organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1271-o1272

2-[(E)-(5-Amino-2,3-di­phenyl­quinoxalin-6-yl)imino­meth­yl]-4-bromo­phenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: hkfun@usm.my

(Received 9 June 2008; accepted 11 June 2008; online 13 June 2008)

The title compound, C27H19BrN4O, is a mono-anil Schiff base ligand. Three intra­molecular O—H⋯N and N—H⋯N hydrogen bonds involving the hydr­oxy and amino groups generate S(6) and S(5) ring motifs, respectively. In the crystal structure, weak inter­molecular N—H⋯O and C—H⋯O hydrogen bonds together with ππ inter­actions [centroid–centroid distances = 3.628 (3)–3.729 (3) Å] link neighboring mol­ecules.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures see, for example: Corden et al. (1996[Corden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777-2779.]); Govindasamy et al. (1999[Govindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368-1369.]). For applications and bioactivities see, for example: Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Cohen & Schmidt (1964[Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2041-2051.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Kia et al. (2004[Kia, R., Esmaeilbeig, A. & Harkema, S. (2004). Acta Cryst. A60, s267.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]); Uhlenbrock et al. (1996[Uhlenbrock, S., Wegner, R. & Krebs, B. J. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.]); Unaleroglu & Hokelek (2002[Unaleroglu, C. & Hokelek, T. (2002). Spectrosc. Lett. 32, 317-326.]). For related literature, see: Anderson et al. (1997[Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftland, H. L. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]).

[Scheme 1]

Experimental

Crystal data
  • C27H19BrN4O

  • Mr = 495.37

  • Monoclinic, P 21 /c

  • a = 22.923 (5) Å

  • b = 7.344 (5) Å

  • c = 12.573 (5) Å

  • β = 92.070 (5)°

  • V = 2115.2 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.37 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.510, Tmax = 0.853

  • 22554 measured reflections

  • 6205 independent reflections

  • 3722 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.142

  • S = 1.06

  • 6205 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.83 1.83 2.586 (4) 151
N2—H2N2⋯N4 0.88 (4) 2.35 (4) 2.740 (4) 107 (3)
N2—H1N2⋯N1 0.88 (4) 2.44 (4) 2.756 (4) 102 (3)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are among the most prevalent mixed-donor ligands in coordination chemistry. Schiff bases and their biologically active complexes have been studied over several decades (Anderson et al., 1997; Blower 1998; Corden et al., 1996; Govindasamy et al., 1999; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). 2-hydroxy Schiff base ligands are of interest mainly due to the existence of O—H···N and O···H—N type hydrogen bonds and tautomerization between the phenol-imine and keto-amine forms (Unaleroglu & Hokelek, 2002; Kia et al., 2004). This type of tautomerism plays an important role for distinguishing their photochromic and thermochromic properties (Cohen & Schmidt, 1964). Knowing the structures of free Schiff bases in solution and in the solid state is important in view of the intramolecular hydrogen bonding and comparison with the structure of Schiff base complexes. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is reported here.

In the title compound (Fig. 1), intramolecular O—H···N, and N—H···N hydrogen bonds form six and five-membered rings, producing S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The two phenyl substituents on the quinoxaline unit are inclined at an angle of 17.87 (17)° to one another. They also form dihedral angles of 38.96 (15) and 44.46 (15)° with the ten–membered quinoxaline ring. In the crystal packing (Fig. 2), molecules are stacked along the b axis by π···π interactions with Cg2···Cg3 distances ranging from 3.628 (3) – 3.729 (3) Å: symmetry codes 1 - x, 1/2 + y, 3/2 - z and 1 - x, -1/2 + y, 3/2 - z; Cg2 and Cg3 are the centroids of the C1–C6 and C8/C9/C10/C11/C14/C15 phenyl rings, respectively. The crystal structure is stabilized by intramolecular O—H···N, and N—H···N hydrogen bonds, weak intermolecular N—H···O and C—H···O hydrogen bonds, and π···π interactions.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures see, for example: Corden et al. (1996); Govindasamy et al. (1999). For applications and bioactivities see, for example: Blower (1998); Cohen & Schmidt, (1964); Granovski et al., (1993); Kia et al., (2004) Li & Chang, (1991); Shahrokhian et al., (2000); ; Uhlenbrock et al., (1996); Unaleroglu & Hokelek, (2002).

For related literature, see: Anderson et al. (1997); Blower (1998).

Experimental top

A mixture of o-diaminoquinoxaline (313 mg, 1 mmol) and 5-bromo salicylaldehyde (210 mg, 1 mmol) was suspended in 30 ml absolute ethanol. The reaction mixture was stirred under reflux for 1 h. After cooling, the precipitate was filtered, washed with ethanol and ether and dried under vacuum. Single crystals suitable for X-ray diffraction were obtained by evaporation of a mixed chloroform-ethanol (3/1, v/v) solution at room temperature.

Refinement top

The H-atoms attached to O1 were located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The H-atoms bound to N were located in a difference Fourier map and refined freely with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model, with thermal parameters 1.2 times those of the parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b-axis with hydrogen bonds drawn as dashed lines.
2-[(E)-(5-Amino-2,3-diphenylquinoxalin-6-yl)iminomethyl]-4-bromophenol top
Crystal data top
C27H19BrN4OF(000) = 1008
Mr = 495.37Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4509 reflections
a = 22.923 (5) Åθ = 2.9–28.3°
b = 7.344 (5) ŵ = 1.97 mm1
c = 12.573 (5) ÅT = 100 K
β = 92.070 (5)°Block, yellow
V = 2115.2 (17) Å30.39 × 0.37 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6205 independent reflections
Radiation source: fine-focus sealed tube3722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 30.1°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3232
Tmin = 0.510, Tmax = 0.853k = 108
22554 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0698P)2]
where P = (Fo2 + 2Fc2)/3
6205 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
C27H19BrN4OV = 2115.2 (17) Å3
Mr = 495.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.923 (5) ŵ = 1.97 mm1
b = 7.344 (5) ÅT = 100 K
c = 12.573 (5) Å0.39 × 0.37 × 0.08 mm
β = 92.070 (5)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6205 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3722 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.853Rint = 0.070
22554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.62 e Å3
6205 reflectionsΔρmin = 1.07 e Å3
305 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.259515 (13)0.53134 (5)0.59180 (3)0.02170 (12)
N10.52495 (11)0.6363 (4)0.7764 (2)0.0171 (6)
N20.60814 (13)0.5339 (4)0.9285 (2)0.0186 (6)
N40.72399 (11)0.5294 (4)0.8819 (2)0.0154 (6)
N30.76064 (11)0.6677 (4)0.6873 (2)0.0169 (6)
O10.44969 (9)0.7345 (3)0.91363 (18)0.0206 (5)
H1O10.48130.71010.88770.025*
C10.40804 (13)0.6934 (4)0.8389 (3)0.0177 (7)
C20.34965 (14)0.7191 (4)0.8608 (3)0.0188 (7)
H20.33980.76940.92560.023*
C30.30643 (13)0.6715 (5)0.7882 (3)0.0205 (8)
H30.26750.68830.80440.025*
C40.32022 (13)0.5985 (5)0.6910 (3)0.0183 (7)
C50.37775 (13)0.5769 (4)0.6645 (3)0.0176 (7)
H50.38660.53050.59820.021*
C60.42273 (13)0.6246 (4)0.7373 (3)0.0162 (7)
C70.48319 (13)0.6048 (5)0.7087 (3)0.0166 (7)
H70.49170.56880.64000.010 (8)*
C80.58402 (12)0.6335 (4)0.7490 (3)0.0146 (7)
C90.60282 (13)0.6891 (4)0.6473 (3)0.0174 (7)
H90.57520.72030.59450.021*
C100.66057 (13)0.6973 (4)0.6258 (3)0.0170 (7)
H100.67210.73440.55910.020*
C110.70293 (13)0.6494 (4)0.7053 (3)0.0159 (7)
C140.68498 (13)0.5891 (4)0.8062 (3)0.0135 (6)
C150.62412 (13)0.5842 (4)0.8283 (3)0.0157 (7)
C120.79874 (13)0.6218 (5)0.7641 (3)0.0165 (7)
C130.78033 (13)0.5390 (4)0.8603 (3)0.0161 (7)
C160.82122 (13)0.4561 (5)0.9406 (3)0.0174 (7)
C170.81113 (14)0.4750 (5)1.0488 (3)0.0185 (7)
H170.77930.54281.07020.022*
C180.84782 (13)0.3944 (5)1.1246 (3)0.0199 (7)
H180.84080.40861.19650.024*
C190.89531 (14)0.2918 (5)1.0935 (3)0.0223 (8)
H190.92050.23931.14440.027*
C200.90483 (14)0.2686 (5)0.9858 (3)0.0224 (8)
H200.93580.19700.96450.027*
C210.86863 (13)0.3509 (5)0.9104 (3)0.0196 (7)
H210.87580.33640.83860.024*
C220.86036 (13)0.6776 (4)0.7467 (3)0.0166 (7)
C230.89337 (13)0.7640 (5)0.8263 (3)0.0198 (7)
H230.87860.77580.89390.024*
C240.94824 (14)0.8330 (5)0.8060 (3)0.0220 (8)
H240.97010.89160.85950.026*
C250.97015 (14)0.8138 (5)0.7048 (3)0.0215 (8)
H251.00680.86030.69060.026*
C260.93829 (14)0.7271 (5)0.6262 (3)0.0215 (8)
H260.95350.71370.55900.026*
C270.88320 (13)0.6588 (5)0.6463 (3)0.0198 (7)
H270.86150.60040.59250.024*
H2N20.6362 (17)0.487 (5)0.970 (3)0.024*
H1N20.5740 (17)0.479 (5)0.925 (3)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01741 (16)0.02067 (18)0.0269 (2)0.00067 (13)0.00060 (13)0.00133 (17)
N10.0177 (13)0.0150 (15)0.0187 (16)0.0014 (10)0.0023 (11)0.0015 (12)
N20.0185 (13)0.0240 (15)0.0134 (15)0.0013 (12)0.0037 (11)0.0011 (13)
N40.0168 (12)0.0141 (13)0.0152 (15)0.0001 (10)0.0007 (10)0.0019 (12)
N30.0178 (13)0.0166 (15)0.0163 (15)0.0007 (10)0.0011 (11)0.0018 (12)
O10.0200 (11)0.0251 (14)0.0169 (13)0.0002 (9)0.0033 (10)0.0002 (11)
C10.0213 (16)0.0129 (17)0.0190 (19)0.0012 (12)0.0019 (14)0.0034 (14)
C20.0228 (16)0.0151 (17)0.0189 (19)0.0015 (12)0.0044 (14)0.0051 (14)
C30.0166 (15)0.0174 (18)0.028 (2)0.0021 (12)0.0043 (14)0.0079 (15)
C40.0191 (15)0.0133 (16)0.022 (2)0.0001 (12)0.0016 (13)0.0046 (15)
C50.0197 (15)0.0155 (17)0.0178 (19)0.0018 (12)0.0028 (13)0.0011 (13)
C60.0186 (15)0.0131 (17)0.0168 (18)0.0003 (12)0.0026 (13)0.0018 (14)
C70.0198 (15)0.0130 (16)0.0171 (19)0.0009 (12)0.0010 (13)0.0022 (14)
C80.0155 (14)0.0128 (16)0.0156 (18)0.0012 (11)0.0012 (12)0.0013 (13)
C90.0194 (15)0.0153 (17)0.0174 (19)0.0003 (12)0.0001 (13)0.0022 (14)
C100.0190 (15)0.0168 (17)0.0155 (18)0.0007 (12)0.0027 (13)0.0025 (14)
C110.0179 (15)0.0135 (16)0.0163 (18)0.0003 (11)0.0034 (13)0.0002 (13)
C140.0181 (15)0.0085 (14)0.0137 (17)0.0002 (11)0.0012 (12)0.0002 (13)
C150.0216 (15)0.0112 (15)0.0145 (18)0.0016 (12)0.0027 (13)0.0036 (13)
C120.0154 (14)0.0182 (17)0.0161 (18)0.0002 (12)0.0028 (13)0.0020 (14)
C130.0164 (14)0.0151 (16)0.0169 (18)0.0011 (12)0.0021 (12)0.0046 (15)
C160.0155 (14)0.0176 (17)0.0192 (19)0.0021 (12)0.0018 (12)0.0008 (15)
C170.0195 (15)0.0181 (16)0.0180 (19)0.0017 (13)0.0024 (13)0.0013 (15)
C180.0201 (16)0.0218 (18)0.0179 (19)0.0010 (13)0.0003 (13)0.0030 (15)
C190.0174 (16)0.025 (2)0.024 (2)0.0000 (13)0.0026 (14)0.0043 (16)
C200.0173 (15)0.0227 (19)0.028 (2)0.0054 (13)0.0036 (14)0.0021 (16)
C210.0201 (16)0.0191 (18)0.0198 (19)0.0015 (12)0.0037 (14)0.0013 (15)
C220.0160 (14)0.0162 (17)0.0180 (18)0.0006 (12)0.0034 (13)0.0004 (14)
C230.0188 (15)0.0250 (19)0.0158 (19)0.0009 (13)0.0034 (13)0.0012 (15)
C240.0202 (16)0.0253 (19)0.020 (2)0.0019 (13)0.0001 (14)0.0012 (16)
C250.0162 (15)0.027 (2)0.022 (2)0.0006 (13)0.0034 (14)0.0050 (16)
C260.0203 (16)0.028 (2)0.0165 (19)0.0026 (13)0.0049 (14)0.0002 (16)
C270.0210 (16)0.0221 (19)0.0164 (19)0.0029 (13)0.0015 (13)0.0019 (15)
Geometric parameters (Å, º) top
Br1—C41.900 (4)C10—H100.9300
N1—C71.279 (4)C11—C141.418 (4)
N1—C81.409 (3)C14—C151.433 (4)
N2—C151.376 (4)C12—C131.431 (4)
N2—H2N20.88 (4)C12—C221.495 (4)
N2—H1N20.88 (4)C13—C161.483 (5)
N4—C131.331 (4)C16—C171.396 (5)
N4—C141.355 (4)C16—C211.397 (4)
N3—C121.322 (4)C17—C181.382 (5)
N3—C111.357 (4)C17—H170.9300
O1—C11.350 (4)C18—C191.391 (4)
O1—H1O10.8254C18—H180.9300
C1—C21.389 (4)C19—C201.390 (5)
C1—C61.425 (5)C19—H190.9300
C2—C31.368 (5)C20—C211.377 (5)
C2—H20.9300C20—H200.9300
C3—C41.382 (5)C21—H210.9300
C3—H30.9300C22—C231.386 (5)
C4—C51.381 (4)C22—C271.391 (4)
C5—C61.398 (5)C23—C241.388 (4)
C5—H50.9300C23—H230.9300
C6—C71.452 (4)C24—C251.392 (5)
C7—H70.9300C24—H240.9300
C8—C151.380 (5)C25—C261.365 (5)
C8—C91.424 (4)C25—H250.9300
C9—C101.362 (4)C26—C271.390 (4)
C9—H90.9300C26—H260.9300
C10—C111.413 (5)C27—H270.9300
C7—N1—C8122.5 (3)N2—C15—C14118.5 (3)
C15—N2—H2N2116 (3)C8—C15—C14118.8 (3)
C15—N2—H1N2110 (3)N3—C12—C13121.2 (3)
H2N2—N2—H1N2118 (4)N3—C12—C22115.2 (3)
C13—N4—C14117.4 (3)C13—C12—C22123.3 (3)
C12—N3—C11118.3 (3)N4—C13—C12120.8 (3)
C1—O1—H1O1106.6N4—C13—C16115.7 (3)
O1—C1—C2119.6 (3)C12—C13—C16123.4 (3)
O1—C1—C6121.3 (3)C17—C16—C21118.5 (3)
C2—C1—C6119.1 (3)C17—C16—C13120.0 (3)
C3—C2—C1120.9 (3)C21—C16—C13121.4 (3)
C3—C2—H2119.6C18—C17—C16120.8 (3)
C1—C2—H2119.6C18—C17—H17119.6
C2—C3—C4120.4 (3)C16—C17—H17119.6
C2—C3—H3119.8C17—C18—C19120.0 (3)
C4—C3—H3119.8C17—C18—H18120.0
C5—C4—C3120.6 (3)C19—C18—H18120.0
C5—C4—Br1119.7 (3)C20—C19—C18119.5 (3)
C3—C4—Br1119.7 (2)C20—C19—H19120.2
C4—C5—C6120.1 (3)C18—C19—H19120.2
C4—C5—H5119.9C21—C20—C19120.3 (3)
C6—C5—H5119.9C21—C20—H20119.8
C5—C6—C1118.9 (3)C19—C20—H20119.8
C5—C6—C7120.0 (3)C20—C21—C16120.8 (3)
C1—C6—C7121.1 (3)C20—C21—H21119.6
N1—C7—C6121.0 (3)C16—C21—H21119.6
N1—C7—H7119.5C23—C22—C27119.1 (3)
C6—C7—H7119.5C23—C22—C12121.0 (3)
C15—C8—N1116.6 (3)C27—C22—C12119.6 (3)
C15—C8—C9120.6 (3)C22—C23—C24120.6 (3)
N1—C8—C9122.7 (3)C22—C23—H23119.7
C10—C9—C8121.2 (3)C24—C23—H23119.7
C10—C9—H9119.4C23—C24—C25119.3 (3)
C8—C9—H9119.4C23—C24—H24120.3
C9—C10—C11119.8 (3)C25—C24—H24120.3
C9—C10—H10120.1C26—C25—C24120.5 (3)
C11—C10—H10120.1C26—C25—H25119.7
N3—C11—C10120.4 (3)C24—C25—H25119.7
N3—C11—C14119.8 (3)C25—C26—C27120.2 (3)
C10—C11—C14119.8 (3)C25—C26—H26119.9
N4—C14—C11121.6 (3)C27—C26—H26119.9
N4—C14—C15118.6 (3)C26—C27—C22120.2 (3)
C11—C14—C15119.8 (3)C26—C27—H27119.9
N2—C15—C8122.7 (3)C22—C27—H27119.9
O1—C1—C2—C3177.3 (3)C11—C14—C15—N2176.8 (3)
C6—C1—C2—C33.1 (5)N4—C14—C15—C8175.8 (3)
C1—C2—C3—C40.7 (5)C11—C14—C15—C82.0 (5)
C2—C3—C4—C51.7 (5)C11—N3—C12—C135.7 (5)
C2—C3—C4—Br1179.5 (2)C11—N3—C12—C22169.0 (3)
C3—C4—C5—C61.6 (5)C14—N4—C13—C124.5 (4)
Br1—C4—C5—C6179.5 (2)C14—N4—C13—C16174.3 (3)
C4—C5—C6—C10.7 (5)N3—C12—C13—N49.6 (5)
C4—C5—C6—C7178.9 (3)C22—C12—C13—N4164.7 (3)
O1—C1—C6—C5177.3 (3)N3—C12—C13—C16169.1 (3)
C2—C1—C6—C53.1 (5)C22—C12—C13—C1616.6 (5)
O1—C1—C6—C73.1 (5)N4—C13—C16—C1739.1 (4)
C2—C1—C6—C7176.6 (3)C12—C13—C16—C17142.2 (3)
C8—N1—C7—C6174.5 (3)N4—C13—C16—C21137.8 (3)
C5—C6—C7—N1175.3 (3)C12—C13—C16—C2140.9 (5)
C1—C6—C7—N15.0 (5)C21—C16—C17—C181.2 (5)
C7—N1—C8—C15150.5 (3)C13—C16—C17—C18178.1 (3)
C7—N1—C8—C933.4 (5)C16—C17—C18—C190.4 (5)
C15—C8—C9—C100.8 (5)C17—C18—C19—C201.2 (5)
N1—C8—C9—C10175.2 (3)C18—C19—C20—C212.0 (5)
C8—C9—C10—C110.3 (5)C19—C20—C21—C161.2 (5)
C12—N3—C11—C10179.8 (3)C17—C16—C21—C200.4 (5)
C12—N3—C11—C142.5 (4)C13—C16—C21—C20177.3 (3)
C9—C10—C11—N3175.9 (3)N3—C12—C22—C23132.1 (3)
C9—C10—C11—C141.4 (5)C13—C12—C22—C2342.5 (5)
C13—N4—C14—C113.7 (5)N3—C12—C22—C2741.7 (4)
C13—N4—C14—C15178.6 (3)C13—C12—C22—C27143.7 (3)
N3—C11—C14—N47.5 (5)C27—C22—C23—C240.8 (5)
C10—C11—C14—N4175.2 (3)C12—C22—C23—C24173.0 (3)
N3—C11—C14—C15174.8 (3)C22—C23—C24—C250.4 (5)
C10—C11—C14—C152.5 (5)C23—C24—C25—C260.4 (5)
N1—C8—C15—N22.1 (5)C24—C25—C26—C270.7 (5)
C9—C8—C15—N2178.4 (3)C25—C26—C27—C220.3 (5)
N1—C8—C15—C14176.6 (3)C23—C22—C27—C260.4 (5)
C9—C8—C15—C140.3 (5)C12—C22—C27—C26173.4 (3)
N4—C14—C15—N25.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.831.832.586 (4)151
N2—H2N2···N40.88 (4)2.35 (4)2.740 (4)107 (3)
N2—H1N2···N10.88 (4)2.44 (4)2.756 (4)102 (3)

Experimental details

Crystal data
Chemical formulaC27H19BrN4O
Mr495.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)22.923 (5), 7.344 (5), 12.573 (5)
β (°) 92.070 (5)
V3)2115.2 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.39 × 0.37 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.510, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
22554, 6205, 3722
Rint0.070
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.142, 1.07
No. of reflections6205
No. of parameters305
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 1.07

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.83001.83002.586 (4)151.00
N2—H2N2···N40.88 (4)2.35 (4)2.740 (4)107 (3)
N2—H1N2···N10.88 (4)2.44 (4)2.756 (4)102 (3)
 

Footnotes

Address of first post-doctoral position: Chemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, England.

§Additional correspondence author, e-mail: p.r.raithby@bath.ac.uk.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia and the University of Bath for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAnderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftland, H. L. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationCorden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777–2779.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGovindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368–1369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKia, R., Esmaeilbeig, A. & Harkema, S. (2004). Acta Cryst. A60, s267.  CrossRef IUCr Journals Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUhlenbrock, S., Wegner, R. & Krebs, B. J. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736.  CSD CrossRef Web of Science Google Scholar
First citationUnaleroglu, C. & Hokelek, T. (2002). Spectrosc. Lett. 32, 317–326.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1271-o1272
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds