organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Thioxo-1,3-di­thiol-4-ylsulfan­yl)­propane­nitrile

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453002, People's Republic of China
*Correspondence e-mail: zbt@lynu.edu.cn

(Received 19 September 2008; accepted 1 October 2008; online 4 October 2008)

The title compound, C6H5NS4, consists of a planar 2-thioxo-1,3-dithiol-4-ylsulfanyl unit [maximum deviation from the ring plane = 0.0325 (2) Å], with a cyano­ethyl­sulfanyl substituent in the 4-position. In the crystal structure, weak inter­molecular C—H⋯S hydrogen bonds together with S⋯N inter­actions [3.260 (5) Å] form two-dimensional layers in the bc plane.

Related literature

For background to the chemistry of dithiole-2-thio­nes and tetra­thia­fulvenes, see: Chen et al. (2005[Chen, T., Liu, W.-J., Cong, Z.-Q. & Yin, B.-Z. (2005). Chin. J. Org. Chem., 25, 570-575.]); Fabre (2004[Fabre, J. M. (2004). Chem. Rev., 104, 5133-5150.]); Segura & Martin (2001[Segura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372-1409.]). For the preparation of the title compound, see: Liu et al. (2002[Liu, G.-Q., Yu, W.-T., Xue, G., Liu, Z. & Fang, Q. (2002). Acta Cryst. E58, o514-o516.]). For a related structure, see: Jia et al. (2001[Jia, C. Y., Zhang, D. Q., Xu, W. & Zhu, D. B. (2001). Org. Lett. 3, 1941-1944.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5NS4

  • Mr = 219.35

  • Monoclinic, P 21 /c

  • a = 5.2961 (9) Å

  • b = 10.8917 (19) Å

  • c = 16.031 (3) Å

  • β = 97.302 (2)°

  • V = 917.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 (2) K

  • 0.35 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.728, Tmax = 0.808

  • 6626 measured reflections

  • 1710 independent reflections

  • 1525 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.07

  • 1710 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯S3i 0.97 2.86 3.813 (2) 167
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrathiafulvalenes (TTFs) and their charge-transfer salts have become an interesting topic of research, due to their high electrical conductivity and superconducting properties (Segura & Martin, 2001). 1,3-Dithiole-2-thiones, important precursors to TTF derivatives, have also attracted attention (Chen, et al.; 2005; Fabre, 2004). In 2001, 4-alkylthio-1,3- dithiole-2-thione, a key kind of 1,3-dithiole-2-thiones was developed by a facile approach (Jia, et al., 2001). We report here the structure of the title compound (Fig. 1), which was prepared by the reaction of di(tetraethylammonium) bis(1,3-dithiol-2- thione-4,5-dithiolate)zincate and 3-bromopropionitrile in the presence of pyridine hydrochloride.

The atoms of the five-membered dithiole ring and the doubly-bonded atom S3 are nearly coplanar, with a maximum deviation from the least-squares plane of only 0.0325 (2) Å (S1). However, S4 deviates considerably from the plane, 0.0775 (4) Å, which is very similar to the structure of 4,5-bis(2-cyanoethylthio)-1,3-dithiol-2-one (Liu, et al., 2002). The cyanoethylsulfanyl group is substituted on the C2 atom of the dithiole ring. The C4—S4 bond length (1.8191 (19) Å) is typical of a single bond, while the other C—S bond lengths range from 1.650 (2) Å to 1.7435 (19) Å, suggesting a degree of conjugation in the dithiol-2-thione system. In the crystal structure weak intermolecular C5—H5B···S3 hydrogen bonds, Table 1, together with S···N (3.260 (5) Å) interactions form two dimensional layers in the bc plane (Fig. 2).

Related literature top

For background to the chemistry of dithiole-2-thiones and tetrathiafulvenes, see: Chen et al. (2005); Fabre (2004); Segura & Martin (2001). For the preparation of the title compound, see: Liu et al. (2002). For a related structure, see: Jia et al. (2001).

Experimental top

The title compound was prepared according to the literature (Jia, et al., 2001). Orange block-like single crystals were obtained from slow evaporation of a dichloromethane solution at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.97Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis.
3-(2-Thioxo-1,3-dithiol-4-ylsulfanyl)propanenitrile top
Crystal data top
C6H5NS4F(000) = 448
Mr = 219.35Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3529 reflections
a = 5.2961 (9) Åθ = 2.6–27.9°
b = 10.8917 (19) ŵ = 0.97 mm1
c = 16.031 (3) ÅT = 295 K
β = 97.302 (2)°Block, yellow
V = 917.2 (3) Å30.35 × 0.27 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1710 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.728, Tmax = 0.808k = 1213
6626 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.3313P]
where P = (Fo2 + 2Fc2)/3
1710 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C6H5NS4V = 917.2 (3) Å3
Mr = 219.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.2961 (9) ŵ = 0.97 mm1
b = 10.8917 (19) ÅT = 295 K
c = 16.031 (3) Å0.35 × 0.27 × 0.23 mm
β = 97.302 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1710 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1525 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.808Rint = 0.023
6626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
1710 reflectionsΔρmin = 0.34 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21596 (10)1.03249 (5)0.12572 (3)0.05315 (17)
S20.34613 (11)0.99269 (5)0.30276 (3)0.05650 (17)
S30.06717 (11)1.17189 (6)0.24268 (4)0.05929 (17)
S40.60268 (9)0.85154 (5)0.07595 (3)0.05352 (16)
N10.1988 (4)0.62697 (19)0.06631 (14)0.0688 (5)
C10.1519 (3)1.07055 (18)0.22542 (12)0.0433 (4)
C20.4470 (3)0.92099 (17)0.15433 (12)0.0422 (4)
C30.5061 (4)0.90441 (19)0.23696 (12)0.0493 (5)
H30.62870.84760.25830.059*
C40.3347 (4)0.79990 (19)0.00199 (12)0.0486 (5)
H4A0.20710.86420.00510.058*
H4B0.39210.78520.05220.058*
C50.2159 (4)0.6842 (2)0.03091 (14)0.0573 (5)
H5A0.33750.61740.03210.069*
H5B0.17480.69590.08760.069*
C60.0165 (4)0.65095 (19)0.02465 (14)0.0531 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (3)0.0661 (3)0.0389 (3)0.0149 (2)0.0007 (2)0.0015 (2)
S20.0672 (4)0.0630 (3)0.0382 (3)0.0049 (3)0.0027 (2)0.0019 (2)
S30.0548 (3)0.0623 (4)0.0621 (3)0.0057 (2)0.0123 (3)0.0081 (3)
S40.0401 (3)0.0667 (3)0.0525 (3)0.0006 (2)0.0008 (2)0.0142 (2)
N10.0643 (12)0.0674 (12)0.0708 (13)0.0096 (10)0.0057 (10)0.0105 (10)
C10.0420 (10)0.0451 (10)0.0424 (10)0.0085 (8)0.0044 (8)0.0009 (8)
C20.0372 (9)0.0432 (10)0.0444 (10)0.0041 (7)0.0018 (7)0.0035 (8)
C30.0510 (11)0.0464 (11)0.0487 (11)0.0034 (9)0.0009 (9)0.0016 (9)
C40.0529 (11)0.0505 (11)0.0402 (10)0.0001 (9)0.0022 (8)0.0024 (8)
C50.0569 (12)0.0593 (13)0.0531 (12)0.0052 (10)0.0030 (10)0.0069 (10)
C60.0549 (12)0.0503 (12)0.0541 (12)0.0041 (9)0.0070 (10)0.0044 (9)
Geometric parameters (Å, º) top
S1—C11.7262 (19)C2—C31.334 (3)
S1—C21.7435 (19)C3—H30.9300
S2—C31.727 (2)C4—C51.508 (3)
S2—C11.729 (2)C4—H4A0.9700
S3—C11.650 (2)C4—H4B0.9700
S4—C21.759 (2)C5—C61.470 (3)
S4—C41.8191 (19)C5—H5A0.9700
N1—C61.133 (3)C5—H5B0.9700
C1—S1—C297.91 (9)C5—C4—H4A109.1
C3—S2—C197.39 (9)S4—C4—H4A109.1
C2—S4—C4101.59 (9)C5—C4—H4B109.1
S3—C1—S1122.76 (12)S4—C4—H4B109.1
S3—C1—S2125.08 (12)H4A—C4—H4B107.9
S1—C1—S2112.15 (11)C6—C5—C4111.69 (18)
C3—C2—S1115.08 (15)C6—C5—H5A109.3
C3—C2—S4125.36 (15)C4—C5—H5A109.3
S1—C2—S4119.25 (11)C6—C5—H5B109.3
C2—C3—S2117.36 (16)C4—C5—H5B109.3
C2—C3—H3121.3H5A—C5—H5B107.9
S2—C3—H3121.3N1—C6—C5178.4 (2)
C5—C4—S4112.31 (14)
C2—S1—C1—S23.39 (12)C4—S4—C2—S152.73 (13)
C3—S2—C1—S3178.04 (13)S1—C2—C3—S20.7 (2)
C3—S2—C1—S13.08 (12)S4—C2—C3—S2174.29 (11)
C1—S1—C2—C32.54 (17)C1—S2—C3—C21.47 (18)
C1—S1—C2—S4176.53 (11)C2—S4—C4—C578.01 (17)
C4—S4—C2—C3133.94 (18)S4—C4—C5—C6173.85 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S3i0.972.863.813 (2)167
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H5NS4
Mr219.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.2961 (9), 10.8917 (19), 16.031 (3)
β (°) 97.302 (2)
V3)917.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.35 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.728, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
6626, 1710, 1525
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.07
No. of reflections1710
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S3i0.972.863.813 (2)167
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 20872058).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, T., Liu, W.-J., Cong, Z.-Q. & Yin, B.-Z. (2005). Chin. J. Org. Chem., 25, 570–575.  CAS Google Scholar
First citationFabre, J. M. (2004). Chem. Rev., 104, 5133–5150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJia, C. Y., Zhang, D. Q., Xu, W. & Zhu, D. B. (2001). Org. Lett. 3, 1941–1944.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, G.-Q., Yu, W.-T., Xue, G., Liu, Z. & Fang, Q. (2002). Acta Cryst. E58, o514–o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSegura, J. L. & Martin, N. (2001). Angew. Chem. Int. Ed. 40, 1372–1409.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds