—N284.53 (9)O3—C7—C4123.6 (4)
O6ii—Dy1—N2141.40 (9)O4—C7—C4112.4 (3)
O1—Dy1—N2136.47 (9)C7—O4—Dy1124.8 (2)
O5—Dy1—N264.02 (8)O6—C13—O5125.3 (3)
O7—Dy1—N265.15 (8)O6—C13—C8119.3 (3)
O8i—Dy1—N1143.55 (10)O5—C13—C8115.4 (3)
O6ii—Dy1—N179.66 (9)N2—C8—C9122.2 (3)
O1—Dy1—N165.64 (9)N2—C8—C13112.5 (3)
O5—Dy1—N177.84 (10)C9—C8—C13125.3 (3)
O7—Dy1—N1132.22 (9)C13—O5—Dy1126.2 (2)
N2—Dy1—N1121.72 (9)C12—N2—C8118.8 (3)
O8i—Dy1—O4153.64 (9)C12—N2—Dy1119.6 (2)
O6ii—Dy1—O492.28 (9)C8—N2—Dy1121.3 (2)
O1—Dy1—O4128.35 (8)C10—C11—C12117.6 (3)
O5—Dy1—O489.58 (9)C10—C11—H11121.2
O7—Dy1—O477.30 (8)C12—C11—H11121.2
N2—Dy1—O474.15 (9)N2—C12—C11122.9 (3)
N1—Dy1—O462.74 (8)N2—C12—C14112.9 (3)
C1—C2—C3118.9 (3)C11—C12—C14124.2 (3)
C1—C2—H2120.6C14—O7—Dy1122.1 (2)
C3—C2—H2120.6C13—O6—Dy1iii166.3 (2)
N1—C3—C2122.2 (3)O7—C14—O8125.0 (3)
N1—C3—C6114.1 (3)O7—C14—C12116.9 (3)
C2—C3—C6123.7 (3)O8—C14—C12118.1 (3)
N1—C4—C5122.8 (3)C8—C9—C10118.2 (3)
N1—C4—C7116.3 (3)C8—C9—H9120.9
C5—C4—C7120.8 (3)C10—C9—H9120.9
C2—C1—C5118.7 (4)C11—C10—C9120.1 (3)
C2—C1—H1120.7C11—C10—H10120.0
C5—C1—H1120.7C9—C10—H10120.0
C4—C5—C1119.0 (4)C14—O8—Dy1iv146.8 (2)
C4—C5—H5120.5
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4v0.81 (2)1.73 (2)2.518 (3)164 (5)
O2—H2A···O3v0.81 (2)2.65 (3)3.303 (4)139 (4)
C9—H9···O1iii0.932.423.332 (4)165
C1—H1···O5vi0.932.423.123 (5)133
C2—H2···O3v0.932.473.393 (5)174
Symmetry codes: (iii) x, y+1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Dy(C7H3NO4)(C7H4NO4)]
Mr493.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.2151 (14), 8.3703 (10), 13.4698 (16)
β (°) 102.332 (1)
V3)1345.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.61
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.359, 0.415
No. of measured, independent and
observed [I > 2σ(I)] reflections
6670, 2413, 2305
Rint0.024
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.12
No. of reflections2413
No. of parameters229
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 1.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Dy1—O8i2.266 (2)Dy1—O72.405 (2)
Dy1—O6ii2.314 (3)Dy1—N22.469 (3)
Dy1—O12.328 (2)Dy1—N12.488 (3)
Dy1—O52.385 (3)Dy1—O42.513 (2)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4iii0.811 (19)1.73 (2)2.518 (3)164 (5)
O2—H2A···O3iii0.811 (19)2.65 (3)3.303 (4)139 (4)
C9—H9···O1iv0.932.423.332 (4)165.3
C1—H1···O5v0.932.423.123 (5)132.6
C2—H2···O3iii0.932.473.393 (5)173.5
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of the People's Republic of China (Project No, 2007A090302046), the Project of Science and Technology of Guangdong Province (Project No. 2007A020200002-4) and the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for supporting this work.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFernandes, A., Jaud, J., Dexpert-Ghys, J. & Brouca-Cabarrecq, C. (2001). Polyhedron, 20, 2385–2391.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, M. C. (2007). Cryst. Growth Des. 7, 10–14.  Web of Science CrossRef CAS Google Scholar
First citationHuang, Y.-G., Yuan, D.-Q., Gong, Y.-Q., Jiang, F.-L. & Hong, M.-C. (2008). J. Mol. Struct. 872, 99–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, M., Shadab, S. M. & Kumar, S. (2009). Acta Cryst. E65, o1492–o1493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90–m91.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThallapally, P. K., Tian, J., Kishan, M. R., Fernandez, C. A., Dalgarno, S. J., McGrail, P. B., Warren, J. E. & Atwood, J. L. (2008). J. Am. Chem. Soc. 130, 16842–16843.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds