organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5,7,9,11,13,15-Octa­aza­penta­cyclo­[9.5.1.13,9.06,18.014,17]octa­decane-4,8,12,16-tetrone monohydrate: a methyl­ene-bridged glycoluril dimer

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China.
*Correspondence e-mail: sci.yqzhang@gzu.edu.cn

(Received 23 July 2008; accepted 30 July 2008; online 20 August 2008)

In the title compound, C10H12N8O4·H2O, prepared from the reaction of glycoluril with paraformaldehyde, the organic molecule has mm symmetry. The asymmetric unit comprises one quarter of the mol­ecule and a half-mol­ecule of water. The dimer is formed by bridging two glycoluril mol­ecules with methyl­ene groups at the 1 and 6 positions. In the crystal structure, mol­ecules are linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional framework.

Related literature

For general background, see: Zhao et al. (2004[Zhao, Y. J., Xue, S. F., Zhu, Q. J., Tao, Z., Zhang, J. X., Wei, Z. B., Long, L. S., Hu, M. L., Xiao, H. P. & Day, A. I. (2004). Chin. Sci. Bull. 49, 1111-1116.]); Zheng et al. (2005[Zheng, L. M., Zhu, J. N., Zhang, Y. Q., Tao, Z., Xue, S. F., Zhu, Q. J., Wei, Z. B. & Long, L. S. (2005). Chin. J. Inorg. Chem. 21, 1583-1588.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N8O4·H2O

  • Mr = 326.29

  • Orthorhombic, P m m n

  • a = 10.292 (3) Å

  • b = 12.286 (4) Å

  • c = 4.9530 (15) Å

  • V = 626.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 (2) K

  • 0.18 × 0.13 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.986

  • 3977 measured reflections

  • 616 independent reflections

  • 528 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.11

  • 616 reflections

  • 59 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.01 2.8417 (17) 164
O1W—H1WA⋯O1ii 0.86 2.36 3.0241 (17) 135
O1W—H1WA⋯O1 0.86 2.36 3.0241 (17) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, we have used different alkyl substituted glycolurils and glycoluril dimers as building blocks in the synthesis of partially alkyl substituted cucurbit[n]urils In this work, we report the crystal structure of the title compound, a glycoluril dimer, Fig 1.

The molecule comproses two glycoluril units linked by methylene bridges at the 1 and 6 positions. Molecules have mm crystallographic symmetry and the asymmetric unit comprises one quarter of the molecule and a half molecule of water. In the crystal structure, molecules are linked via N1—H1···O1i and O1W—H1WA···O1 hydrogen bonds forming a two-dimensional framework (Table 1 and Fig. 2).

Related literature top

For general background, see: Zhao et al. (2004); Zheng et al.(2005).

Experimental top

A solution of glycoluril (7.0 g, 0.05 mol) in H2SO4 (50 ml, 25%) was added to a stirred solution of paraformaldehyde (6.0 g, 0.2 mol) in H2SO4 (150 ml) and the mixture was kept at 40°C for 5 h. Glycoluril (14.2 g, 0.1 mol) and H2SO4 (100 ml, 25%) were added in small proportions to this reaction mixture and the solution held at 80°C on a water bath for 5 h. After cooling to room temperature, the mixture was filtered to remove the insoluble residue and the filtrate was neutralized with aqueous NH3 to pH 7. HCl (150 ml) was then added, the mixture, stirred for 10 min, then filtered again. The solid product was dissolved in 100 ml HCl, and then set aside for three weeks to form colourless crystals of I.

Refinement top

The water H atoms were located in a difference Fourier map and refined as riding on the O atom in these positions with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.97 Å (methylene) and 0.98 Å (methine), N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme (Symmetry codes: (A) -x + 3/2, y, z, (B) x, -y + 3/2, z, (C) -x + 3/2, -y + 3/2, z,). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
1,3,5,7,9,11,13,15-Octaazapentacyclo[9.5.1.13,9.06,18.014,17]octadecane- 4,8,12,16-tetrone monohydrate top
Crystal data top
C10H12N8O4·H2OF(000) = 340
Mr = 326.29Dx = 1.730 Mg m3
Orthorhombic, PmmnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2aCell parameters from 616 reflections
a = 10.292 (3) Åθ = 2.6–25.1°
b = 12.286 (4) ŵ = 0.14 mm1
c = 4.9530 (15) ÅT = 298 K
V = 626.2 (3) Å3Prism, colorless
Z = 20.18 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
616 independent reflections
Radiation source: fine-focus sealed tube528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1112
Tmin = 0.975, Tmax = 0.986k = 1414
3977 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1538P]
where P = (Fo2 + 2Fc2)/3
616 reflections(Δ/σ)max < 0.001
59 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H12N8O4·H2OV = 626.2 (3) Å3
Mr = 326.29Z = 2
Orthorhombic, PmmnMo Kα radiation
a = 10.292 (3) ŵ = 0.14 mm1
b = 12.286 (4) ÅT = 298 K
c = 4.9530 (15) Å0.18 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
616 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
528 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.986Rint = 0.026
3977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.11Δρmax = 0.18 e Å3
616 reflectionsΔρmin = 0.24 e Å3
59 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.25000.75000.5795 (5)0.0492 (7)
H1WA0.30960.75000.45740.059*
C10.56573 (14)0.59339 (12)0.2017 (3)0.0263 (4)
C20.75000.49067 (16)0.0938 (4)0.0272 (5)
H20.75000.42520.01910.033*
C30.75000.59750 (16)0.0774 (4)0.0254 (5)
H30.75000.58190.27140.030*
C40.5795 (2)0.75000.1105 (4)0.0265 (5)
H4A0.59770.75000.30270.032*
H4B0.48590.75000.08830.032*
N10.63278 (12)0.50102 (10)0.2503 (3)0.0336 (4)
H10.60770.45270.36460.040*
N20.63117 (12)0.65109 (9)0.0058 (2)0.0290 (4)
O10.46406 (10)0.62196 (9)0.3073 (2)0.0341 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0359 (14)0.0614 (16)0.0504 (16)0.0000.0000.000
C10.0257 (8)0.0270 (8)0.0263 (9)0.0046 (6)0.0020 (6)0.0024 (6)
C20.0257 (11)0.0248 (10)0.0312 (12)0.0000.0000.0036 (9)
C30.0239 (11)0.0281 (10)0.0241 (11)0.0000.0000.0033 (9)
C40.0243 (11)0.0290 (10)0.0262 (11)0.0000.0049 (8)0.000
N10.0328 (8)0.0307 (7)0.0374 (8)0.0027 (6)0.0088 (6)0.0078 (5)
N20.0245 (7)0.0306 (7)0.0319 (7)0.0024 (5)0.0038 (6)0.0038 (5)
O10.0291 (6)0.0352 (6)0.0380 (7)0.0024 (5)0.0081 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1W—H1WA0.8616C3—N2i1.4487 (16)
C1—O11.2214 (17)C3—N21.4487 (16)
C1—N11.350 (2)C3—H30.9800
C1—N21.3774 (19)C4—N2ii1.4461 (16)
C2—N1i1.4395 (17)C4—N21.4461 (16)
C2—N11.4395 (17)C4—H4A0.9700
C2—C31.563 (3)C4—H4B0.9700
C2—H20.9800N1—H10.8600
O1—C1—N1127.08 (14)C2—C3—H3111.6
O1—C1—N2124.95 (14)N2ii—C4—N2114.35 (17)
N1—C1—N2107.97 (13)N2ii—C4—H4A108.7
N1i—C2—N1113.86 (18)N2—C4—H4A108.7
N1i—C2—C3102.59 (11)N2ii—C4—H4B108.7
N1—C2—C3102.59 (11)N2—C4—H4B108.7
N1i—C2—H2112.3H4A—C4—H4B107.6
N1—C2—H2112.3C1—N1—C2113.98 (14)
C3—C2—H2112.3C1—N1—H1123.0
N2i—C3—N2115.16 (17)C2—N1—H1123.0
N2i—C3—C2103.14 (11)C1—N2—C4122.23 (14)
N2—C3—C2103.14 (11)C1—N2—C3112.29 (13)
N2i—C3—H3111.6C4—N2—C3125.37 (15)
N2—C3—H3111.6
N1i—C2—C3—N2i0.93 (16)N1—C1—N2—C4174.54 (13)
N1—C2—C3—N2i119.26 (13)O1—C1—N2—C3179.04 (14)
N1i—C2—C3—N2119.26 (13)N1—C1—N2—C31.78 (18)
N1—C2—C3—N20.93 (16)N2ii—C4—N2—C198.33 (19)
O1—C1—N1—C2179.74 (14)N2ii—C4—N2—C385.8 (2)
N2—C1—N1—C21.10 (18)N2i—C3—N2—C1109.90 (16)
N1i—C2—N1—C1110.00 (16)C2—C3—N2—C11.67 (17)
C3—C2—N1—C10.06 (18)N2i—C3—N2—C473.9 (2)
O1—C1—N2—C44.6 (2)C2—C3—N2—C4174.51 (14)
Symmetry codes: (i) x+3/2, y, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.862.012.8417 (17)164
O1W—H1WA···O1ii0.862.363.0241 (17)135
O1W—H1WA···O10.862.363.0241 (17)135
Symmetry codes: (ii) x, y+3/2, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H12N8O4·H2O
Mr326.29
Crystal system, space groupOrthorhombic, Pmmn
Temperature (K)298
a, b, c (Å)10.292 (3), 12.286 (4), 4.9530 (15)
V3)626.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.18 × 0.13 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
3977, 616, 528
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.11
No. of reflections616
No. of parameters59
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.012.8417 (17)163.5
O1W—H1WA···O1ii0.862.363.0241 (17)134.6
O1W—H1WA···O10.862.363.0241 (17)134.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z.
 

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003) and the Foundation of the Governor of Guizhou Province, China.

References

First citationBruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y. J., Xue, S. F., Zhu, Q. J., Tao, Z., Zhang, J. X., Wei, Z. B., Long, L. S., Hu, M. L., Xiao, H. P. & Day, A. I. (2004). Chin. Sci. Bull. 49, 1111–1116.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, L. M., Zhu, J. N., Zhang, Y. Q., Tao, Z., Xue, S. F., Zhu, Q. J., Wei, Z. B. & Long, L. S. (2005). Chin. J. Inorg. Chem. 21, 1583–1588.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds