Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C39H30Cl2N2O2, the central six-membered piperidinone ring adopts a distorted half-chair conformation and the five-membered pyrrolidine ring is in a twist conformation. The crystal structure is stabilized by C—H...O and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055109/sj2401sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055109/sj2401Isup2.hkl
Contains datablock I

CCDC reference: 672888

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.142
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C26 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C25 PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1N ... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C15 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C28 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of pyrrolidines (Boruah et al., 2007), which are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes (Horri et al., 1986). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007). Synthesis of spiro compounds have drawn considerable attention of the chemists, in view of their very good antimycobacterial activity. The importance of spiro-compounds and nitrogen heterocycles led us to synthesize novel spiro heterocycles via 1,3-dipoar cycloaddition of azomethine ylides (Chande et al., 2005).

The slightly twisted conformation of the 5-membered pyrrolidine ring is confirmed through the puckering analysis [θ2 = 0.420 (3) Å and π2 = 47.5 (4)°; Cremer & Pople, 1975] and the 6-membered piperidinone ring adopts a distorted half-chair conformation [θ2 = 0.273 (3) Å, π2 = 62.7 (6)° and θ3 = 0.467 (3) Å] (Fig. 1). The dihedral angle between the chlorophenyl rings is observed to be 73.6 (1)° and these rings make angles of 71.5 (1) and 23.1 (2) ° with the phenyl ring (C9/C14). Further, the acenaphthene group (C28/C39) is oriented at an angle of 35.1 (1)° to the (C9/C14) phenyl ring.

The crystal structue of (I) features two intramolecular and two intermolecular C—H···O hydrogen bonds [Fig 2; Table 1]. It is further stabilized by an intermolecular C32—H32···π interaction, with the C1—C6 benzene ring (centroid Cg) (Desiraju & Steiner, 1999).

Related literature top

For the pharmacological importance of similar compounds, see: Babu & Raghunathan (2007); Boruah et al. (2007); Chande et al. (2005); Horri et al. (1986); Karthikeyan et al. (2007); Watson et al. (2001). For ring puckering analysis, see: Cremer & Pople (1975) and for hydrogen-bonding interactions, see: Desiraju & Steiner, (1999).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-4-chlorophenylmethylidene]tetrahydro-4(1H)-pyridinone 1 mmol), acenaphthenequinone (1 mmol) and phenylglycine (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction evident from TLC, the mixture was poured into water (50 ml), the precipitated solid filtered and washed with water (100 ml) to obtain pure 4-(4-chlorophenyl)-5-phenylpyrrolo-(spiro[2.2'']-acenaphthene-1''-one)- spiro[3.3']-5'-(4-chlorophenylmethylid-ene)-1'-methyltetrahydro-4'- (1H)-pyridinone as pale yellow solid. The product was recrystallized from methanol/ethyl acetate solution (1:1).

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and N—H = 0.86 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC (Bruker, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules, viewed down the b-axis.
4-(4-Chlorophenyl)-5-phenylpyrrolo-(spiro[2.2'']-acenaphthene- 1''-one)-spiro[3.3']-5'-(4-chlorophenylmethylidene)-1'- methyltetrahydro-4'-(1H)-pyridinone top
Crystal data top
C39H30Cl2N2O2Z = 2
Mr = 629.55F(000) = 656
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Melting point: 190 K
a = 9.5567 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0442 (11) ÅCell parameters from 25 reflections
c = 14.8593 (15) Åθ = 10.3–14.3°
α = 76.025 (11)°µ = 0.24 mm1
β = 75.445 (9)°T = 293 K
γ = 76.220 (8)°Block, pale yellow
V = 1577.5 (3) Å30.24 × 0.15 × 0.14 mm
Data collection top
Nonius MACH3
diffractometer
3434 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 111
Absorption correction: ψ scan
(North et al., 1968)
k = 1414
Tmin = 0.947, Tmax = 0.973l = 1717
6631 measured reflections3 standard reflections every 60 min
5538 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ^2^(Fo^2^) + (0.0646P)^2^ + 0.6033P]
where P = (Fo^2^ + 2Fc^2^)/3
5538 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C39H30Cl2N2O2γ = 76.220 (8)°
Mr = 629.55V = 1577.5 (3) Å3
Triclinic, P1Z = 2
a = 9.5567 (6) ÅMo Kα radiation
b = 12.0442 (11) ŵ = 0.24 mm1
c = 14.8593 (15) ÅT = 293 K
α = 76.025 (11)°0.24 × 0.15 × 0.14 mm
β = 75.445 (9)°
Data collection top
Nonius MACH3
diffractometer
3434 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.947, Tmax = 0.9733 standard reflections every 60 min
6631 measured reflections intensity decay: none
5538 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
5538 reflectionsΔρmin = 0.29 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39281 (11)0.66064 (7)0.25272 (8)0.0971 (3)
Cl20.66042 (13)0.41648 (10)0.12138 (9)0.1138 (4)
O10.8216 (2)0.13701 (16)0.10490 (13)0.0599 (5)
O20.6391 (3)0.11023 (17)0.46785 (14)0.0694 (6)
N20.5209 (2)0.03202 (17)0.29297 (15)0.0486 (5)
N10.8833 (3)0.01394 (18)0.37587 (17)0.0608 (6)
H1N0.96140.02090.39720.073*
C150.7150 (3)0.07564 (19)0.26833 (17)0.0439 (6)
C70.7663 (3)0.1783 (2)0.28857 (18)0.0460 (6)
H70.85900.18760.24340.055*
C200.7480 (3)0.0734 (2)0.16348 (18)0.0448 (6)
C60.6653 (3)0.2963 (2)0.27850 (18)0.0453 (6)
C220.7278 (3)0.1436 (2)0.01626 (18)0.0491 (6)
C240.5669 (3)0.2443 (2)0.0226 (2)0.0587 (7)
H240.47240.25460.01970.070*
C190.6821 (3)0.0111 (2)0.13483 (17)0.0440 (6)
C210.7584 (3)0.0567 (2)0.05952 (19)0.0502 (6)
H210.84480.02900.02970.060*
C180.5404 (3)0.0415 (2)0.19504 (18)0.0524 (7)
H18A0.45930.00980.16900.063*
H18B0.53730.12060.19280.063*
C390.8791 (3)0.2214 (2)0.2780 (2)0.0535 (7)
C40.6137 (4)0.4930 (2)0.1905 (2)0.0618 (8)
H40.63700.54910.13680.074*
C380.9203 (3)0.1123 (2)0.26017 (19)0.0515 (7)
C160.5501 (3)0.0771 (2)0.30363 (19)0.0480 (6)
H16A0.52110.08450.36960.058*
H16B0.49460.14270.26690.058*
C280.8110 (3)0.0362 (2)0.32360 (18)0.0489 (6)
C10.5444 (3)0.3265 (2)0.3482 (2)0.0564 (7)
H10.51950.27080.40180.068*
C90.8973 (3)0.2003 (2)0.4117 (2)0.0551 (7)
C230.5880 (3)0.1606 (2)0.01949 (19)0.0527 (7)
H230.50650.11460.05070.063*
C80.8048 (3)0.1311 (2)0.38675 (19)0.0517 (7)
H80.71430.12680.43530.062*
C30.4972 (3)0.5199 (2)0.2609 (2)0.0597 (8)
C20.4596 (3)0.4379 (2)0.3397 (2)0.0622 (8)
H20.37830.45670.38690.075*
C50.6977 (3)0.3811 (2)0.1992 (2)0.0541 (7)
H50.77720.36290.15070.065*
C340.9571 (4)0.3103 (3)0.2282 (2)0.0674 (9)
C290.7140 (3)0.1243 (2)0.3912 (2)0.0537 (7)
C371.0424 (3)0.0926 (3)0.1927 (2)0.0654 (8)
H371.07480.02260.18140.078*
C300.7584 (4)0.2334 (2)0.3522 (2)0.0566 (7)
C310.7090 (4)0.3377 (2)0.3807 (2)0.0706 (9)
H310.62810.34760.43000.085*
C121.0636 (5)0.3326 (3)0.4550 (3)0.0874 (12)
H121.11870.37800.46890.105*
C100.8448 (4)0.2578 (3)0.4865 (2)0.0706 (9)
H100.75100.25300.52290.085*
C250.6862 (4)0.3114 (3)0.0683 (2)0.0665 (8)
C270.8453 (3)0.2117 (3)0.0329 (2)0.0739 (9)
H270.94010.20060.03780.089*
C170.3784 (4)0.0545 (3)0.3471 (2)0.0766 (10)
H17A0.36860.04780.41160.115*
H17B0.36980.13180.34540.115*
H17C0.30230.00110.32030.115*
C141.0365 (4)0.2101 (3)0.3594 (3)0.0808 (10)
H141.07530.17130.30890.097*
C131.1201 (4)0.2763 (4)0.3803 (3)0.0940 (12)
H131.21350.28250.34400.113*
C110.9284 (5)0.3229 (3)0.5089 (3)0.0831 (11)
H110.89180.35960.56070.100*
C320.7860 (5)0.4286 (3)0.3325 (3)0.0830 (11)
H320.75500.49980.35120.100*
C260.8260 (4)0.2958 (3)0.0751 (3)0.0860 (11)
H260.90670.34120.10750.103*
C330.9037 (5)0.4166 (3)0.2597 (3)0.0861 (11)
H330.95030.47930.23000.103*
C361.1187 (4)0.1793 (3)0.1403 (3)0.0833 (10)
H361.19990.16440.09260.100*
C351.0774 (4)0.2846 (3)0.1571 (3)0.0845 (11)
H351.13030.33970.12070.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1059 (7)0.0439 (4)0.1351 (9)0.0062 (4)0.0465 (6)0.0028 (5)
Cl20.1153 (8)0.1074 (8)0.1551 (10)0.0216 (6)0.0370 (7)0.0831 (8)
O10.0768 (14)0.0599 (12)0.0485 (11)0.0347 (11)0.0094 (10)0.0030 (9)
O20.1019 (17)0.0576 (12)0.0456 (12)0.0180 (11)0.0145 (12)0.0022 (9)
N20.0609 (14)0.0387 (11)0.0464 (13)0.0177 (10)0.0054 (11)0.0065 (9)
N10.0783 (17)0.0404 (12)0.0738 (16)0.0015 (11)0.0435 (14)0.0105 (11)
C150.0549 (16)0.0339 (12)0.0444 (14)0.0091 (11)0.0159 (12)0.0038 (10)
C70.0567 (16)0.0375 (13)0.0473 (15)0.0121 (12)0.0170 (13)0.0050 (11)
C200.0491 (15)0.0385 (13)0.0457 (15)0.0075 (12)0.0141 (12)0.0022 (11)
C60.0564 (16)0.0357 (13)0.0503 (15)0.0131 (12)0.0207 (13)0.0061 (11)
C220.0522 (16)0.0493 (15)0.0480 (15)0.0113 (13)0.0116 (13)0.0105 (12)
C240.0622 (18)0.0606 (17)0.0612 (18)0.0147 (15)0.0217 (15)0.0144 (14)
C190.0516 (15)0.0407 (13)0.0431 (14)0.0131 (11)0.0159 (12)0.0034 (11)
C210.0554 (17)0.0494 (15)0.0505 (16)0.0187 (13)0.0132 (13)0.0069 (12)
C180.0614 (17)0.0486 (15)0.0519 (16)0.0198 (13)0.0114 (13)0.0098 (12)
C390.0692 (19)0.0420 (14)0.0536 (17)0.0012 (13)0.0305 (15)0.0099 (12)
C40.081 (2)0.0408 (15)0.0654 (19)0.0191 (15)0.0290 (18)0.0086 (13)
C380.0612 (18)0.0423 (14)0.0514 (16)0.0013 (13)0.0232 (14)0.0059 (12)
C160.0607 (17)0.0362 (13)0.0479 (15)0.0107 (12)0.0128 (13)0.0066 (11)
C280.0670 (18)0.0355 (13)0.0474 (15)0.0110 (12)0.0210 (13)0.0029 (11)
C10.0693 (19)0.0379 (14)0.0622 (18)0.0132 (13)0.0177 (16)0.0027 (13)
C90.072 (2)0.0417 (14)0.0577 (17)0.0094 (13)0.0313 (16)0.0041 (13)
C230.0532 (17)0.0526 (15)0.0561 (16)0.0063 (13)0.0169 (13)0.0155 (13)
C80.0682 (18)0.0390 (13)0.0520 (16)0.0111 (13)0.0221 (14)0.0055 (12)
C30.066 (2)0.0378 (14)0.082 (2)0.0095 (13)0.0353 (18)0.0039 (14)
C20.0610 (18)0.0472 (16)0.080 (2)0.0084 (14)0.0171 (16)0.0132 (15)
C50.0671 (18)0.0440 (15)0.0539 (16)0.0175 (13)0.0186 (14)0.0011 (12)
C340.079 (2)0.0525 (18)0.079 (2)0.0094 (16)0.0411 (19)0.0228 (16)
C290.077 (2)0.0399 (14)0.0447 (16)0.0096 (13)0.0219 (15)0.0011 (12)
C370.0594 (19)0.0588 (18)0.073 (2)0.0011 (15)0.0200 (17)0.0062 (16)
C300.082 (2)0.0362 (14)0.0572 (17)0.0094 (13)0.0330 (16)0.0020 (12)
C310.100 (2)0.0431 (16)0.077 (2)0.0200 (16)0.0420 (19)0.0045 (15)
C120.106 (3)0.070 (2)0.111 (3)0.028 (2)0.066 (3)0.008 (2)
C100.105 (3)0.0562 (17)0.0602 (19)0.0328 (17)0.0207 (18)0.0078 (15)
C250.074 (2)0.0631 (19)0.074 (2)0.0123 (16)0.0220 (17)0.0280 (16)
C270.0538 (19)0.093 (2)0.088 (2)0.0225 (17)0.0032 (17)0.045 (2)
C170.087 (2)0.071 (2)0.074 (2)0.0421 (18)0.0139 (19)0.0241 (17)
C140.067 (2)0.086 (2)0.106 (3)0.0006 (18)0.037 (2)0.042 (2)
C130.068 (2)0.103 (3)0.131 (3)0.017 (2)0.043 (2)0.034 (3)
C110.132 (3)0.063 (2)0.076 (2)0.035 (2)0.038 (2)0.0168 (17)
C320.123 (3)0.0386 (17)0.107 (3)0.0197 (19)0.067 (3)0.0030 (18)
C260.065 (2)0.099 (3)0.110 (3)0.0075 (19)0.009 (2)0.066 (2)
C330.112 (3)0.0479 (19)0.116 (3)0.0064 (19)0.058 (3)0.033 (2)
C360.065 (2)0.087 (3)0.082 (2)0.0141 (19)0.0155 (18)0.015 (2)
C350.082 (3)0.077 (2)0.091 (3)0.027 (2)0.028 (2)0.039 (2)
Geometric parameters (Å, º) top
Cl1—C31.743 (3)C28—C291.575 (4)
Cl2—C251.735 (3)C1—C21.388 (4)
O1—C201.211 (3)C1—H10.9300
O2—C291.209 (3)C9—C101.376 (4)
N2—C171.447 (3)C9—C141.378 (4)
N2—C181.449 (3)C9—C81.510 (4)
N2—C161.459 (3)C23—H230.9300
N1—C81.458 (3)C8—H80.9800
N1—C281.463 (3)C3—C21.369 (4)
N1—H1N0.8600C2—H20.9300
C15—C201.516 (3)C5—H50.9300
C15—C161.527 (4)C34—C351.391 (5)
C15—C71.550 (3)C34—C331.421 (5)
C15—C281.608 (3)C29—C301.491 (4)
C7—C61.513 (3)C37—C361.405 (5)
C7—C81.535 (3)C37—H370.9300
C7—H70.9800C30—C311.380 (4)
C20—C191.505 (3)C31—C321.409 (5)
C6—C51.384 (4)C31—H310.9300
C6—C11.386 (4)C12—C111.354 (5)
C22—C271.381 (4)C12—C131.367 (5)
C22—C231.386 (4)C12—H120.9300
C22—C211.470 (4)C10—C111.386 (5)
C24—C251.360 (4)C10—H100.9300
C24—C231.384 (4)C25—C261.369 (4)
C24—H240.9300C27—C261.381 (4)
C19—C211.335 (4)C27—H270.9300
C19—C181.495 (4)C17—H17A0.9600
C21—H210.9300C17—H17B0.9600
C18—H18A0.9700C17—H17C0.9600
C18—H18B0.9700C14—C131.385 (5)
C39—C301.389 (4)C14—H140.9300
C39—C341.406 (4)C13—H130.9300
C39—C381.407 (4)C11—H110.9300
C4—C31.359 (4)C32—C331.358 (5)
C4—C51.389 (4)C32—H320.9300
C4—H40.9300C26—H260.9300
C38—C371.360 (4)C33—H330.9300
C38—C281.512 (4)C36—C351.364 (5)
C16—H16A0.9700C36—H360.9300
C16—H16B0.9700C35—H350.9300
C17—N2—C18111.3 (2)N1—C8—C9112.6 (2)
C17—N2—C16112.4 (2)N1—C8—C7100.4 (2)
C18—N2—C16113.4 (2)C9—C8—C7114.1 (2)
C8—N1—C28110.7 (2)N1—C8—H8109.8
C8—N1—H1N124.7C9—C8—H8109.8
C28—N1—H1N124.7C7—C8—H8109.8
C20—C15—C16106.4 (2)C4—C3—C2121.1 (3)
C20—C15—C7112.3 (2)C4—C3—Cl1120.4 (2)
C16—C15—C7113.7 (2)C2—C3—Cl1118.6 (3)
C20—C15—C28110.50 (19)C3—C2—C1119.0 (3)
C16—C15—C28111.5 (2)C3—C2—H2120.5
C7—C15—C28102.45 (18)C1—C2—H2120.5
C6—C7—C8114.7 (2)C6—C5—C4121.2 (3)
C6—C7—C15117.6 (2)C6—C5—H5119.4
C8—C7—C15103.61 (19)C4—C5—H5119.4
C6—C7—H7106.7C35—C34—C39116.6 (3)
C8—C7—H7106.7C35—C34—C33128.6 (3)
C15—C7—H7106.7C39—C34—C33114.8 (3)
O1—C20—C19121.1 (2)O2—C29—C30127.8 (3)
O1—C20—C15122.4 (2)O2—C29—C28124.3 (2)
C19—C20—C15116.5 (2)C30—C29—C28106.6 (2)
C5—C6—C1117.5 (2)C38—C37—C36119.2 (3)
C5—C6—C7119.5 (2)C38—C37—H37120.4
C1—C6—C7122.8 (2)C36—C37—H37120.4
C27—C22—C23117.2 (2)C31—C30—C39119.8 (3)
C27—C22—C21118.3 (3)C31—C30—C29132.1 (3)
C23—C22—C21124.5 (2)C39—C30—C29107.9 (2)
C25—C24—C23119.2 (3)C30—C31—C32117.4 (3)
C25—C24—H24120.4C30—C31—H31121.3
C23—C24—H24120.4C32—C31—H31121.3
C21—C19—C18125.2 (2)C11—C12—C13120.7 (3)
C21—C19—C20117.0 (2)C11—C12—H12119.7
C18—C19—C20117.8 (2)C13—C12—H12119.7
C19—C21—C22130.3 (3)C9—C10—C11121.5 (3)
C19—C21—H21114.9C9—C10—H10119.2
C22—C21—H21114.9C11—C10—H10119.2
N2—C18—C19113.2 (2)C24—C25—C26121.2 (3)
N2—C18—H18A108.9C24—C25—Cl2119.4 (2)
C19—C18—H18A108.9C26—C25—Cl2119.3 (2)
N2—C18—H18B108.9C22—C27—C26121.9 (3)
C19—C18—H18B108.9C22—C27—H27119.0
H18A—C18—H18B107.8C26—C27—H27119.0
C30—C39—C34124.0 (3)N2—C17—H17A109.5
C30—C39—C38113.1 (2)N2—C17—H17B109.5
C34—C39—C38122.9 (3)H17A—C17—H17B109.5
C3—C4—C5119.6 (3)N2—C17—H17C109.5
C3—C4—H4120.2H17A—C17—H17C109.5
C5—C4—H4120.2H17B—C17—H17C109.5
C37—C38—C39118.5 (3)C9—C14—C13121.4 (3)
C37—C38—C28132.1 (2)C9—C14—H14119.3
C39—C38—C28109.4 (2)C13—C14—H14119.3
N2—C16—C15107.9 (2)C12—C13—C14119.3 (4)
N2—C16—H16A110.1C12—C13—H13120.4
C15—C16—H16A110.1C14—C13—H13120.4
N2—C16—H16B110.1C12—C11—C10119.6 (3)
C15—C16—H16B110.1C12—C11—H11120.2
H16A—C16—H16B108.4C10—C11—H11120.2
N1—C28—C38112.1 (2)C33—C32—C31122.7 (3)
N1—C28—C29112.1 (2)C33—C32—H32118.6
C38—C28—C29102.2 (2)C31—C32—H32118.6
N1—C28—C15103.73 (18)C25—C26—C27118.9 (3)
C38—C28—C15114.5 (2)C25—C26—H26120.6
C29—C28—C15112.6 (2)C27—C26—H26120.6
C6—C1—C2121.5 (3)C32—C33—C34121.3 (3)
C6—C1—H1119.2C32—C33—H33119.3
C2—C1—H1119.2C34—C33—H33119.3
C10—C9—C14117.5 (3)C35—C36—C37122.1 (4)
C10—C9—C8121.3 (3)C35—C36—H36119.0
C14—C9—C8121.3 (3)C37—C36—H36119.0
C24—C23—C22121.6 (3)C36—C35—C34120.7 (3)
C24—C23—H23119.2C36—C35—H35119.7
C22—C23—H23119.2C34—C35—H35119.7
C20—C15—C7—C682.7 (3)C10—C9—C8—N1130.0 (3)
C16—C15—C7—C638.3 (3)C14—C9—C8—N151.3 (4)
C28—C15—C7—C6158.8 (2)C10—C9—C8—C7116.4 (3)
C20—C15—C7—C8149.5 (2)C14—C9—C8—C762.3 (4)
C16—C15—C7—C889.5 (2)C6—C7—C8—N1172.6 (2)
C28—C15—C7—C830.9 (2)C15—C7—C8—N143.1 (3)
C16—C15—C20—O1133.2 (2)C6—C7—C8—C966.7 (3)
C7—C15—C20—O18.1 (3)C15—C7—C8—C9163.7 (2)
C28—C15—C20—O1105.6 (3)C5—C4—C3—C21.1 (4)
C16—C15—C20—C1945.8 (3)C5—C4—C3—Cl1178.5 (2)
C7—C15—C20—C19170.8 (2)C4—C3—C2—C11.5 (4)
C28—C15—C20—C1975.4 (3)Cl1—C3—C2—C1178.2 (2)
C8—C7—C6—C5134.4 (3)C6—C1—C2—C30.5 (4)
C15—C7—C6—C5103.3 (3)C1—C6—C5—C41.1 (4)
C8—C7—C6—C141.9 (3)C7—C6—C5—C4175.4 (2)
C15—C7—C6—C180.4 (3)C3—C4—C5—C60.2 (4)
O1—C20—C19—C2132.7 (4)C30—C39—C34—C35178.6 (3)
C15—C20—C19—C21148.3 (2)C38—C39—C34—C351.7 (4)
O1—C20—C19—C18149.9 (2)C30—C39—C34—C330.3 (4)
C15—C20—C19—C1829.0 (3)C38—C39—C34—C33176.6 (3)
C18—C19—C21—C220.3 (4)N1—C28—C29—O239.2 (4)
C20—C19—C21—C22177.4 (2)C38—C28—C29—O2159.4 (3)
C27—C22—C21—C19152.9 (3)C15—C28—C29—O277.3 (3)
C23—C22—C21—C1928.5 (4)N1—C28—C29—C30129.1 (2)
C17—N2—C18—C19176.1 (2)C38—C28—C29—C308.8 (3)
C16—N2—C18—C1948.2 (3)C15—C28—C29—C30114.4 (2)
C21—C19—C18—N2149.3 (2)C39—C38—C37—C363.0 (4)
C20—C19—C18—N227.8 (3)C28—C38—C37—C36176.1 (3)
C30—C39—C38—C37176.3 (2)C34—C39—C30—C310.1 (4)
C34—C39—C38—C371.0 (4)C38—C39—C30—C31177.1 (3)
C30—C39—C38—C284.5 (3)C34—C39—C30—C29175.6 (2)
C34—C39—C38—C28178.3 (2)C38—C39—C30—C291.6 (3)
C17—N2—C16—C15164.1 (2)O2—C29—C30—C3113.8 (5)
C18—N2—C16—C1568.6 (3)C28—C29—C30—C31178.5 (3)
C20—C15—C16—N264.1 (2)O2—C29—C30—C39161.0 (3)
C7—C15—C16—N2171.7 (2)C28—C29—C30—C396.7 (3)
C28—C15—C16—N256.5 (3)C39—C30—C31—C320.4 (4)
C8—N1—C28—C38144.7 (2)C29—C30—C31—C32173.8 (3)
C8—N1—C28—C29101.1 (2)C14—C9—C10—C110.2 (5)
C8—N1—C28—C1520.6 (3)C8—C9—C10—C11179.0 (3)
C37—C38—C28—N152.6 (4)C23—C24—C25—C261.4 (5)
C39—C38—C28—N1128.3 (2)C23—C24—C25—Cl2179.9 (2)
C37—C38—C28—C29172.8 (3)C23—C22—C27—C261.8 (5)
C39—C38—C28—C298.1 (3)C21—C22—C27—C26179.6 (3)
C37—C38—C28—C1565.2 (4)C10—C9—C14—C130.7 (5)
C39—C38—C28—C15113.9 (2)C8—C9—C14—C13178.0 (3)
C20—C15—C28—N1127.4 (2)C11—C12—C13—C140.8 (6)
C16—C15—C28—N1114.5 (2)C9—C14—C13—C120.5 (6)
C7—C15—C28—N17.5 (3)C13—C12—C11—C101.8 (6)
C20—C15—C28—C384.9 (3)C9—C10—C11—C121.5 (5)
C16—C15—C28—C38123.0 (2)C30—C31—C32—C330.6 (5)
C7—C15—C28—C38115.0 (2)C24—C25—C26—C271.2 (6)
C20—C15—C28—C29111.2 (2)Cl2—C25—C26—C27179.8 (3)
C16—C15—C28—C296.9 (3)C22—C27—C26—C250.4 (6)
C7—C15—C28—C29128.9 (2)C31—C32—C33—C340.4 (5)
C5—C6—C1—C20.8 (4)C35—C34—C33—C32178.2 (3)
C7—C6—C1—C2175.6 (2)C39—C34—C33—C320.1 (5)
C25—C24—C23—C220.1 (4)C38—C37—C36—C352.4 (5)
C27—C22—C23—C241.6 (4)C37—C36—C35—C340.4 (5)
C21—C22—C23—C24179.8 (3)C39—C34—C35—C362.3 (5)
C28—N1—C8—C9162.0 (2)C33—C34—C35—C36175.7 (3)
C28—N1—C8—C740.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.982.412.789 (3)102
C21—H21···O10.932.462.810 (4)102
C27—H27···O1i0.932.473.358 (4)160
C16—H16A···O2ii0.972.563.491 (3)161
C32—H32···Cgiii0.932.833.498 (5)129
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC39H30Cl2N2O2
Mr629.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5567 (6), 12.0442 (11), 14.8593 (15)
α, β, γ (°)76.025 (11), 75.445 (9), 76.220 (8)
V3)1577.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.24 × 0.15 × 0.14
Data collection
DiffractometerNonius MACH3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.947, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
6631, 5538, 3434
Rint0.026
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.02
No. of reflections5538
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.982.412.789 (3)102
C21—H21···O10.932.462.810 (4)102
C27—H27···O1i0.932.473.358 (4)160
C16—H16A···O2ii0.972.563.491 (3)161
C32—H32···Cgiii0.932.833.498 (5)129
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1; (iii) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds