organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl-3-phenyl­sulfonyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 April 2008; accepted 10 April 2008; online 16 April 2008)

The title compound, C16H14O3S, was prepared by the oxidation of 2,5-dimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 76.98 (9)° with the plane of the benzofuran fragment. The crystal structure is stabilized by ππ inter­actions between furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.775 (4) Å]. In addition, the crystal structure exhibits intra- and inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 3-phenyl­sulfonyl-1-benzo­furan derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o794.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O3S

  • Mr = 286.33

  • Triclinic, [P \overline 1]

  • a = 7.476 (4) Å

  • b = 9.448 (5) Å

  • c = 11.283 (6) Å

  • α = 110.834 (8)°

  • β = 95.651 (9)°

  • γ = 106.122 (9)°

  • V = 698.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 4916 measured reflections

  • 2560 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.165

  • S = 1.08

  • 2560 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.45 3.345 (4) 160
C14—H14⋯O3ii 0.93 2.50 3.263 (4) 139
C16—H16C⋯O3 0.96 2.40 3.108 (4) 130
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies on the synthesis and structure of 3-phenyl-sulfonyl-1-benzofuran analogues, the crystal structure of 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 2,5,7-trimethyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b) have been described in the literature. Herein we report the molecular and crystal structure of the title compound, 2,5-dimethyl-3-phenylsulfonyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.065 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) makes a dihedral angle of 76.98 (9)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between the furan ring and the benzene ring from neighbouring molecules. The Cg1···Cg2iii distance is 3.775 (4) Å (Cg1 and Cg2 are the centroids of the O1/C8/C1/C2/C7 furan and the C2—C7 benzene rings, respectively, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by intra- and intermolecular C—H···O interactions (Table 1 and Fig. 2; symmetry codes as in Fig. 2).

Related literature top

For the crystal structures of similar 3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 717 mg, 3.2 mmol) was added in small portions to a stirred solution of 2,5-dimethyl 3-phenylsulfanyl-1-benzofuran (381 mg, 1.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2: 1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 411–412 K; Rf = 0.67 (hexane-ethyl acetate, 2: 1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.45 (s, 3H), 2.79 (s, 3H), 7.10 (d, J = 8.44 Hz, 1H), 7.29 (d, J = 8.44 Hz, 1H), 7.47–7.60 (m, 3H), 7.67 (s, 1H), 7.97–8.03 (m, 2H); EI—MS 286 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. ππ and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i)-x + 1, -y, -z + 1: (ii) -x + 1, -y, -z, (iii) -x + 1, -y + 1, -z + 1.]
2,5-Dimethyl-3-phenylsulfonyl-1-benzofuran top
Crystal data top
C16H14O3SZ = 2
Mr = 286.33F(000) = 300
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.476 (4) ÅCell parameters from 2576 reflections
b = 9.448 (5) Åθ = 2.5–28.2°
c = 11.283 (6) ŵ = 0.24 mm1
α = 110.834 (8)°T = 298 K
β = 95.651 (9)°Block, colorless
γ = 106.122 (9)°0.40 × 0.40 × 0.20 mm
V = 698.0 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
1967 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Graphite monochromatorθmax = 25.5°, θmin = 2.0°
Detector resolution: 10.0 pixels mm-1h = 99
ϕ and ω scansk = 1111
4916 measured reflectionsl = 1313
2560 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.3092P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H14O3Sγ = 106.122 (9)°
Mr = 286.33V = 698.0 (6) Å3
Triclinic, P1Z = 2
a = 7.476 (4) ÅMo Kα radiation
b = 9.448 (5) ŵ = 0.24 mm1
c = 11.283 (6) ÅT = 298 K
α = 110.834 (8)°0.40 × 0.40 × 0.20 mm
β = 95.651 (9)°
Data collection top
Bruker SMART CCD
diffractometer
1967 reflections with I > 2σ(I)
4916 measured reflectionsRint = 0.077
2560 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
2560 reflectionsΔρmin = 0.33 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.48253 (10)0.09684 (9)0.28377 (7)0.0479 (3)
O10.7729 (3)0.5526 (2)0.3996 (2)0.0621 (6)
O20.3828 (3)0.0486 (3)0.37248 (19)0.0587 (6)
O30.3765 (3)0.0689 (3)0.1608 (2)0.0660 (6)
C10.6127 (4)0.2991 (3)0.3636 (3)0.0469 (7)
C20.6846 (4)0.3858 (3)0.5024 (3)0.0457 (7)
C30.6797 (4)0.3508 (3)0.6115 (3)0.0492 (7)
H30.61770.24660.60320.059*
C40.7678 (5)0.4719 (4)0.7328 (3)0.0585 (8)
C50.8626 (5)0.6271 (4)0.7433 (4)0.0672 (9)
H50.92170.70780.82540.081*
C60.8716 (5)0.6647 (4)0.6369 (4)0.0679 (10)
H60.93490.76860.64520.082*
C70.7827 (4)0.5416 (3)0.5174 (3)0.0523 (8)
C80.6696 (4)0.4052 (4)0.3078 (3)0.0551 (8)
C90.6558 (4)0.0025 (3)0.2563 (3)0.0453 (7)
C100.7288 (5)0.0414 (4)0.3494 (3)0.0573 (8)
H100.68690.02270.42660.069*
C110.8658 (6)0.1138 (4)0.3250 (5)0.0807 (12)
H110.91640.14520.38620.097*
C120.9277 (6)0.1397 (4)0.2115 (5)0.0897 (14)
H121.02120.18750.19650.108*
C130.8531 (6)0.0959 (5)0.1201 (4)0.0846 (13)
H130.89560.11440.04300.102*
C140.7170 (5)0.0252 (4)0.1413 (3)0.0609 (9)
H140.66580.00420.07890.073*
C150.7617 (6)0.4376 (5)0.8531 (3)0.0803 (11)
H15A0.81920.35710.84800.096*
H15B0.63150.39950.85960.096*
H15C0.83070.53430.92830.096*
C160.6474 (6)0.3918 (5)0.1724 (4)0.0784 (11)
H16A0.77080.41750.15170.094*
H16B0.58640.46520.16270.094*
H16C0.57080.28390.11460.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0448 (4)0.0527 (4)0.0352 (4)0.0039 (3)0.0014 (3)0.0167 (3)
O10.0632 (13)0.0498 (12)0.0805 (17)0.0183 (10)0.0197 (12)0.0338 (12)
O20.0548 (12)0.0617 (13)0.0447 (13)0.0014 (10)0.0117 (10)0.0183 (10)
O30.0587 (12)0.0829 (16)0.0470 (14)0.0146 (12)0.0054 (11)0.0268 (12)
C10.0428 (14)0.0491 (16)0.0488 (18)0.0137 (12)0.0075 (13)0.0217 (14)
C20.0395 (13)0.0424 (15)0.0505 (18)0.0135 (11)0.0072 (13)0.0141 (13)
C30.0510 (15)0.0442 (15)0.0435 (18)0.0126 (13)0.0034 (14)0.0118 (13)
C40.0577 (17)0.0580 (19)0.050 (2)0.0242 (15)0.0027 (15)0.0097 (15)
C50.0649 (19)0.0506 (18)0.060 (2)0.0172 (16)0.0003 (17)0.0023 (16)
C60.0588 (19)0.0379 (16)0.089 (3)0.0111 (14)0.0075 (19)0.0111 (17)
C70.0473 (15)0.0450 (16)0.066 (2)0.0183 (13)0.0126 (15)0.0221 (15)
C80.0525 (17)0.0607 (19)0.061 (2)0.0214 (15)0.0129 (15)0.0324 (17)
C90.0481 (14)0.0387 (13)0.0333 (15)0.0015 (11)0.0006 (12)0.0089 (11)
C100.0599 (18)0.0500 (17)0.0522 (19)0.0051 (15)0.0004 (15)0.0228 (15)
C110.075 (2)0.052 (2)0.103 (3)0.0119 (18)0.013 (2)0.032 (2)
C120.074 (2)0.051 (2)0.121 (4)0.0243 (19)0.013 (3)0.007 (2)
C130.092 (3)0.064 (2)0.076 (3)0.023 (2)0.030 (2)0.002 (2)
C140.072 (2)0.0576 (19)0.0381 (17)0.0135 (16)0.0081 (16)0.0098 (14)
C150.098 (3)0.080 (3)0.047 (2)0.034 (2)0.003 (2)0.0103 (18)
C160.087 (3)0.089 (3)0.078 (3)0.028 (2)0.020 (2)0.056 (2)
Geometric parameters (Å, º) top
S—O31.425 (2)C8—C161.476 (4)
S—O21.431 (2)C9—C101.376 (4)
S—C11.726 (3)C9—C141.380 (4)
S—C91.758 (3)C10—C111.380 (5)
O1—C81.353 (4)C10—H100.9300
O1—C71.366 (4)C11—C121.367 (6)
C1—C81.359 (4)C11—H110.9300
C1—C21.446 (4)C12—C131.366 (6)
C2—C31.385 (4)C12—H120.9300
C2—C71.389 (4)C13—C141.360 (6)
C3—C41.381 (4)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.396 (5)C15—H15A0.9600
C4—C151.505 (5)C15—H15B0.9600
C5—C61.370 (5)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—C71.375 (5)C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
O3—S—O2118.96 (14)C10—C9—C14121.2 (3)
O3—S—C1109.04 (14)C10—C9—S119.9 (2)
O2—S—C1107.44 (13)C14—C9—S119.0 (3)
O3—S—C9108.12 (14)C9—C10—C11118.3 (3)
O2—S—C9107.90 (14)C9—C10—H10120.9
C1—S—C9104.45 (14)C11—C10—H10120.9
C8—O1—C7107.4 (2)C12—C11—C10120.5 (4)
C8—C1—C2107.5 (3)C12—C11—H11119.8
C8—C1—S126.5 (3)C10—C11—H11119.8
C2—C1—S126.0 (2)C13—C12—C11120.4 (4)
C3—C2—C7119.1 (3)C13—C12—H12119.8
C3—C2—C1136.9 (3)C11—C12—H12119.8
C7—C2—C1104.0 (3)C14—C13—C12120.3 (4)
C4—C3—C2119.4 (3)C14—C13—H13119.8
C4—C3—H3120.3C12—C13—H13119.8
C2—C3—H3120.3C13—C14—C9119.4 (4)
C3—C4—C5119.4 (3)C13—C14—H14120.3
C3—C4—C15120.5 (3)C9—C14—H14120.3
C5—C4—C15120.1 (3)C4—C15—H15A109.5
C6—C5—C4122.4 (3)C4—C15—H15B109.5
C6—C5—H5118.8H15A—C15—H15B109.5
C4—C5—H5118.8C4—C15—H15C109.5
C5—C6—C7116.9 (3)H15A—C15—H15C109.5
C5—C6—H6121.6H15B—C15—H15C109.5
C7—C6—H6121.6C8—C16—H16A109.5
O1—C7—C6126.5 (3)C8—C16—H16B109.5
O1—C7—C2110.7 (3)H16A—C16—H16B109.5
C6—C7—C2122.8 (3)C8—C16—H16C109.5
O1—C8—C1110.4 (3)H16A—C16—H16C109.5
O1—C8—C16115.5 (3)H16B—C16—H16C109.5
C1—C8—C16134.1 (3)
O3—S—C1—C824.0 (3)C3—C2—C7—C61.8 (5)
O2—S—C1—C8154.2 (3)C1—C2—C7—C6178.9 (3)
C9—S—C1—C891.3 (3)C7—O1—C8—C10.0 (3)
O3—S—C1—C2157.4 (2)C7—O1—C8—C16178.4 (3)
O2—S—C1—C227.2 (3)C2—C1—C8—O10.3 (4)
C9—S—C1—C287.2 (3)S—C1—C8—O1178.5 (2)
C8—C1—C2—C3179.4 (3)C2—C1—C8—C16178.2 (4)
S—C1—C2—C30.6 (5)S—C1—C8—C160.6 (6)
C8—C1—C2—C70.4 (3)O3—S—C9—C10156.0 (2)
S—C1—C2—C7178.4 (2)O2—S—C9—C1026.2 (2)
C7—C2—C3—C41.7 (4)C1—S—C9—C1087.9 (2)
C1—C2—C3—C4179.4 (3)O3—S—C9—C1424.4 (3)
C2—C3—C4—C50.9 (5)O2—S—C9—C14154.3 (2)
C2—C3—C4—C15179.0 (3)C1—S—C9—C1491.6 (2)
C3—C4—C5—C60.2 (6)C14—C9—C10—C110.2 (4)
C15—C4—C5—C6179.8 (3)S—C9—C10—C11179.4 (2)
C4—C5—C6—C70.2 (5)C9—C10—C11—C120.5 (5)
C8—O1—C7—C6178.7 (3)C10—C11—C12—C130.8 (6)
C8—O1—C7—C20.2 (3)C11—C12—C13—C140.3 (6)
C5—C6—C7—O1179.4 (3)C12—C13—C14—C90.3 (5)
C5—C6—C7—C21.1 (5)C10—C9—C14—C130.6 (4)
C3—C2—C7—O1179.6 (2)S—C9—C14—C13179.0 (2)
C1—C2—C7—O10.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.453.345 (4)160
C14—H14···O3ii0.932.503.263 (4)139
C16—H16C···O30.962.403.108 (4)130
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14O3S
Mr286.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.476 (4), 9.448 (5), 11.283 (6)
α, β, γ (°)110.834 (8), 95.651 (9), 106.122 (9)
V3)698.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4916, 2560, 1967
Rint0.077
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.165, 1.08
No. of reflections2560
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.453.345 (4)160.3
C14—H14···O3ii0.932.503.263 (4)138.9
C16—H16C···O30.962.403.108 (4)130.0
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds