Download citation
Download citation
link to html
In the title complex, [Mn(C22H18N2O4)Cl(CH3OH)], the MnIII centre is in a distorted octa­hedral geometry, with the N2O2 tetra­dentate Schiff base ligand in the equatorial plane and the chloride ion and methanol mol­ecule in the axial positions. The dihedral angles between the two outer phenolate rings and the central benzene ring of the tetra­dentate ligand are 4.08 (14) and 13.61 (14)°. One of the two meth­oxy substituents on the outer phenolate rings lies almost in the plane of the ring to which it is bound, whereas the other meth­oxy group is twisted significantly from the corresponding benzene ring plane. In the crystal structure, weak inter­molecular C—H...Cl inter­actions link the mol­ecules into infinite chains along the b axis, and these chains are further connected by O—H...O hydrogen bonds, weak C—H...O and C—H...Cl inter­actions into sheets parallel to the ab plane. The crystal structure is further stabilized by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807061363/sj2438sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807061363/sj2438Isup2.hkl
Contains datablock I

CCDC reference: 672775

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.044
  • wR factor = 0.112
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.63 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Manganese complexes with Schiff base have attracted considerable interest in the past decades and recently, due to their variety of applications in chemistry, biology, physics and advanced materials. They have been used as models for oxygen-evolving complex of photosystem II (Glatzel et al., 2004), catalysis (Dixit & Srinivasan, 1988), single-molecule magnet (Lu et al., 2006) and as active sites of manganese-containing metal enzymes (Stallings et al., 1985). Recently, we reported the crystal structure of 4,4'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol (Eltayeb et al., 2007). We have extended our synthesis to the title Mn(III) complex and herein its crystal structure is reported.

In the title complex molecule (Fig. 1), MnIII coordinates with the tetradentate Schiff base ligand in the equatorial plane (N1, N2, O1 and O2) and the chloride ion and methanol molecule in the axial positions. The Mn1—N1 and Mn1—N2 distances of 1.987 (2) Å and 1.995 (2) Å, and the Mn1—O1 and Mn1—O2 distances of 1.8634 (19) and 1.8746 (19) Å, respectively are in the same range as those in other six coordinated MnIII complexes of Schiff base ligands (Habibi et al., 2007; Mitra et al., 2006; Naskar et al., 2004). The Mn1—O5 = 2.423 (2) Å and Mn1—Cl1 = 2.4846 (8) Å bonds were elongated as had also been found previously (Habibi et al., 2007). The dihedral angles between the two outer benzene rings (C1–C6) and (C8–C13) and the central benzene ring (C15–C20) are 4.08 (14)° and 13.61 (14)° respectively. One of the two methoxy groups is almost coplanar with the attached benzene ring as indicated by the torsion angle C22—O3—C4—C3 of 4.9 (4)°, whereas another methoxy group is twisted from the mean plane of the attached benzene with the torsion angle C21—O3—C4—C3 = 33.3 (4)°. Bond lengths and angles in the Schiff base ligand are very similar to those reported for the other MnIII complexes with similar ligands (Habibi et al., 2007; Mitra et al., 2006; Naskar et al., 2004) and other bond lengths and angles observed in the structure are also normal (Allen et al., 1987).

In the crystal packing (Fig. 2), weak C—H···Cl interactions (Table 1) link the molecules into infinite chains along the [0 1 0] direction. These chains are further connected into sheets parallel to the ab plane by O—H···O hydrogen bonds, weak C—H···O and C—H···Cl interactons (Table 1). The crystal is further stabilized by C—H···π interactions (Table 1); Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

It is interesting to note that although the unit cell is almost metrically orthorhombic, the space group is actually monoclinic.

Related literature top

For values of bond lengths, see Allen et al. (1987). For related structures, see, for example: Eltayeb et al. (2007); Habibi et al. (2007); Mitra et al. (2006); Naskar et al. (2004). For information on the applications of manganese complexes, see, for example: Dixit & Srinivasan (1988); Glatzel et al. (2004); Lu et al. (2006); Stallings et al. (1985).

Experimental top

The title compound was synthesized by adding 5-methoxy-2-hydroxybenzaldehyde (0.4 ml, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for half an hour. Manganese chloride tetrahydrate (0.394 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for three hours. A brown precipitate was obtained, washed with ethanol (about 5 ml), dried, and then washed with copious quantities of diethyl ether. Brown single crystals of the title compound suitable for X-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

H atom (H1O5) of the methanol molecule was located from the difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the ranges 0.93–0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.68 Å from H23C and the deepest hole is located at 0.52 Å from C23.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Chlorido{4,4'-dimethoxy-2,2'-[1,2- phenylenebis(nitrilomethylidyne)]diphenolato}methanolmanganese(III) top
Crystal data top
[Mn(C22H18N2O4)Cl(CH4O)]F(000) = 1024
Mr = 496.82Dx = 1.597 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4429 reflections
a = 12.2105 (8) Åθ = 4.9–27.0°
b = 7.5497 (5) ŵ = 0.81 mm1
c = 22.4197 (15) ÅT = 100 K
β = 90.404 (1)°Plate, black
V = 2066.7 (2) Å30.31 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4429 independent reflections
Radiation source: fine-focus sealed tube3418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 27.0°, θmin = 4.9°
ω scansh = 1215
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.785, Tmax = 0.931l = 2828
10970 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2 + 1.7319P]
where P = (Fo2 + 2Fc2)/3
4429 reflections(Δ/σ)max < 0.001
296 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Mn(C22H18N2O4)Cl(CH4O)]V = 2066.7 (2) Å3
Mr = 496.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2105 (8) ŵ = 0.81 mm1
b = 7.5497 (5) ÅT = 100 K
c = 22.4197 (15) Å0.31 × 0.16 × 0.09 mm
β = 90.404 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3418 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.931Rint = 0.047
10970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.44 e Å3
4429 reflectionsΔρmin = 0.40 e Å3
296 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.40972 (3)0.52000 (6)0.147831 (18)0.01839 (13)
Cl10.33383 (6)0.27719 (9)0.08519 (3)0.02167 (17)
O10.54569 (15)0.4197 (3)0.16522 (8)0.0216 (4)
O20.35701 (15)0.4359 (3)0.22087 (8)0.0213 (4)
O30.95200 (16)0.5459 (3)0.06780 (10)0.0297 (5)
O40.03870 (16)0.5087 (3)0.33444 (9)0.0232 (4)
O50.4667 (2)0.7850 (3)0.20047 (10)0.0315 (5)
H1O50.494 (3)0.786 (5)0.2333 (17)0.031 (10)*
N10.46456 (18)0.6480 (3)0.07661 (9)0.0174 (5)
N20.27412 (18)0.6576 (3)0.12943 (9)0.0176 (5)
C10.6420 (2)0.4531 (4)0.14052 (12)0.0186 (6)
C20.7347 (2)0.3746 (4)0.16562 (12)0.0217 (6)
H2A0.72710.30300.19910.026*
C30.8376 (2)0.4009 (4)0.14186 (13)0.0230 (6)
H3A0.89840.34780.15960.028*
C40.8506 (2)0.5071 (4)0.09128 (13)0.0235 (6)
C50.7607 (2)0.5857 (4)0.06544 (12)0.0210 (6)
H5A0.76950.65550.03160.025*
C60.6549 (2)0.5620 (4)0.08945 (12)0.0190 (6)
C70.5661 (2)0.6517 (4)0.05965 (11)0.0192 (6)
H7A0.58260.71720.02570.023*
C80.2602 (2)0.4633 (4)0.24474 (12)0.0183 (5)
C90.2400 (2)0.3840 (4)0.30091 (12)0.0208 (6)
H9A0.29480.31760.31940.025*
C100.1404 (2)0.4039 (4)0.32845 (12)0.0217 (6)
H10A0.12920.35180.36550.026*
C110.0562 (2)0.5007 (4)0.30186 (12)0.0198 (6)
C120.0729 (2)0.5807 (4)0.24731 (12)0.0199 (6)
H12A0.01650.64460.22930.024*
C130.1760 (2)0.5657 (4)0.21846 (12)0.0190 (6)
C140.1870 (2)0.6559 (4)0.16251 (12)0.0192 (6)
H14A0.12650.71880.14870.023*
C150.2781 (2)0.7462 (4)0.07338 (12)0.0184 (5)
C160.1906 (2)0.8325 (4)0.04637 (12)0.0223 (6)
H16A0.12300.83700.06520.027*
C170.2044 (2)0.9122 (4)0.00878 (12)0.0234 (6)
H17A0.14600.97090.02680.028*
C180.3051 (2)0.9049 (4)0.03733 (12)0.0217 (6)
H18A0.31330.95790.07450.026*
C190.3924 (2)0.8201 (4)0.01116 (12)0.0198 (6)
H19A0.45960.81570.03040.024*
C200.3798 (2)0.7401 (4)0.04479 (12)0.0182 (5)
C211.0340 (2)0.4101 (4)0.07311 (14)0.0278 (7)
H21A1.09790.44440.05120.042*
H21B1.00580.30100.05730.042*
H21C1.05320.39420.11440.042*
C220.1303 (2)0.5962 (4)0.30732 (13)0.0254 (6)
H22A0.19120.59430.33420.038*
H22B0.15010.53630.27100.038*
H22C0.11120.71670.29860.038*
C230.4505 (3)0.9679 (5)0.18215 (16)0.0392 (8)
H23A0.42061.03440.21470.059*
H23B0.40070.97180.14890.059*
H23C0.51941.01830.17080.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0203 (2)0.0188 (2)0.0160 (2)0.00112 (17)0.00294 (15)0.00307 (16)
Cl10.0268 (3)0.0194 (3)0.0187 (3)0.0018 (3)0.0012 (3)0.0005 (3)
O10.0216 (10)0.0217 (10)0.0214 (10)0.0033 (8)0.0030 (8)0.0062 (8)
O20.0231 (10)0.0242 (11)0.0164 (9)0.0030 (8)0.0023 (8)0.0035 (8)
O30.0224 (10)0.0312 (12)0.0354 (12)0.0036 (9)0.0040 (9)0.0100 (10)
O40.0238 (10)0.0244 (11)0.0215 (10)0.0037 (8)0.0013 (8)0.0036 (8)
O50.0466 (14)0.0247 (12)0.0230 (11)0.0033 (10)0.0162 (10)0.0033 (9)
N10.0221 (11)0.0146 (11)0.0155 (10)0.0006 (9)0.0039 (9)0.0004 (9)
N20.0228 (11)0.0167 (11)0.0133 (10)0.0017 (9)0.0028 (9)0.0005 (9)
C10.0211 (13)0.0173 (14)0.0175 (13)0.0011 (11)0.0027 (10)0.0050 (11)
C20.0283 (15)0.0168 (14)0.0198 (13)0.0015 (11)0.0050 (11)0.0036 (11)
C30.0224 (14)0.0207 (15)0.0257 (14)0.0007 (11)0.0051 (11)0.0004 (12)
C40.0227 (14)0.0225 (15)0.0254 (14)0.0009 (12)0.0016 (11)0.0009 (12)
C50.0273 (15)0.0170 (14)0.0187 (13)0.0016 (11)0.0021 (11)0.0000 (11)
C60.0231 (14)0.0168 (14)0.0172 (12)0.0014 (11)0.0021 (10)0.0020 (10)
C70.0265 (14)0.0172 (14)0.0140 (12)0.0017 (11)0.0030 (11)0.0019 (10)
C80.0227 (13)0.0148 (13)0.0173 (12)0.0005 (11)0.0033 (10)0.0013 (10)
C90.0256 (14)0.0180 (14)0.0188 (13)0.0016 (11)0.0058 (11)0.0002 (11)
C100.0311 (15)0.0163 (14)0.0176 (13)0.0010 (12)0.0001 (11)0.0008 (11)
C110.0238 (14)0.0176 (14)0.0180 (13)0.0030 (11)0.0009 (11)0.0025 (11)
C120.0236 (14)0.0177 (14)0.0184 (13)0.0024 (11)0.0042 (11)0.0000 (11)
C130.0241 (14)0.0164 (14)0.0166 (12)0.0010 (11)0.0007 (11)0.0014 (10)
C140.0229 (14)0.0157 (13)0.0189 (13)0.0015 (11)0.0048 (11)0.0016 (11)
C150.0243 (14)0.0141 (13)0.0166 (12)0.0008 (11)0.0046 (10)0.0022 (10)
C160.0245 (14)0.0226 (15)0.0196 (13)0.0002 (12)0.0017 (11)0.0013 (11)
C170.0274 (15)0.0216 (15)0.0211 (14)0.0020 (12)0.0081 (11)0.0022 (12)
C180.0300 (15)0.0175 (14)0.0176 (13)0.0018 (12)0.0043 (11)0.0028 (11)
C190.0251 (14)0.0160 (14)0.0182 (13)0.0013 (11)0.0038 (11)0.0011 (11)
C200.0244 (14)0.0128 (13)0.0174 (12)0.0011 (11)0.0071 (11)0.0002 (10)
C210.0225 (14)0.0304 (17)0.0303 (16)0.0055 (13)0.0044 (12)0.0000 (13)
C220.0258 (15)0.0257 (16)0.0247 (14)0.0036 (12)0.0001 (12)0.0024 (12)
C230.050 (2)0.0298 (19)0.0379 (19)0.0003 (16)0.0156 (16)0.0002 (15)
Geometric parameters (Å, º) top
Mn1—O11.8634 (19)C8—C91.418 (4)
Mn1—O21.8746 (19)C9—C101.376 (4)
Mn1—N11.987 (2)C9—H9A0.9300
Mn1—N21.995 (2)C10—C111.392 (4)
Mn1—O52.423 (2)C10—H10A0.9300
Mn1—Cl12.4846 (8)C11—C121.380 (4)
O1—C11.328 (3)C12—C131.424 (4)
O2—C81.318 (3)C12—H12A0.9300
O3—C41.380 (3)C13—C141.435 (4)
O3—C211.438 (4)C14—H14A0.9300
O4—C111.375 (3)C15—C161.387 (4)
O4—C221.431 (3)C15—C201.402 (4)
O5—C231.454 (4)C16—C171.386 (4)
O5—H1O50.81 (4)C16—H16A0.9300
N1—C71.299 (3)C17—C181.391 (4)
N1—C201.433 (3)C17—H17A0.9300
N2—C141.301 (3)C18—C191.371 (4)
N2—C151.425 (3)C18—H18A0.9300
C1—C21.392 (4)C19—C201.402 (4)
C1—C61.419 (4)C19—H19A0.9300
C2—C31.383 (4)C21—H21A0.9600
C2—H2A0.9300C21—H21B0.9600
C3—C41.399 (4)C21—H21C0.9600
C3—H3A0.9300C22—H22A0.9600
C4—C51.372 (4)C22—H22B0.9600
C5—C61.415 (4)C22—H22C0.9600
C5—H5A0.9300C23—H23A0.9600
C6—C71.439 (4)C23—H23B0.9600
C7—H7A0.9300C23—H23C0.9600
C8—C131.411 (4)
O1—Mn1—O289.45 (8)C10—C9—H9A119.6
O1—Mn1—N193.50 (9)C8—C9—H9A119.6
O2—Mn1—N1170.62 (9)C9—C10—C11121.2 (3)
O1—Mn1—N2172.56 (9)C9—C10—H10A119.4
O2—Mn1—N293.87 (9)C11—C10—H10A119.4
N1—Mn1—N282.20 (9)O4—C11—C12125.6 (3)
O1—Mn1—O588.91 (8)O4—C11—C10114.7 (2)
O2—Mn1—O587.34 (8)C12—C11—C10119.7 (3)
N1—Mn1—O583.82 (9)C11—C12—C13120.3 (3)
N2—Mn1—O584.60 (9)C11—C12—H12A119.9
O1—Mn1—Cl198.44 (7)C13—C12—H12A119.9
O2—Mn1—Cl196.59 (7)C8—C13—C12119.8 (2)
N1—Mn1—Cl191.79 (7)C8—C13—C14123.5 (2)
N2—Mn1—Cl187.80 (7)C12—C13—C14116.6 (2)
O5—Mn1—Cl1171.67 (6)N2—C14—C13125.8 (3)
C1—O1—Mn1128.77 (17)N2—C14—H14A117.1
C8—O2—Mn1128.03 (17)C13—C14—H14A117.1
C4—O3—C21116.3 (2)C16—C15—C20119.9 (2)
C11—O4—C22117.0 (2)C16—C15—N2125.1 (2)
C23—O5—Mn1127.49 (19)C20—C15—N2115.1 (2)
C23—O5—H1O5108 (3)C17—C16—C15119.7 (3)
Mn1—O5—H1O5125 (3)C17—C16—H16A120.2
C7—N1—C20122.1 (2)C15—C16—H16A120.2
C7—N1—Mn1124.98 (19)C16—C17—C18120.4 (3)
C20—N1—Mn1112.94 (17)C16—C17—H17A119.8
C14—N2—C15122.7 (2)C18—C17—H17A119.8
C14—N2—Mn1123.88 (18)C19—C18—C17120.5 (3)
C15—N2—Mn1113.16 (17)C19—C18—H18A119.7
O1—C1—C2118.0 (2)C17—C18—H18A119.7
O1—C1—C6123.4 (2)C18—C19—C20119.6 (3)
C2—C1—C6118.6 (2)C18—C19—H19A120.2
C3—C2—C1121.4 (3)C20—C19—H19A120.2
C3—C2—H2A119.3C19—C20—C15119.9 (2)
C1—C2—H2A119.3C19—C20—N1124.8 (2)
C2—C3—C4120.2 (3)C15—C20—N1115.3 (2)
C2—C3—H3A119.9O3—C21—H21A109.5
C4—C3—H3A119.9O3—C21—H21B109.5
C5—C4—O3117.6 (3)H21A—C21—H21B109.5
C5—C4—C3119.7 (3)O3—C21—H21C109.5
O3—C4—C3122.6 (3)H21A—C21—H21C109.5
C4—C5—C6121.0 (3)H21B—C21—H21C109.5
C4—C5—H5A119.5O4—C22—H22A109.5
C6—C5—H5A119.5O4—C22—H22B109.5
C5—C6—C1119.1 (2)H22A—C22—H22B109.5
C5—C6—C7116.8 (2)O4—C22—H22C109.5
C1—C6—C7124.1 (2)H22A—C22—H22C109.5
N1—C7—C6124.8 (2)H22B—C22—H22C109.5
N1—C7—H7A117.6O5—C23—H23A109.5
C6—C7—H7A117.6O5—C23—H23B109.5
O2—C8—C13124.7 (2)H23A—C23—H23B109.5
O2—C8—C9117.1 (2)O5—C23—H23C109.5
C13—C8—C9118.1 (2)H23A—C23—H23C109.5
C10—C9—C8120.8 (3)H23B—C23—H23C109.5
O2—Mn1—O1—C1162.9 (2)C20—N1—C7—C6179.8 (2)
N1—Mn1—O1—C18.2 (2)Mn1—N1—C7—C60.7 (4)
O5—Mn1—O1—C175.6 (2)C5—C6—C7—N1178.2 (3)
Cl1—Mn1—O1—C1100.5 (2)C1—C6—C7—N11.9 (4)
O1—Mn1—O2—C8175.8 (2)Mn1—O2—C8—C130.3 (4)
N2—Mn1—O2—C82.4 (2)Mn1—O2—C8—C9179.84 (18)
O5—Mn1—O2—C886.8 (2)O2—C8—C9—C10179.0 (3)
Cl1—Mn1—O2—C885.8 (2)C13—C8—C9—C101.1 (4)
O1—Mn1—O5—C23136.6 (3)C8—C9—C10—C110.7 (4)
O2—Mn1—O5—C23133.9 (3)C22—O4—C11—C124.9 (4)
N1—Mn1—O5—C2342.9 (3)C22—O4—C11—C10175.8 (2)
N2—Mn1—O5—C2339.8 (3)C9—C10—C11—O4179.7 (2)
O1—Mn1—N1—C74.5 (2)C9—C10—C11—C121.0 (4)
N2—Mn1—N1—C7169.4 (2)O4—C11—C12—C13178.7 (3)
O5—Mn1—N1—C784.0 (2)C10—C11—C12—C130.5 (4)
Cl1—Mn1—N1—C7103.1 (2)O2—C8—C13—C12177.5 (3)
O1—Mn1—N1—C20175.94 (18)C9—C8—C13—C122.5 (4)
N2—Mn1—N1—C2010.16 (17)O2—C8—C13—C141.4 (4)
O5—Mn1—N1—C2095.53 (18)C9—C8—C13—C14178.6 (3)
Cl1—Mn1—N1—C2077.38 (17)C11—C12—C13—C82.3 (4)
O2—Mn1—N2—C144.2 (2)C11—C12—C13—C14178.7 (3)
N1—Mn1—N2—C14175.6 (2)C15—N2—C14—C13178.1 (3)
O5—Mn1—N2—C1491.1 (2)Mn1—N2—C14—C134.0 (4)
Cl1—Mn1—N2—C1492.3 (2)C8—C13—C14—N20.8 (4)
O2—Mn1—N2—C15178.80 (18)C12—C13—C14—N2179.7 (3)
N1—Mn1—N2—C159.76 (18)C14—N2—C15—C163.1 (4)
O5—Mn1—N2—C1594.24 (18)Mn1—N2—C15—C16171.7 (2)
Cl1—Mn1—N2—C1582.34 (18)C14—N2—C15—C20177.7 (2)
Mn1—O1—C1—C2173.15 (19)Mn1—N2—C15—C207.6 (3)
Mn1—O1—C1—C68.0 (4)C20—C15—C16—C170.0 (4)
O1—C1—C2—C3179.0 (3)N2—C15—C16—C17179.2 (3)
C6—C1—C2—C30.1 (4)C15—C16—C17—C180.5 (4)
C1—C2—C3—C40.5 (4)C16—C17—C18—C190.5 (4)
C21—O3—C4—C5150.7 (3)C17—C18—C19—C200.1 (4)
C21—O3—C4—C333.3 (4)C18—C19—C20—C150.4 (4)
C2—C3—C4—C50.2 (4)C18—C19—C20—N1179.9 (3)
C2—C3—C4—O3176.2 (3)C16—C15—C20—C190.5 (4)
O3—C4—C5—C6175.7 (3)N2—C15—C20—C19178.8 (2)
C3—C4—C5—C60.5 (4)C16—C15—C20—N1179.8 (2)
C4—C5—C6—C10.9 (4)N2—C15—C20—N10.9 (3)
C4—C5—C6—C7179.2 (3)C7—N1—C20—C199.7 (4)
O1—C1—C6—C5178.3 (2)Mn1—N1—C20—C19170.7 (2)
C2—C1—C6—C50.6 (4)C7—N1—C20—C15170.6 (2)
O1—C1—C6—C71.7 (4)Mn1—N1—C20—C158.9 (3)
C2—C1—C6—C7179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O1i0.81 (4)2.54 (4)3.183 (3)138 (3)
O5—H1O5···O2i0.81 (4)2.37 (4)2.998 (3)135 (3)
C7—H7A···Cl10.932.693.519 (3)148
C14—H14A···O4ii0.932.473.222 (4)138
C23—H23B···Cl1iii0.962.833.488 (4)127
C2—H2A···Cg2iv0.932.863.507 (3)128
C9—H9A···Cg1iv0.932.983.577 (3)124
C22—H22C···Cg2ii0.962.643.453 (3)143
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C22H18N2O4)Cl(CH4O)]
Mr496.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.2105 (8), 7.5497 (5), 22.4197 (15)
β (°) 90.404 (1)
V3)2066.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.31 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.785, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
10970, 4429, 3418
Rint0.047
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.05
No. of reflections4429
No. of parameters296
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.44, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O1i0.81 (4)2.54 (4)3.183 (3)138 (3)
O5—H1O5···O2i0.81 (4)2.37 (4)2.998 (3)135 (3)
C7—H7A···Cl10.932.69443.519 (3)148
C14—H14A···O4ii0.932.46743.222 (4)138
C23—H23B···Cl1iii0.962.82953.488 (4)127
C2—H2A···Cg2iv0.932.85973.507 (3)128
C9—H9A···Cg1iv0.932.97663.577 (3)124
C22—H22C···Cg2ii0.962.64073.453 (3)143
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds