organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4-Triacet­­oxy-1-[5-(1,2,3,4-tetra­acet­oxy­butyl)pyrazin-2-yl]butyl acetate

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 14 November 2007; accepted 22 November 2007; online 6 December 2007)

The title compound, C28H36N2O16, was obtained unintentionally in an attempt to synthesize 1,3,4,6-tetra-O-acetyl-2-azido-2-de­oxy-D-mannopyran­ose. The crystal packing utilizes methyl–acet­oxy C—H⋯O and meth­yl–pyrazine C—H⋯N hydrogen bonding.

Related literature

For general background, see: Vasella et al. (1991[Vasella, A., Witzig, C. & Martin-Lomas, M. (1991). Helv. Chim. Acta, 74, 2073-2077.]); Alper et al. (1996[Alper, P. B., Hung, S.-C. & Wong, C.-H. (1996). Tetrahedron Lett. 37, 6029-6032.]). For related literature, see: Bovin et al. (1981[Bovin, N. V., Zurabyan, S. E. & Khorlin, A. Y. (1981). Carbohydr. Res. 98, 25-35.]); Paulsen & Stenzel (1978[Paulsen, H. & Stenzel, W. (1978). Chem. Ber. 111, 2334-2348.]); Paulsen et al. (1985[Paulsen, H., Lorentzen, J. P. & Kutschker, W. (1985). Carbohydr. Res. 136, 153-176.]); Pavliak & Kovac (1991[Pavliak, V. & Kovac, P. (1991). Carbohydr. Res. 210, 333-337.]). For related structures, see: Klein et al. (1999[Klein, A., Kasack, V., Reinhardt, R., Scheiring, T., Sixt, T., Zalis, S., Fiedler, J. & Kaim, W. (1999). J. Chem. Soc. Dalton Trans. pp. 575-582.]); Myers et al. (2000[Myers, A. G., Kung, D. W. & Zhong, B. (2000). J. Am. Chem. Soc. 122, 3236-3237.]), found in a search of the Cambridge Structural Database (Version 5.28; Allen; 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C28H36N2O16

  • Mr = 656.59

  • Triclinic, P 1

  • a = 5.6931 (8) Å

  • b = 9.9132 (15) Å

  • c = 15.5048 (11) Å

  • α = 81.344 (2)°

  • β = 80.635 (2)°

  • γ = 73.986 (2)°

  • V = 824.71 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 159 (2) K

  • 0.72 × 0.24 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7120 measured reflections

  • 3304 independent reflections

  • 2954 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.103

  • S = 1.11

  • 3304 reflections

  • 424 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.61 3.338 (5) 134
C6—H6⋯N4ii 0.95 2.60 3.331 (5) 134
C7—H7B⋯O2ii 0.98 2.57 3.400 (5) 142
C19—H19A⋯O12iii 0.98 2.58 3.443 (5) 147
C19—H19B⋯O10ii 0.98 2.58 3.407 (5) 142
C19—H19C⋯O2iii 0.98 2.53 3.472 (6) 161
C26—H26B⋯O14i 0.98 2.60 3.471 (6) 148
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.045) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.045) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

We were attempting to establish suitable process routes towards 2-azido-2-deoxy-D-manno- and -D-glucopyranoses utilizing diazo-transfer chemistry as described in the literature (Vasella et al., 1991; Alper et al., 1996). These monosaccharides have been described in the literature as existing in the gum state (Paulsen & Stenzel, 1978; Paulsen et al., 1985). In order to obtain crystalline materials, the acetate derivatives of these sugars were targeted. Both anomers of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose have been reported as crystalline (Paulsen & Stenzel, 1978; Paulsen et al., 1985, Pavliak & Kovac, 1991; Bovin et al., 1981) as has 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α-D-mannopyranose (Paulsen et al., 1985; Bovin et al., 1981). Although 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α- and –β-D-mannopyranoses were produced, about one third of the product mixture was the title compound which preferentially crystallized from ethyl acetate/hexanes.

There is only one other pyrazine derivative reported (Allen, 2002) in the CSD (JOQQAH: 2,3-bis(1-Phenyliminoethyl)pyrazine, Klein et al., 1999), and one related piperazine (XERGAC, Myers et al., 2000). Crystal packing is provided through (methyl)C—H···O (acetoxy) and C—H···N (pyrazine) hydrogen bonding (Table 1).

Related literature top

For general background, see: Vasella et al. (1991); Alper et al. (1996). For related literature, see: Bovin et al. (1981); Paulsen & Stenzel (1978); Paulsen et al. (1985); Pavliak & Kovac (1991). For related structures, see: Klein et al. (1999); Myers et al. (2000); sourced from Allen (2002).

Experimental top

Aqueous mannosamine hydrochloride was treated with stoichiometric potassium carbonate and subsequently with a solution of excess triflic azide (trifluromethanesulfonyl azide) in dichloromethane, in the presence of a catalytic amount (1 mol%) of copper(II) sulfate. Methanol was utilized as required to ensure homogeneity of the reaction mixture. Once all the starting material had been consumed, the mixture was concentrated to a syrup and then subjected to per-acetylation by dissolution in pyridine and treatment with excess acetic anhydride in the presence of catalytic 4-(N,N-dimethylamino)pyridine. The mixture was concentrated to a brown syrup, dissolved in ethyl acetate and passed through a plug of silica gel. Concentration again afforded a brown syrup which appeared to contain a mixture of compounds, two of which were identified (by NMR comparison with authentic samples) as being the desired 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α- and –β-D-mannopyranoses. Approximately one third of the product mixture was the title compound which preferentially crystallized during an attempted crystallization from ethyl acetate/hexanes. Suitable crystals were grown from ethyl acetate solution by addition of small amounts of hexanes until turbity was observed, heated to a clear solution; crystals obtained on cooling were washed with hexanes.

Refinement top

In the absence of significant anomalous sattering, the values of the Flack [(1983). Acta Cryst. A39, 876–881] parameter were indeterminate [Flack & Bernardinelli (2000) J. Appl. Cryst. 33, 1143–1148]. Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. All H atoms were constrained to their expected geometries (C—H 0.99, 0.98 Å). and refined with Uiso 1.2,1.5 times that of the Ueq of their carrier atoms.

Structure description top

We were attempting to establish suitable process routes towards 2-azido-2-deoxy-D-manno- and -D-glucopyranoses utilizing diazo-transfer chemistry as described in the literature (Vasella et al., 1991; Alper et al., 1996). These monosaccharides have been described in the literature as existing in the gum state (Paulsen & Stenzel, 1978; Paulsen et al., 1985). In order to obtain crystalline materials, the acetate derivatives of these sugars were targeted. Both anomers of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose have been reported as crystalline (Paulsen & Stenzel, 1978; Paulsen et al., 1985, Pavliak & Kovac, 1991; Bovin et al., 1981) as has 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α-D-mannopyranose (Paulsen et al., 1985; Bovin et al., 1981). Although 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α- and –β-D-mannopyranoses were produced, about one third of the product mixture was the title compound which preferentially crystallized from ethyl acetate/hexanes.

There is only one other pyrazine derivative reported (Allen, 2002) in the CSD (JOQQAH: 2,3-bis(1-Phenyliminoethyl)pyrazine, Klein et al., 1999), and one related piperazine (XERGAC, Myers et al., 2000). Crystal packing is provided through (methyl)C—H···O (acetoxy) and C—H···N (pyrazine) hydrogen bonding (Table 1).

For general background, see: Vasella et al. (1991); Alper et al. (1996). For related literature, see: Bovin et al. (1981); Paulsen & Stenzel (1978); Paulsen et al. (1985); Pavliak & Kovac (1991). For related structures, see: Klein et al. (1999); Myers et al. (2000); sourced from Allen (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 30% probabilility ellipsoids (ORTEP-3; Farrugia, 1997).
2,3,4-Triacetoxy-1-[5-(1,2,3,4-tetraacetoxybutyl)pyrazin-2-yl]butyl acetate top
Crystal data top
C28H36N2O16Z = 1
Mr = 656.59F(000) = 346
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6931 (8) ÅCell parameters from 5104 reflections
b = 9.9132 (15) Åθ = 4.4–26.4°
c = 15.5048 (11) ŵ = 0.11 mm1
α = 81.344 (2)°T = 159 K
β = 80.635 (2)°Needle, colorless
γ = 73.986 (2)°0.72 × 0.24 × 0.11 mm
V = 824.71 (18) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
2954 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.4°, θmin = 2.2°
Detector resolution: 8.192 pixels mm-1h = 37
φ and ω scansk = 1212
7120 measured reflectionsl = 1919
3304 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.2195P]
where P = (Fo2 + 2Fc2)/3
3304 reflections(Δ/σ)max = 0.009
424 parametersΔρmax = 0.18 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C28H36N2O16γ = 73.986 (2)°
Mr = 656.59V = 824.71 (18) Å3
Triclinic, P1Z = 1
a = 5.6931 (8) ÅMo Kα radiation
b = 9.9132 (15) ŵ = 0.11 mm1
c = 15.5048 (11) ÅT = 159 K
α = 81.344 (2)°0.72 × 0.24 × 0.11 mm
β = 80.635 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2954 reflections with I > 2σ(I)
7120 measured reflectionsRint = 0.029
3304 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.11Δρmax = 0.18 e Å3
3304 reflectionsΔρmin = 0.19 e Å3
424 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1773 (4)0.7258 (2)0.61777 (15)0.0260 (5)
O20.3590 (5)0.9030 (3)0.5790 (3)0.0582 (10)
O30.2283 (4)0.4418 (2)0.70327 (15)0.0253 (5)
O40.5514 (5)0.2533 (3)0.6832 (2)0.0477 (8)
O50.4938 (4)0.4054 (3)0.88213 (16)0.0324 (6)
O60.3058 (6)0.2322 (4)0.9229 (3)0.0688 (11)
O70.4371 (4)0.6945 (2)0.79743 (16)0.0275 (5)
O80.1083 (5)0.8765 (3)0.8170 (3)0.0589 (10)
O90.6049 (4)0.2219 (2)0.33102 (15)0.0260 (5)
O100.9351 (5)0.0465 (3)0.3595 (2)0.0520 (8)
O110.4486 (4)0.5073 (2)0.24872 (15)0.0256 (5)
O120.5623 (5)0.7043 (3)0.2567 (2)0.0472 (8)
O130.8382 (4)0.5509 (3)0.06940 (16)0.0310 (6)
O140.5172 (6)0.7186 (4)0.0242 (3)0.0676 (11)
O150.9951 (4)0.2621 (2)0.15420 (16)0.0280 (5)
O160.8672 (5)0.0803 (3)0.1278 (3)0.0581 (9)
N10.3344 (5)0.5037 (3)0.51401 (19)0.0284 (7)
N40.8257 (5)0.4504 (3)0.43623 (19)0.0264 (6)
C10.4152 (5)0.6276 (4)0.6262 (2)0.0230 (7)
H10.53630.68140.63130.028*
C20.5011 (5)0.5497 (3)0.5451 (2)0.0229 (7)
C30.7430 (6)0.5242 (4)0.5062 (2)0.0256 (7)
H30.85500.55990.52960.031*
C40.1747 (7)0.8635 (4)0.5934 (2)0.0313 (8)
C50.6607 (5)0.4030 (3)0.4065 (2)0.0221 (7)
C60.4154 (6)0.4294 (4)0.4455 (2)0.0292 (8)
H60.30340.39320.42250.035*
C70.0781 (7)0.9536 (4)0.5866 (3)0.0410 (9)
H7A0.14031.00110.63990.061*
H7B0.18580.89480.58010.061*
H7C0.07571.02440.53530.061*
C80.3913 (6)0.5271 (4)0.7099 (2)0.0241 (7)
H80.55760.46420.71970.029*
C90.3341 (6)0.3066 (4)0.6861 (2)0.0315 (8)
C100.1456 (7)0.2369 (4)0.6714 (3)0.0432 (10)
H10A0.22760.14910.64530.065*
H10B0.03560.30020.63150.065*
H10C0.04940.21550.72780.065*
C110.2789 (6)0.6045 (4)0.7911 (2)0.0256 (7)
H110.11080.66520.78160.031*
C120.2596 (6)0.5074 (4)0.8747 (2)0.0317 (8)
H12A0.21320.56270.92580.038*
H12B0.13050.45810.87430.038*
C130.4913 (7)0.2697 (4)0.9063 (2)0.0343 (9)
C140.7445 (8)0.1760 (4)0.9068 (3)0.0423 (10)
H14A0.75980.12070.96450.064*
H14B0.86370.23350.89480.064*
H14C0.77710.11200.86130.064*
C150.3246 (6)0.8303 (4)0.8119 (2)0.0294 (8)
C160.5035 (8)0.9104 (5)0.8197 (3)0.0423 (10)
H16A0.47440.99780.77940.063*
H16B0.67150.85290.80480.063*
H16C0.48280.93360.88020.063*
C170.7464 (5)0.3247 (4)0.3258 (2)0.0241 (7)
H170.92550.27530.32420.029*
C180.7229 (6)0.0834 (4)0.3507 (2)0.0280 (8)
C190.5532 (7)0.0086 (4)0.3588 (3)0.0428 (10)
H19A0.62110.08180.31890.064*
H19B0.39230.04830.34330.064*
H19C0.53410.05310.41940.064*
C200.7033 (5)0.4248 (3)0.2418 (2)0.0226 (7)
H200.81460.48940.23310.027*
C210.4017 (6)0.6466 (4)0.2599 (2)0.0293 (8)
C220.1323 (7)0.7117 (5)0.2744 (3)0.0479 (11)
H22A0.10150.81480.26730.072*
H22B0.06610.68010.33410.072*
H22C0.05160.68320.23160.072*
C230.7427 (6)0.3479 (4)0.1605 (2)0.0258 (7)
H230.62900.28470.16940.024 (9)*
C240.7002 (7)0.4464 (4)0.0770 (2)0.0313 (8)
H24A0.75330.39180.02560.038*
H24B0.52250.49380.07790.038*
C250.7234 (7)0.6849 (4)0.0426 (3)0.0349 (9)
C260.8816 (7)0.7823 (4)0.0403 (3)0.0421 (10)
H26A0.87920.84270.01590.063*
H26B1.05090.72730.04660.063*
H26C0.81910.84120.08870.063*
C271.0321 (7)0.1277 (4)0.1357 (2)0.0303 (8)
C281.2961 (7)0.0510 (4)0.1289 (3)0.0407 (9)
H28A1.34110.01390.18790.061*
H28B1.39610.11570.10100.061*
H28C1.32600.02740.09340.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0195 (10)0.0230 (13)0.0343 (13)0.0038 (9)0.0021 (9)0.0040 (10)
O20.0329 (15)0.0335 (18)0.105 (3)0.0122 (13)0.0085 (16)0.0092 (17)
O30.0231 (11)0.0209 (12)0.0316 (13)0.0063 (9)0.0003 (9)0.0051 (10)
O40.0324 (15)0.0315 (16)0.082 (2)0.0007 (11)0.0141 (14)0.0234 (15)
O50.0338 (13)0.0276 (14)0.0350 (14)0.0075 (10)0.0045 (10)0.0021 (11)
O60.052 (2)0.0374 (19)0.120 (3)0.0234 (16)0.018 (2)0.011 (2)
O70.0260 (11)0.0253 (13)0.0326 (13)0.0041 (9)0.0035 (9)0.0125 (10)
O80.0356 (17)0.0365 (19)0.107 (3)0.0002 (13)0.0094 (16)0.0326 (19)
O90.0229 (11)0.0236 (13)0.0331 (13)0.0074 (9)0.0047 (9)0.0044 (10)
O100.0324 (15)0.0292 (16)0.092 (3)0.0027 (12)0.0165 (14)0.0010 (15)
O110.0227 (11)0.0229 (13)0.0325 (13)0.0041 (9)0.0061 (9)0.0072 (10)
O120.0345 (14)0.0271 (16)0.083 (2)0.0088 (12)0.0005 (14)0.0237 (15)
O130.0344 (13)0.0266 (14)0.0307 (14)0.0070 (10)0.0032 (10)0.0022 (11)
O140.0464 (19)0.042 (2)0.113 (3)0.0079 (15)0.0280 (19)0.010 (2)
O150.0255 (12)0.0275 (13)0.0314 (13)0.0073 (10)0.0021 (9)0.0099 (10)
O160.0386 (16)0.0363 (18)0.107 (3)0.0088 (13)0.0085 (16)0.0329 (18)
N10.0184 (12)0.0431 (19)0.0266 (16)0.0106 (12)0.0003 (10)0.0113 (13)
N40.0177 (13)0.0339 (17)0.0290 (16)0.0072 (11)0.0011 (10)0.0091 (13)
C10.0154 (14)0.0269 (19)0.0286 (18)0.0065 (13)0.0047 (12)0.0048 (14)
C20.0208 (14)0.0259 (18)0.0225 (17)0.0064 (13)0.0039 (12)0.0025 (13)
C30.0201 (15)0.032 (2)0.0293 (19)0.0111 (13)0.0030 (12)0.0107 (15)
C40.0320 (19)0.029 (2)0.033 (2)0.0072 (16)0.0045 (15)0.0047 (16)
C50.0214 (14)0.0225 (17)0.0213 (17)0.0043 (12)0.0038 (12)0.0002 (13)
C60.0208 (15)0.041 (2)0.0310 (19)0.0124 (14)0.0043 (13)0.0110 (16)
C70.038 (2)0.028 (2)0.054 (3)0.0022 (16)0.0120 (18)0.0019 (18)
C80.0171 (15)0.0230 (18)0.0318 (19)0.0045 (12)0.0002 (13)0.0069 (14)
C90.0294 (19)0.029 (2)0.037 (2)0.0074 (15)0.0025 (14)0.0082 (16)
C100.039 (2)0.036 (2)0.061 (3)0.0159 (18)0.0094 (19)0.009 (2)
C110.0259 (17)0.0274 (19)0.0243 (18)0.0076 (14)0.0018 (13)0.0058 (15)
C120.0341 (18)0.0256 (19)0.0307 (19)0.0012 (14)0.0010 (14)0.0066 (15)
C130.048 (2)0.030 (2)0.028 (2)0.0131 (18)0.0111 (16)0.0019 (16)
C140.049 (2)0.028 (2)0.049 (3)0.0037 (18)0.0100 (18)0.0066 (18)
C150.037 (2)0.0250 (19)0.0250 (18)0.0030 (15)0.0057 (14)0.0056 (15)
C160.053 (3)0.035 (2)0.045 (2)0.0152 (19)0.0136 (19)0.0074 (19)
C170.0166 (14)0.0259 (18)0.0307 (19)0.0053 (12)0.0017 (12)0.0079 (14)
C180.0314 (19)0.0227 (19)0.0274 (19)0.0044 (15)0.0017 (14)0.0053 (15)
C190.045 (2)0.033 (2)0.053 (3)0.0170 (19)0.0065 (19)0.0024 (19)
C200.0193 (15)0.0227 (17)0.0263 (17)0.0037 (12)0.0025 (12)0.0077 (14)
C210.0292 (18)0.024 (2)0.035 (2)0.0031 (15)0.0041 (14)0.0101 (16)
C220.031 (2)0.039 (3)0.068 (3)0.0009 (17)0.0030 (19)0.007 (2)
C230.0244 (16)0.0253 (18)0.0297 (19)0.0089 (14)0.0020 (13)0.0062 (14)
C240.0402 (19)0.031 (2)0.0278 (19)0.0125 (15)0.0089 (15)0.0066 (15)
C250.035 (2)0.030 (2)0.034 (2)0.0011 (16)0.0007 (15)0.0039 (17)
C260.047 (2)0.029 (2)0.048 (2)0.0081 (18)0.0035 (18)0.0008 (18)
C270.0361 (19)0.030 (2)0.0258 (19)0.0101 (16)0.0002 (14)0.0068 (15)
C280.036 (2)0.033 (2)0.050 (3)0.0026 (16)0.0024 (17)0.0120 (19)
Geometric parameters (Å, º) top
O1—C41.358 (4)C8—H81.0000
O1—C11.446 (3)C9—C101.489 (5)
O2—C41.195 (5)C10—H10A0.9800
O3—C91.357 (4)C10—H10B0.9800
O3—C81.441 (4)C10—H10C0.9800
O4—C91.200 (4)C11—C121.503 (5)
O5—C131.345 (5)C11—H111.0000
O5—C121.443 (4)C12—H12A0.9900
O6—C131.191 (5)C12—H12B0.9900
O7—C151.356 (4)C13—C141.484 (6)
O7—C111.454 (4)C14—H14A0.9800
O8—C151.183 (4)C14—H14B0.9800
O9—C181.364 (4)C14—H14C0.9800
O9—C171.449 (4)C15—C161.483 (5)
O10—C181.186 (4)C16—H16A0.9800
O11—C211.365 (4)C16—H16B0.9800
O11—C201.451 (4)C16—H16C0.9800
O12—C211.196 (4)C17—C201.524 (5)
O13—C251.344 (5)C17—H171.0000
O13—C241.445 (4)C18—C191.481 (5)
O14—C251.197 (5)C19—H19A0.9800
O15—C271.358 (5)C19—H19B0.9800
O15—C231.450 (4)C19—H19C0.9800
O16—C271.189 (4)C20—C231.524 (4)
N1—C61.331 (4)C20—H201.0000
N1—C21.339 (4)C21—C221.485 (5)
N4—C51.329 (4)C22—H22A0.9800
N4—C31.348 (4)C22—H22B0.9800
C1—C21.517 (5)C22—H22C0.9800
C1—C81.524 (5)C23—C241.510 (5)
C1—H11.0000C23—H231.0000
C2—C31.381 (4)C24—H24A0.9900
C3—H30.9500C24—H24B0.9900
C4—C71.481 (5)C25—C261.485 (6)
C5—C61.398 (4)C26—H26A0.9800
C5—C171.514 (5)C26—H26B0.9800
C6—H60.9500C26—H26C0.9800
C7—H7A0.9800C27—C281.480 (5)
C7—H7B0.9800C28—H28A0.9800
C7—H7C0.9800C28—H28B0.9800
C8—C111.529 (4)C28—H28C0.9800
C4—O1—C1116.8 (3)H14A—C14—H14C109.5
C9—O3—C8117.1 (3)H14B—C14—H14C109.5
C13—O5—C12117.4 (3)O8—C15—O7122.5 (3)
C15—O7—C11117.0 (3)O8—C15—C16125.3 (4)
C18—O9—C17117.2 (2)O7—C15—C16112.1 (3)
C21—O11—C20117.7 (2)C15—C16—H16A109.5
C25—O13—C24117.1 (3)C15—C16—H16B109.5
C27—O15—C23116.3 (3)H16A—C16—H16B109.5
C6—N1—C2116.6 (3)C15—C16—H16C109.5
C5—N4—C3116.1 (3)H16A—C16—H16C109.5
O1—C1—C2109.5 (2)H16B—C16—H16C109.5
O1—C1—C8108.3 (2)O9—C17—C5108.2 (3)
C2—C1—C8112.0 (3)O9—C17—C20108.2 (3)
O1—C1—H1109.0C5—C17—C20111.3 (3)
C2—C1—H1109.0O9—C17—H17109.7
C8—C1—H1109.0C5—C17—H17109.7
N1—C2—C3121.4 (3)C20—C17—H17109.7
N1—C2—C1117.3 (3)O10—C18—O9122.1 (3)
C3—C2—C1121.3 (3)O10—C18—C19126.5 (4)
N4—C3—C2122.3 (3)O9—C18—C19111.4 (3)
N4—C3—H3118.9C18—C19—H19A109.5
C2—C3—H3118.9C18—C19—H19B109.5
O2—C4—O1122.2 (3)H19A—C19—H19B109.5
O2—C4—C7125.9 (4)C18—C19—H19C109.5
O1—C4—C7111.9 (3)H19A—C19—H19C109.5
N4—C5—C6121.6 (3)H19B—C19—H19C109.5
N4—C5—C17117.1 (3)O11—C20—C17109.4 (2)
C6—C5—C17121.2 (3)O11—C20—C23105.6 (2)
N1—C6—C5121.9 (3)C17—C20—C23113.0 (3)
N1—C6—H6119.0O11—C20—H20109.6
C5—C6—H6119.0C17—C20—H20109.6
C4—C7—H7A109.5C23—C20—H20109.6
C4—C7—H7B109.5O12—C21—O11122.5 (3)
H7A—C7—H7B109.5O12—C21—C22126.8 (4)
C4—C7—H7C109.5O11—C21—C22110.8 (3)
H7A—C7—H7C109.5C21—C22—H22A109.5
H7B—C7—H7C109.5C21—C22—H22B109.5
O3—C8—C1110.7 (3)H22A—C22—H22B109.5
O3—C8—C11105.3 (2)C21—C22—H22C109.5
C1—C8—C11112.7 (3)H22A—C22—H22C109.5
O3—C8—H8109.3H22B—C22—H22C109.5
C1—C8—H8109.3O15—C23—C24110.2 (3)
C11—C8—H8109.3O15—C23—C20106.1 (2)
O4—C9—O3123.2 (3)C24—C23—C20113.3 (3)
O4—C9—C10125.9 (4)O15—C23—H23109.0
O3—C9—C10110.9 (3)C24—C23—H23109.0
C9—C10—H10A109.5C20—C23—H23109.0
C9—C10—H10B109.5O13—C24—C23109.7 (3)
H10A—C10—H10B109.5O13—C24—H24A109.7
C9—C10—H10C109.5C23—C24—H24A109.7
H10A—C10—H10C109.5O13—C24—H24B109.7
H10B—C10—H10C109.5C23—C24—H24B109.7
O7—C11—C12110.0 (3)H24A—C24—H24B108.2
O7—C11—C8106.2 (2)O14—C25—O13122.8 (4)
C12—C11—C8113.6 (3)O14—C25—C26125.5 (4)
O7—C11—H11109.0O13—C25—C26111.7 (3)
C12—C11—H11109.0C25—C26—H26A109.5
C8—C11—H11109.0C25—C26—H26B109.5
O5—C12—C11109.3 (3)H26A—C26—H26B109.5
O5—C12—H12A109.8C25—C26—H26C109.5
C11—C12—H12A109.8H26A—C26—H26C109.5
O5—C12—H12B109.8H26B—C26—H26C109.5
C11—C12—H12B109.8O16—C27—O15122.4 (3)
H12A—C12—H12B108.3O16—C27—C28125.9 (4)
O6—C13—O5122.8 (4)O15—C27—C28111.7 (3)
O6—C13—C14125.6 (4)C27—C28—H28A109.5
O5—C13—C14111.6 (3)C27—C28—H28B109.5
C13—C14—H14A109.5H28A—C28—H28B109.5
C13—C14—H14B109.5C27—C28—H28C109.5
H14A—C14—H14B109.5H28A—C28—H28C109.5
C13—C14—H14C109.5H28B—C28—H28C109.5
C4—O1—C1—C2101.0 (3)C8—C11—C12—O549.8 (4)
C4—O1—C1—C8136.6 (3)C12—O5—C13—O61.4 (6)
C6—N1—C2—C31.7 (5)C12—O5—C13—C14177.0 (3)
C6—N1—C2—C1176.7 (3)C11—O7—C15—O81.9 (5)
O1—C1—C2—N143.2 (4)C11—O7—C15—C16178.3 (3)
C8—C1—C2—N177.0 (4)C18—O9—C17—C5106.6 (3)
O1—C1—C2—C3138.3 (3)C18—O9—C17—C20132.6 (3)
C8—C1—C2—C3101.5 (3)N4—C5—C17—O9149.7 (3)
C5—N4—C3—C20.1 (5)C6—C5—C17—O933.0 (4)
N1—C2—C3—N41.0 (5)N4—C5—C17—C2091.5 (3)
C1—C2—C3—N4177.3 (3)C6—C5—C17—C2085.8 (4)
C1—O1—C4—O20.4 (5)C17—O9—C18—O103.2 (5)
C1—O1—C4—C7179.7 (3)C17—O9—C18—C19176.8 (3)
C3—N4—C5—C60.4 (5)C21—O11—C20—C17107.7 (3)
C3—N4—C5—C17177.7 (3)C21—O11—C20—C23130.4 (3)
C2—N1—C6—C51.4 (5)O9—C17—C20—O1166.6 (3)
N4—C5—C6—N10.3 (5)C5—C17—C20—O1152.2 (3)
C17—C5—C6—N1176.8 (3)O9—C17—C20—C2350.7 (3)
C9—O3—C8—C1102.4 (3)C5—C17—C20—C23169.5 (2)
C9—O3—C8—C11135.4 (3)C20—O11—C21—O126.4 (5)
O1—C1—C8—O364.7 (3)C20—O11—C21—C22174.5 (3)
C2—C1—C8—O356.2 (3)C27—O15—C23—C24101.2 (3)
O1—C1—C8—C1153.0 (3)C27—O15—C23—C20135.7 (3)
C2—C1—C8—C11173.9 (2)O11—C20—C23—O15178.5 (3)
C8—O3—C9—O46.0 (5)C17—C20—C23—O1559.0 (3)
C8—O3—C9—C10173.8 (3)O11—C20—C23—C2460.5 (3)
C15—O7—C11—C12103.5 (3)C17—C20—C23—C24180.0 (3)
C15—O7—C11—C8133.2 (3)C25—O13—C24—C23137.3 (3)
O3—C8—C11—O7178.4 (3)O15—C23—C24—O1368.2 (3)
C1—C8—C11—O757.5 (3)C20—C23—C24—O1350.5 (4)
O3—C8—C11—C1260.6 (3)C24—O13—C25—O141.0 (6)
C1—C8—C11—C12178.5 (3)C24—O13—C25—C26178.2 (3)
C13—O5—C12—C11134.8 (3)C23—O15—C27—O162.4 (5)
O7—C11—C12—O569.1 (3)C23—O15—C27—C28178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.613.338 (5)134
C6—H6···N4ii0.952.603.331 (5)134
C7—H7B···O2ii0.982.573.400 (5)142
C19—H19A···O12iii0.982.583.443 (5)147
C19—H19B···O10ii0.982.583.407 (5)142
C19—H19C···O2iii0.982.533.472 (6)161
C26—H26B···O14i0.982.603.471 (6)148
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H36N2O16
Mr656.59
Crystal system, space groupTriclinic, P1
Temperature (K)159
a, b, c (Å)5.6931 (8), 9.9132 (15), 15.5048 (11)
α, β, γ (°)81.344 (2), 80.635 (2), 73.986 (2)
V3)824.71 (18)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.72 × 0.24 × 0.11
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7120, 3304, 2954
Rint0.029
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.103, 1.11
No. of reflections3304
No. of parameters424
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
N1—C61.331 (4)C4—C71.481 (5)
N4—C31.348 (4)C5—C171.514 (5)
O1—C1—C8—O364.7 (3)N4—C5—C17—O9149.7 (3)
C1—C8—C11—C12178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.613.338 (5)134
C6—H6···N4ii0.952.603.331 (5)134
C7—H7B···O2ii0.982.573.400 (5)142
C19—H19A···O12iii0.982.583.443 (5)147
C19—H19B···O10ii0.982.583.407 (5)142
C19—H19C···O2iii0.982.533.472 (6)161
C26—H26B···O14i0.982.603.471 (6)148
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y1, z.
 

Acknowledgements

We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlper, P. B., Hung, S.-C. & Wong, C.-H. (1996). Tetrahedron Lett. 37, 6029–6032.  CrossRef CAS Web of Science Google Scholar
First citationBovin, N. V., Zurabyan, S. E. & Khorlin, A. Y. (1981). Carbohydr. Res. 98, 25–35.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.045) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlein, A., Kasack, V., Reinhardt, R., Scheiring, T., Sixt, T., Zalis, S., Fiedler, J. & Kaim, W. (1999). J. Chem. Soc. Dalton Trans. pp. 575–582.  Web of Science CSD CrossRef Google Scholar
First citationMyers, A. G., Kung, D. W. & Zhong, B. (2000). J. Am. Chem. Soc. 122, 3236–3237.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaulsen, H., Lorentzen, J. P. & Kutschker, W. (1985). Carbohydr. Res. 136, 153–176.  CrossRef CAS Web of Science Google Scholar
First citationPaulsen, H. & Stenzel, W. (1978). Chem. Ber. 111, 2334–2348.  CrossRef CAS Web of Science Google Scholar
First citationPavliak, V. & Kovac, P. (1991). Carbohydr. Res. 210, 333–337.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasella, A., Witzig, C. & Martin-Lomas, M. (1991). Helv. Chim. Acta, 74, 2073–2077.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds