organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-meth­oxy­benzyl­­idene)-4-chloro­benzohydrazide

aDepartment of Chemistry, Huaihua University, Huaihua 418008, People's Republic of China
*Correspondence e-mail: linhongwei1968@126.com

(Received 8 June 2008; accepted 12 June 2008; online 19 June 2008)

The title Schiff base compound, C15H12BrClN2O2, crystallizes with two independent mol­ecules in the asymmetric unit. The mol­ecules adopt an E configuration with respect to the C=N double bond. The dihedral angles between the benzene rings are 24.4 (2) and 9.4 (2)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For general background, see: Ali et al. (2005[Ali, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433-m434.]); Arıcı et al. (2005[Arıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919-m921.]); Hebbachi & Benali-Cherif (2005[Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.]); Kurtoglu & Ispir (2007[Kurtoglu, M. & Ispir, E. (2007). Asian J. Chem. 19, 1239-1245.]); Qi et al. (2007[Qi, G.-F., Yang, Z.-Y. & Wang, B.-D. (2007). Transition Met. Chem. 32, 233-239.]); Sallam (2007[Sallam, S. A. (2007). J. Coord. Chem. 60, 951-971.]); Salmon et al. (2005[Salmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607-m2609.]); Sarı et al. (2006[Sarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563-m565.]); Tuncel & Sari (2007[Tuncel, M. & Sari, H. (2007). Transition Met. Chem. 32, 803-810.]). For related structures, see: Lin (2007[Lin, H.-W. (2007). Chin. J. Struct. Chem. 26, 773-776.]); Tang (2007[Tang, C.-B. (2007). Acta Cryst. E63, o4545.], 2008[Tang, C.-B. (2008). Acta Cryst. E64, o767.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrClN2O2

  • Mr = 367.63

  • Triclinic, [P \overline 1]

  • a = 7.636 (3) Å

  • b = 9.837 (4) Å

  • c = 20.524 (8) Å

  • α = 82.045 (5)°

  • β = 83.660 (6)°

  • γ = 87.573 (5)°

  • V = 1516.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.596, Tmax = 0.624

  • 8876 measured reflections

  • 6405 independent reflections

  • 3536 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.02

  • 6405 reflections

  • 387 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.894 (10) 2.026 (16) 2.900 (4) 165 (4)
N4—H4A⋯O2ii 0.893 (10) 1.994 (18) 2.854 (4) 161 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are very important ligands as they can readily form stable complexes with most metal ions (Tuncel & Sari, 2007; Sallam, 2007; Salmon et al., 2005; Ali et al., 2005; Arıcı et al., 2005; Hebbachi & Benali-Cherif, 2005; Sarı et al., 2006). Furthermore, Schiff bases and their metal complexes have excellent biological properties (Kurtoglu & Ispir, 2007; Qi et al., 2007). The author has proeviously reported the crystal structure of the Schiff base compound, isonicotinic acid [1-(3,5-dibromo-2-hydroxyphenyl)methylidene]hydrazide methanol solvate, which shows antibacterial activity (Lin, 2007). As a continuation of work on such compounds, I report herein the crystal structure of the new Schiff base compound, (I), Figure 1.

The two unique molecules of (I) adopt trans configurations about the CN double bonds. The bond lengths and bond angles are within normal ranges and comparable to those observed in other similar Schiff bases (Tang, 2007, 2008; Yang et al., 2008). The C8–N1 and C23–N3 bond lengths are respectively 1.268 (4) and 1.281 (5) Å, indicating they are double bonds while the C9–N2 and C24–N4 distances are 1.352 (5) and 1.349 (5) Å respectively, indicating some degree of conjugation in the molecules. The dihedral angle between the C1—C6 and C10—C15 benzene rings is 24.4 (2) ° with a 9.4 (2) ° angle between the C16—C21 and C25—C30 rings. The crystal structure is stabilized by intermolecular N–H···O hydrogen bonds (Table 1), forming chains running along the b axis (Figure 2).

Related literature top

For general background, see: Ali et al. (2005); Arıcı et al. (2005); Hebbachi & Benali-Cherif (2005); Kurtoglu & Ispir (2007); Qi et al. (2007); Sallam (2007); Salmon et al. (2005); Sarı et al. (2006); Tuncel & Sari (2007). For related structures, see: Lin (2007); Tang (2007, 2008); Yang et al. (2008).

Experimental top

5-Bromo-2-methoxybenzaldehyde (21.5 mg, 0.1 mmol) and 4-chlorobenzohydrazide (17.0 mg, 0.1 mmol) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 5 min to give a colorless solution. Colorless needle-like crystals of (I) were obtained from this solution on standing.

Refinement top

Atoms H2 attached to N2 and H4A attached to N4 were located in a difference Fourier map and refined isotropically, with N–H distances restrained to be 0.90 (1) Å. Other H atoms were placed in the calculated positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.96 Å, and with Uiso(H) values set to 1.2Ueq(C) and 1.5Ueq(methyl C). Crystals of (I) were small and very weakly diffracting reducing the amount of data collected.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonds drawn as dashed lines.
(E)-N'-(5-Bromo-2-methoxybenzylidene)-4-chlorobenzohydrazide top
Crystal data top
C15H12BrClN2O2Z = 4
Mr = 367.63F(000) = 736
Triclinic, P1Dx = 1.610 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.636 (3) ÅCell parameters from 2115 reflections
b = 9.837 (4) Åθ = 2.4–24.5°
c = 20.524 (8) ŵ = 2.89 mm1
α = 82.045 (5)°T = 298 K
β = 83.660 (6)°Cut from a needle, colorless
γ = 87.573 (5)°0.20 × 0.20 × 0.18 mm
V = 1516.9 (10) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6405 independent reflections
Radiation source: fine-focus sealed tube3536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 98
Tmin = 0.596, Tmax = 0.624k = 1212
8876 measured reflectionsl = 2226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0769P]
where P = (Fo2 + 2Fc2)/3
6405 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.53 e Å3
2 restraintsΔρmin = 0.64 e Å3
Crystal data top
C15H12BrClN2O2γ = 87.573 (5)°
Mr = 367.63V = 1516.9 (10) Å3
Triclinic, P1Z = 4
a = 7.636 (3) ÅMo Kα radiation
b = 9.837 (4) ŵ = 2.89 mm1
c = 20.524 (8) ÅT = 298 K
α = 82.045 (5)°0.20 × 0.20 × 0.18 mm
β = 83.660 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3536 reflections with I > 2σ(I)
Tmin = 0.596, Tmax = 0.624Rint = 0.027
8876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
6405 reflectionsΔρmin = 0.64 e Å3
387 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26007 (7)0.58987 (6)0.37080 (3)0.0799 (2)
Br20.70280 (8)0.20259 (6)0.50498 (3)0.0802 (2)
Cl11.33371 (15)0.53500 (15)0.06070 (7)0.0791 (4)
Cl20.17724 (17)0.08183 (14)1.11711 (6)0.0720 (4)
O10.0684 (3)0.0824 (3)0.26908 (15)0.0538 (8)
O20.5295 (4)0.6554 (3)0.20845 (15)0.0540 (8)
O30.7291 (4)0.3334 (3)0.61136 (16)0.0647 (9)
O40.3751 (4)0.1646 (3)0.83186 (14)0.0564 (8)
N10.3455 (4)0.4277 (3)0.24230 (16)0.0396 (8)
N20.5140 (4)0.4259 (3)0.21166 (16)0.0381 (8)
N30.5078 (4)0.0226 (3)0.73272 (16)0.0391 (8)
N40.4450 (4)0.0552 (3)0.79436 (15)0.0366 (7)
C10.0856 (5)0.3112 (4)0.28578 (18)0.0393 (9)
C20.0160 (5)0.1942 (4)0.29267 (19)0.0428 (10)
C30.1897 (5)0.1970 (5)0.3207 (2)0.0530 (11)
H30.25770.11980.32350.064*
C40.2615 (6)0.3127 (5)0.3442 (2)0.0562 (12)
H40.37730.31390.36370.067*
C50.1607 (6)0.4277 (4)0.3388 (2)0.0491 (11)
C60.0089 (5)0.4277 (4)0.3099 (2)0.0450 (10)
H60.07420.50660.30630.054*
C70.0205 (6)0.0445 (4)0.2809 (3)0.0658 (14)
H7A0.04220.07260.32770.099*
H7B0.05140.11320.26090.099*
H7C0.13060.03310.26200.099*
C80.2686 (5)0.3138 (4)0.25389 (18)0.0386 (9)
H80.32610.23380.24260.046*
C90.5984 (5)0.5460 (4)0.19608 (19)0.0387 (9)
C100.7809 (5)0.5382 (4)0.16255 (19)0.0380 (9)
C110.8303 (6)0.4472 (4)0.1180 (2)0.0543 (12)
H110.74960.38550.10940.065*
C121.0006 (6)0.4474 (4)0.0860 (2)0.0619 (13)
H121.03310.38810.05490.074*
C131.1199 (5)0.5355 (4)0.1006 (2)0.0503 (11)
C141.0735 (6)0.6255 (4)0.1447 (2)0.0519 (11)
H141.15600.68480.15420.062*
C150.9042 (5)0.6280 (4)0.1750 (2)0.0470 (10)
H150.87180.69090.20440.056*
C160.6500 (5)0.1030 (4)0.62592 (19)0.0388 (9)
C170.7266 (5)0.2153 (4)0.5841 (2)0.0480 (10)
C180.7957 (6)0.1997 (5)0.5206 (2)0.0634 (13)
H180.84700.27380.49310.076*
C190.7896 (6)0.0768 (5)0.4976 (2)0.0650 (13)
H190.83630.06730.45460.078*
C200.7141 (5)0.0335 (5)0.5381 (2)0.0530 (11)
C210.6451 (5)0.0205 (4)0.6024 (2)0.0455 (10)
H210.59540.09570.62950.055*
C220.7650 (8)0.4582 (5)0.5692 (3)0.0902 (19)
H22A0.88280.45390.54770.135*
H22B0.75350.53320.59490.135*
H22C0.68290.47210.53650.135*
C230.5758 (5)0.1230 (4)0.69281 (19)0.0390 (9)
H230.57790.20910.70650.047*
C240.3841 (5)0.0456 (4)0.8418 (2)0.0394 (9)
C250.3300 (5)0.0040 (4)0.90879 (19)0.0356 (9)
C260.2364 (5)0.0993 (4)0.9552 (2)0.0505 (11)
H260.20620.18200.94290.061*
C270.1892 (6)0.0726 (5)1.0180 (2)0.0565 (12)
H270.12740.13691.04850.068*
C280.2331 (5)0.0499 (4)1.0362 (2)0.0463 (10)
C290.3231 (5)0.1459 (4)0.9917 (2)0.0514 (11)
H290.35190.22871.00440.062*
C300.3706 (5)0.1186 (4)0.9278 (2)0.0455 (10)
H300.43070.18380.89730.055*
H20.563 (5)0.345 (2)0.203 (2)0.080*
H4A0.440 (6)0.1421 (19)0.803 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0826 (4)0.0853 (4)0.0695 (4)0.0282 (3)0.0066 (3)0.0234 (3)
Br20.1092 (5)0.0691 (4)0.0665 (4)0.0134 (3)0.0071 (3)0.0312 (3)
Cl10.0522 (7)0.1017 (10)0.0773 (10)0.0086 (7)0.0133 (6)0.0042 (8)
Cl20.0843 (9)0.0966 (10)0.0361 (7)0.0092 (7)0.0019 (6)0.0191 (6)
O10.0520 (17)0.0475 (17)0.063 (2)0.0136 (14)0.0019 (14)0.0123 (15)
O20.0693 (19)0.0282 (15)0.062 (2)0.0032 (14)0.0134 (15)0.0118 (14)
O30.089 (2)0.0479 (19)0.053 (2)0.0178 (16)0.0013 (16)0.0053 (16)
O40.089 (2)0.0272 (15)0.0509 (19)0.0125 (14)0.0168 (15)0.0122 (13)
N10.0406 (19)0.0320 (18)0.045 (2)0.0011 (14)0.0018 (15)0.0057 (15)
N20.0409 (19)0.0267 (17)0.045 (2)0.0022 (14)0.0031 (15)0.0049 (15)
N30.0456 (19)0.0354 (17)0.0360 (19)0.0010 (15)0.0004 (15)0.0079 (15)
N40.0527 (19)0.0285 (16)0.0277 (18)0.0052 (15)0.0038 (14)0.0055 (15)
C10.044 (2)0.046 (2)0.026 (2)0.0040 (19)0.0002 (17)0.0007 (18)
C20.050 (2)0.049 (3)0.030 (2)0.004 (2)0.0038 (18)0.0053 (19)
C30.047 (3)0.063 (3)0.046 (3)0.014 (2)0.003 (2)0.001 (2)
C40.043 (2)0.086 (4)0.037 (3)0.001 (2)0.0058 (19)0.005 (2)
C50.052 (3)0.060 (3)0.034 (2)0.010 (2)0.0023 (19)0.008 (2)
C60.049 (2)0.047 (2)0.038 (2)0.0004 (19)0.0029 (19)0.005 (2)
C70.067 (3)0.048 (3)0.085 (4)0.017 (2)0.015 (3)0.009 (3)
C80.048 (2)0.033 (2)0.035 (2)0.0020 (18)0.0023 (18)0.0068 (18)
C90.053 (2)0.030 (2)0.033 (2)0.0063 (18)0.0004 (18)0.0085 (17)
C100.049 (2)0.0258 (19)0.037 (2)0.0038 (17)0.0020 (18)0.0001 (17)
C110.058 (3)0.039 (2)0.066 (3)0.015 (2)0.011 (2)0.016 (2)
C120.070 (3)0.046 (3)0.068 (3)0.009 (2)0.018 (2)0.020 (2)
C130.050 (3)0.047 (3)0.049 (3)0.005 (2)0.004 (2)0.007 (2)
C140.056 (3)0.053 (3)0.046 (3)0.020 (2)0.008 (2)0.002 (2)
C150.061 (3)0.041 (2)0.040 (3)0.010 (2)0.002 (2)0.0085 (19)
C160.041 (2)0.043 (2)0.031 (2)0.0017 (18)0.0017 (17)0.0009 (19)
C170.054 (3)0.043 (2)0.046 (3)0.001 (2)0.004 (2)0.002 (2)
C180.072 (3)0.062 (3)0.047 (3)0.002 (2)0.010 (2)0.011 (3)
C190.077 (3)0.074 (4)0.037 (3)0.007 (3)0.010 (2)0.002 (3)
C200.055 (3)0.058 (3)0.046 (3)0.007 (2)0.004 (2)0.014 (2)
C210.049 (2)0.045 (2)0.042 (3)0.0040 (19)0.0046 (19)0.005 (2)
C220.129 (5)0.054 (3)0.085 (4)0.028 (3)0.029 (4)0.023 (3)
C230.045 (2)0.034 (2)0.039 (2)0.0010 (18)0.0025 (18)0.0088 (19)
C240.042 (2)0.029 (2)0.047 (3)0.0009 (17)0.0016 (18)0.0052 (19)
C250.039 (2)0.034 (2)0.034 (2)0.0023 (16)0.0053 (17)0.0058 (18)
C260.064 (3)0.036 (2)0.050 (3)0.010 (2)0.006 (2)0.006 (2)
C270.070 (3)0.050 (3)0.045 (3)0.001 (2)0.007 (2)0.003 (2)
C280.053 (2)0.055 (3)0.030 (2)0.009 (2)0.0051 (19)0.007 (2)
C290.064 (3)0.043 (2)0.050 (3)0.001 (2)0.006 (2)0.019 (2)
C300.064 (3)0.035 (2)0.036 (2)0.0056 (19)0.0026 (19)0.0056 (18)
Geometric parameters (Å, º) top
Br1—C51.905 (4)C10—C151.386 (5)
Br2—C201.891 (5)C11—C121.390 (6)
Cl1—C131.744 (4)C11—H110.9300
Cl2—C281.736 (4)C12—C131.367 (6)
O1—C21.371 (5)C12—H120.9300
O1—C71.424 (5)C13—C141.362 (6)
O2—C91.224 (4)C14—C151.372 (6)
O3—C171.359 (5)C14—H140.9300
O3—C221.419 (5)C15—H150.9300
O4—C241.222 (4)C16—C211.372 (5)
N1—C81.268 (4)C16—C171.407 (5)
N1—N21.369 (4)C16—C231.462 (5)
N2—C91.352 (5)C17—C181.379 (6)
N2—H20.894 (10)C18—C191.361 (7)
N3—C231.281 (5)C18—H180.9300
N3—N41.378 (4)C19—C201.378 (6)
N4—C241.349 (5)C19—H190.9300
N4—H4A0.893 (10)C20—C211.385 (6)
C1—C61.393 (5)C21—H210.9300
C1—C21.397 (5)C22—H22A0.9600
C1—C81.475 (5)C22—H22B0.9600
C2—C31.387 (5)C22—H22C0.9600
C3—C41.367 (6)C23—H230.9300
C3—H30.9300C24—C251.498 (5)
C4—C51.380 (6)C25—C301.376 (5)
C4—H40.9300C25—C261.399 (5)
C5—C61.363 (5)C26—C271.356 (6)
C6—H60.9300C26—H260.9300
C7—H7A0.9600C27—C281.375 (6)
C7—H7B0.9600C27—H270.9300
C7—H7C0.9600C28—C291.370 (6)
C8—H80.9300C29—C301.382 (6)
C9—C101.488 (5)C29—H290.9300
C10—C111.378 (6)C30—H300.9300
C2—O1—C7118.0 (3)C13—C14—H14120.3
C17—O3—C22119.0 (4)C15—C14—H14120.3
C8—N1—N2116.5 (3)C14—C15—C10121.0 (4)
C9—N2—N1118.4 (3)C14—C15—H15119.5
C9—N2—H2123 (3)C10—C15—H15119.5
N1—N2—H2118 (3)C21—C16—C17119.1 (4)
C23—N3—N4114.4 (3)C21—C16—C23122.3 (4)
C24—N4—N3119.1 (3)C17—C16—C23118.6 (4)
C24—N4—H4A120 (3)O3—C17—C18124.6 (4)
N3—N4—H4A121 (3)O3—C17—C16115.6 (4)
C6—C1—C2118.0 (4)C18—C17—C16119.8 (4)
C6—C1—C8120.1 (3)C19—C18—C17120.7 (4)
C2—C1—C8122.0 (4)C19—C18—H18119.7
O1—C2—C3124.6 (4)C17—C18—H18119.7
O1—C2—C1115.0 (3)C18—C19—C20119.9 (5)
C3—C2—C1120.4 (4)C18—C19—H19120.1
C4—C3—C2120.4 (4)C20—C19—H19120.1
C4—C3—H3119.8C19—C20—C21120.5 (4)
C2—C3—H3119.8C19—C20—Br2119.4 (4)
C3—C4—C5119.5 (4)C21—C20—Br2120.1 (3)
C3—C4—H4120.3C16—C21—C20120.1 (4)
C5—C4—H4120.3C16—C21—H21119.9
C6—C5—C4120.9 (4)C20—C21—H21119.9
C6—C5—Br1119.3 (3)O3—C22—H22A109.5
C4—C5—Br1119.8 (3)O3—C22—H22B109.5
C5—C6—C1120.9 (4)H22A—C22—H22B109.5
C5—C6—H6119.6O3—C22—H22C109.5
C1—C6—H6119.6H22A—C22—H22C109.5
O1—C7—H7A109.5H22B—C22—H22C109.5
O1—C7—H7B109.5N3—C23—C16120.4 (4)
H7A—C7—H7B109.5N3—C23—H23119.8
O1—C7—H7C109.5C16—C23—H23119.8
H7A—C7—H7C109.5O4—C24—N4122.8 (4)
H7B—C7—H7C109.5O4—C24—C25121.2 (3)
N1—C8—C1118.4 (3)N4—C24—C25116.0 (3)
N1—C8—H8120.8C30—C25—C26118.5 (4)
C1—C8—H8120.8C30—C25—C24124.5 (3)
O2—C9—N2122.3 (4)C26—C25—C24117.0 (3)
O2—C9—C10121.5 (3)C27—C26—C25120.9 (4)
N2—C9—C10116.2 (3)C27—C26—H26119.6
C11—C10—C15118.8 (4)C25—C26—H26119.6
C11—C10—C9122.3 (3)C26—C27—C28119.7 (4)
C15—C10—C9118.9 (4)C26—C27—H27120.1
C10—C11—C12120.2 (4)C28—C27—H27120.1
C10—C11—H11119.9C29—C28—C27120.9 (4)
C12—C11—H11119.9C29—C28—Cl2119.6 (4)
C13—C12—C11119.5 (4)C27—C28—Cl2119.6 (3)
C13—C12—H12120.3C28—C29—C30119.3 (4)
C11—C12—H12120.3C28—C29—H29120.4
C14—C13—C12121.1 (4)C30—C29—H29120.4
C14—C13—Cl1119.4 (3)C25—C30—C29120.8 (4)
C12—C13—Cl1119.4 (4)C25—C30—H30119.6
C13—C14—C15119.5 (4)C29—C30—H30119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.89 (1)2.03 (2)2.900 (4)165 (4)
N4—H4A···O2ii0.89 (1)1.99 (2)2.854 (4)161 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12BrClN2O2
Mr367.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.636 (3), 9.837 (4), 20.524 (8)
α, β, γ (°)82.045 (5), 83.660 (6), 87.573 (5)
V3)1516.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.596, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
8876, 6405, 3536
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.02
No. of reflections6405
No. of parameters387
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.64

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.894 (10)2.026 (16)2.900 (4)165 (4)
N4—H4A···O2ii0.893 (10)1.994 (18)2.854 (4)161 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The author acknowledges Huaihua University for a research grant.

References

First citationAli, H. M., Kamalul Aripin, N. F. & Ng, S. W. (2005). Acta Cryst. E61, m433–m434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArıcı, C., Yüzer, D., Atakol, O., Fuess, H. & Svoboda, I. (2005). Acta Cryst. E61, m919–m921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurtoglu, M. & Ispir, E. (2007). Asian J. Chem. 19, 1239–1245.  CAS Google Scholar
First citationLin, H.-W. (2007). Chin. J. Struct. Chem. 26, 773–776.  CAS Google Scholar
First citationQi, G.-F., Yang, Z.-Y. & Wang, B.-D. (2007). Transition Met. Chem. 32, 233–239.  Web of Science CrossRef CAS Google Scholar
First citationSallam, S. A. (2007). J. Coord. Chem. 60, 951–971.  Web of Science CrossRef CAS Google Scholar
First citationSalmon, L., Thuéry, P. & Ephritikhine, M. (2005). Acta Cryst. E61, m2607–m2609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarı, M., Atakol, O., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m563–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C.-B. (2007). Acta Cryst. E63, o4545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2008). Acta Cryst. E64, o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTuncel, M. & Sari, H. (2007). Transition Met. Chem. 32, 803–810.  Web of Science CrossRef CAS Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds