metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4-di­bromo-6-formyl­phenolato-κ2O,O′)copper(II)

aKey Laboratory of Nonferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin, 541004, People's Republic of China
*Correspondence e-mail: zsh720108@21cn.com

(Received 14 November 2007; accepted 23 November 2007; online 6 December 2007)

In the title compound, [Cu(C7H3Br2O2)2], the CuII atom, which lies on an inversion centre, is coordinated by four O atoms from two chelating bidentate 2,4-dibromo-6-formyl­phenolate ligands in a slightly distorted square-planar coordination geometry. In the crystal structure, short inter­molecular Br⋯Br [3.516 (4) and 3.653 (4) Å] and Cu⋯Br [3.255 (1) Å] contacts together with C—H⋯O hydrogen bonds generate a three-dimensional network.

Related literature

The presence of halo substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964[Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.]; Zordan et al., 2005[Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.]; Zaman et al., 2004[Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]; Zhang et al., 2007[Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319-m1320.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3Br2O2)2]

  • Mr = 621.37

  • Orthorhombic, P b c a

  • a = 8.2625 (12) Å

  • b = 12.8216 (14) Å

  • c = 15.229 (2) Å

  • V = 1613.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.28 mm−1

  • T = 298 (2) K

  • 0.58 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.059, Tmax = 0.301 (expected range = 0.040–0.206)

  • 6267 measured reflections

  • 1418 independent reflections

  • 1049 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.02

  • 1418 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.892 (3)
Cu1—O1 1.959 (3)
O2—Cu1—O2i 180
O2—Cu1—O1i 87.09 (12)
O2—Cu1—O1 92.91 (12)
Symmetry code: (i) -x+1, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯01ii 0.93 2.54 3.475 (5) 178
Symmetry code: (ii) [-x-1, y+{\script{5\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.0) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.0) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The packing arrangements of halogenated compounds, which Schmidt called the 'chloro effect', have been studied for many years. The presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), Fig. 1, contains the dibromo ligand 2,4-dibromo-6-formylphenolate with two Br atoms accessible at the periphery of each ligand.

In (I), the CuII atom is coordinated by four O atoms from two chelating, bidentate 3,5–2,4-dibromo-6-formylphenolate ligands, in a slightly distorted square planar geometry (Table 1). A weak Cu1···Br1i, 3.255 (1) Å contact (i = 1 + x, y, z) occurs in the axial coordination position with respect the coordination plane of the molecule. In addition there are short Br1ii–Br2iii 3.516 (4) Å and Br1ii–Br2iv 3.653 (4) Å [symmetry codes: ii = x, 1/2 - y, -1/2 + z; iii = -x, 1 - y, -z; iv = -1/2 - x, 1 - y, -1/2 + z] contacts. In the crystal structure these intermolecular Br···Br and Cu···Br contacts together with C7—H7···O1 hydrogen bonds generate a three-dimensional network (Fig. 2).

Related literature top

The presence of halo substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Zaman et al., 2004; Zhang et al., 2007).

Experimental top

An ethanol solution (30 ml) containing 3,5-dibromo-2-hydroxy-benzaldehyde (0.382 g, 2 mmol) was added to an aqueous solution containing amino-methanesulfonic acid(0.222 g, 2 mmol) and sodium hydroxide (0.080 g, 2 mmol). After stirring for 1 h, an aqueous solution of copper chloride (0.396 g, 2 mmol) was added to the resulting solution and stirred for 2 h. The green mixture solution was filtered. After 10 days, green block-like crystals of (I) were obtained by slow evaporation of the filtrate (yield: 49.2%, based on Cu).

Refinement top

All H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C–H distances of 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

The packing arrangements of halogenated compounds, which Schmidt called the 'chloro effect', have been studied for many years. The presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Zaman et al., 2004; Zhang et al., 2007). The title compound, (I), Fig. 1, contains the dibromo ligand 2,4-dibromo-6-formylphenolate with two Br atoms accessible at the periphery of each ligand.

In (I), the CuII atom is coordinated by four O atoms from two chelating, bidentate 3,5–2,4-dibromo-6-formylphenolate ligands, in a slightly distorted square planar geometry (Table 1). A weak Cu1···Br1i, 3.255 (1) Å contact (i = 1 + x, y, z) occurs in the axial coordination position with respect the coordination plane of the molecule. In addition there are short Br1ii–Br2iii 3.516 (4) Å and Br1ii–Br2iv 3.653 (4) Å [symmetry codes: ii = x, 1/2 - y, -1/2 + z; iii = -x, 1 - y, -z; iv = -1/2 - x, 1 - y, -1/2 + z] contacts. In the crystal structure these intermolecular Br···Br and Cu···Br contacts together with C7—H7···O1 hydrogen bonds generate a three-dimensional network (Fig. 2).

The presence of halo substituents on aromatic compounds frequently results in stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zordan et al., 2005; Zaman et al., 2004; Zhang et al., 2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997) and local programs.

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% probability displacement ellipsoids. Atoms labelled A are related to other atoms by the symmetry operation -x + 1, -y + 2, -z.
[Figure 2] Fig. 2. Part of the packing of (I) showing the three-dimensional network; broken lines indicate short Br···Br and M···Br contacts and C–H···O hydrogen bonds.
Bis(2,4-dibromo-6-formylphenolato-κ2O,O')copper(II) top
Crystal data top
[Cu(C7H3Br2O2)2]F(000) = 1164
Mr = 621.37Dx = 2.558 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2295 reflections
a = 8.2625 (12) Åθ = 2.7–26.8°
b = 12.8216 (14) ŵ = 11.28 mm1
c = 15.229 (2) ÅT = 298 K
V = 1613.3 (4) Å3Block, green
Z = 40.58 × 0.18 × 0.14 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1418 independent reflections
Radiation source: fine-focus sealed tube1049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.059, Tmax = 0.301k = 1514
6267 measured reflectionsl = 1018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
1418 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C7H3Br2O2)2]V = 1613.3 (4) Å3
Mr = 621.37Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.2625 (12) ŵ = 11.28 mm1
b = 12.8216 (14) ÅT = 298 K
c = 15.229 (2) Å0.58 × 0.18 × 0.14 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1049 reflections with I > 2σ(I)
Tmin = 0.059, Tmax = 0.301Rint = 0.058
6267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 0.64 e Å3
1418 reflectionsΔρmin = 0.40 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.00000.0343 (2)
O10.3788 (4)1.1291 (2)0.0202 (2)0.0401 (9)
O20.3351 (3)0.9426 (2)0.0713 (2)0.0353 (8)
Br10.15473 (6)0.79703 (4)0.19008 (4)0.04386 (18)
Br20.32171 (5)1.11175 (5)0.16575 (4)0.04679 (19)
C10.2415 (6)1.1486 (3)0.0101 (3)0.0387 (12)
H10.19831.21330.00440.046*
C20.1438 (5)1.0839 (3)0.0638 (3)0.0290 (11)
C30.1976 (5)0.9837 (3)0.0916 (3)0.0259 (11)
C40.0877 (5)0.9270 (3)0.1451 (3)0.0277 (11)
C50.0614 (5)0.9652 (4)0.1676 (3)0.0323 (12)
H50.13020.92620.20310.039*
C60.1097 (5)1.0627 (4)0.1372 (3)0.0318 (11)
C70.0094 (5)1.1223 (3)0.0878 (3)0.0301 (11)
H70.04181.18840.06980.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0233 (4)0.0325 (5)0.0469 (6)0.0004 (4)0.0076 (4)0.0068 (4)
O10.0293 (18)0.0369 (19)0.054 (2)0.0031 (15)0.0131 (16)0.0149 (17)
O20.0215 (16)0.0349 (18)0.049 (2)0.0036 (14)0.0069 (16)0.0080 (16)
Br10.0395 (3)0.0338 (3)0.0583 (4)0.0038 (2)0.0016 (3)0.0118 (3)
Br20.0286 (3)0.0583 (4)0.0534 (4)0.0058 (3)0.0100 (2)0.0060 (3)
C10.033 (3)0.033 (3)0.050 (3)0.001 (2)0.001 (3)0.010 (3)
C20.025 (2)0.032 (3)0.030 (3)0.004 (2)0.003 (2)0.000 (2)
C30.023 (2)0.027 (3)0.028 (3)0.0062 (19)0.003 (2)0.000 (2)
C40.025 (2)0.027 (2)0.030 (3)0.006 (2)0.006 (2)0.002 (2)
C50.029 (3)0.037 (3)0.031 (3)0.010 (2)0.007 (2)0.001 (2)
C60.021 (2)0.039 (3)0.035 (3)0.000 (2)0.003 (2)0.005 (2)
C70.026 (2)0.030 (3)0.035 (3)0.005 (2)0.000 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—O21.892 (3)C1—H10.9300
Cu1—O2i1.892 (3)C2—C71.407 (5)
Cu1—O1i1.959 (3)C2—C31.424 (6)
Cu1—O11.959 (3)C3—C41.420 (6)
O1—C11.249 (5)C4—C51.370 (6)
O2—C31.290 (5)C5—C61.391 (6)
Br1—C41.885 (4)C5—H50.9300
Br2—C61.912 (4)C6—C71.355 (6)
C1—C21.418 (6)C7—H70.9300
O2—Cu1—O2i180.0O2—C3—C2124.9 (4)
O2—Cu1—O1i87.09 (12)C4—C3—C2115.6 (4)
O2i—Cu1—O1i92.91 (12)C5—C4—C3122.4 (4)
O2—Cu1—O192.91 (12)C5—C4—Br1119.3 (3)
O2i—Cu1—O187.09 (12)C3—C4—Br1118.2 (3)
O1i—Cu1—O1180.000 (1)C4—C5—C6119.7 (4)
C1—O1—Cu1125.1 (3)C4—C5—H5120.1
C3—O2—Cu1127.8 (3)C6—C5—H5120.1
O1—C1—C2127.8 (4)C7—C6—C5121.1 (4)
O1—C1—H1116.1C7—C6—Br2120.1 (3)
C2—C1—H1116.1C5—C6—Br2118.9 (3)
C7—C2—C1117.3 (4)C6—C7—C2119.8 (4)
C7—C2—C3121.3 (4)C6—C7—H7120.1
C1—C2—C3121.4 (4)C2—C7—H7120.1
O2—C3—C4119.5 (4)
O2—Cu1—O1—C10.4 (4)C1—C2—C3—C4179.9 (4)
O2i—Cu1—O1—C1179.6 (4)O2—C3—C4—C5178.7 (4)
O1i—Cu1—O1—C1125 (100)C2—C3—C4—C50.8 (6)
O2i—Cu1—O2—C337.4 (17)O2—C3—C4—Br14.0 (6)
O1i—Cu1—O2—C3179.0 (4)C2—C3—C4—Br1176.5 (3)
O1—Cu1—O2—C31.0 (4)C3—C4—C5—C60.4 (7)
Cu1—O1—C1—C20.5 (7)Br1—C4—C5—C6177.8 (4)
O1—C1—C2—C7178.3 (4)C4—C5—C6—C72.1 (7)
O1—C1—C2—C31.1 (8)C4—C5—C6—Br2177.5 (3)
Cu1—O2—C3—C4178.7 (3)C5—C6—C7—C22.5 (7)
Cu1—O2—C3—C20.7 (6)Br2—C6—C7—C2177.2 (3)
C7—C2—C3—O2179.0 (4)C1—C2—C7—C6178.3 (4)
C1—C2—C3—O20.4 (7)C3—C2—C7—C61.1 (7)
C7—C2—C3—C40.5 (6)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···01ii0.932.543.475 (5)178
Symmetry code: (ii) x1, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H3Br2O2)2]
Mr621.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.2625 (12), 12.8216 (14), 15.229 (2)
V3)1613.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)11.28
Crystal size (mm)0.58 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.059, 0.301
No. of measured, independent and
observed [I > 2σ(I)] reflections
6267, 1418, 1049
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.02
No. of reflections1418
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997) and local programs.

Selected geometric parameters (Å, º) top
Cu1—O21.892 (3)Cu1—O11.959 (3)
O2—Cu1—O2i180.0O2—Cu1—O192.91 (12)
O2—Cu1—O1i87.09 (12)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···01ii0.932.543.475 (5)178.2
Symmetry code: (ii) x1, y+5/2, z+1/2.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, People's Republic of China, and the Creative Talents Base of Graduate Education, Guang Xi Province.

References

First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART (Version 5.0) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationZaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979–5989.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds