Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
2-{(R)-1-[(S)-1-(2-Meth­oxy-5-methyl­phen­yl)-2-phenyl­ethyl­amino]but­yl}-4-methyl­phenol has been synthesized and its absolute configuration determined from the crystal structure of its hydro­chloride, the title compound, C27H34NO2+·Cl. The absolute configuration of the stereogenic center that carries the 2-meth­oxy-5-methyl­phenyl substituent was found to be R. Inter­molecular N—H...Cl and O—H...Cl and intra­molecular N—H...O hydrogen bonds stabilize the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050714/sj2377sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050714/sj2377Isup2.hkl
Contains datablock I

CCDC reference: 667394

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.100
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for C19 - C20 .. 5.23 su
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.50 From the CIF: _reflns_number_total 4534 Count of symmetry unique reflns 2577 Completeness (_total/calc) 175.94% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1957 Fraction of Friedel pairs measured 0.759 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C17 = . R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The search for new chiral ligands to be used in asymmetric catalysis is of great interest in the field of synthetic chemistry. (Cimarelli et al., 2002; Tseng & Yang, 2004). Among them, enantiopure aminoalkyphenols have attracted wide attention as they can be used in asymmetric catalytic reactions (Puigjaner et al., 1999; Guangyou et al., 2003; Li et al., 2004; Watts et al. 2005), an active area of research in organic chemistry (Joshi & Malhotra, 2003). However, most aminoalkylphenols are derived from readily available natural products (Soai & Niwa, 1992). The synthesis of new aminoalkylphenols is therefore of interest because of their potential as asymmetric catalysts.

In this paper, we report the absolute structure of the title compound (I) a hydrochloride derivative of the aminoalkylphenol 2-((R)-1-((S)-1–2-methoxy-5-methylphenyl-2-phenylethylamino)butyl)-4- methylphenol. As well as the known S configuration of C8, the structure reveals an R configuration for the strereogenic centre at C17. The asymmetric unit of the title compound (Fig. 1) consists of a C27H34NO2+ cation and a Cl- anion. The dihedral angles between the benzene rings A (C1—C6), B (C9—C15) and C (C21—C27) are 54.51 ° for A/B, 56.51 ° for A/C and 21.17 ° for B/C respectively.

The conformation of the molecule is influenced by two intramolecular N—H···O hydrogen bonds. In the crystal structure, the Cl- anion forms O—H···Cl and N—H···Cl hydrogen bonds to give a continuous two-dimensional framework structure Table 1, Fig. 2.

Related literature top

For general background, see: Cimarelli et al. (2002); Guangyou et al. (2003); Joshi & Malhotra (2003); Li et al. (2004); Puigjaner et al. (1999); Soai & Niwa (1992); Tseng & Yang (2004); Watts et al. (2005). For related structures, see: Yang et al. (2005).

Experimental top

Compound (II) was prepared according to the procedure of Yang et al. (2005). Compound (II) was reacted at room temperature with concentrated HCl to yield a white precipitate. The solvent was removed and the solid residue recrystallized from an ethanol/hexane (4:1, v/v) mixture to yield compound (I) (m.p. 492–494 K).

Refinement top

Hydrogen atoms attached to C, N and O were placed in geometrically idealized positions and refined using a riding model. [C—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) (aromatic CH); C—H = 0.98 Å; Uiso(H) = 1.2Ueq(C) (methine CH) C—H = 0.970 Å; Uiso(H) = 1.2Ueq(C) (methylene CH2) and C—H = 0.960 Å; Uiso(H) = 1.5Ueq(C) (methyl CH3); N—H = 0.90 Å; Uiso(H) = 1.2Ueq(N); O—H =0.82 Å; Uiso(H) = 1.5Ueq(O);]

Structure description top

The search for new chiral ligands to be used in asymmetric catalysis is of great interest in the field of synthetic chemistry. (Cimarelli et al., 2002; Tseng & Yang, 2004). Among them, enantiopure aminoalkyphenols have attracted wide attention as they can be used in asymmetric catalytic reactions (Puigjaner et al., 1999; Guangyou et al., 2003; Li et al., 2004; Watts et al. 2005), an active area of research in organic chemistry (Joshi & Malhotra, 2003). However, most aminoalkylphenols are derived from readily available natural products (Soai & Niwa, 1992). The synthesis of new aminoalkylphenols is therefore of interest because of their potential as asymmetric catalysts.

In this paper, we report the absolute structure of the title compound (I) a hydrochloride derivative of the aminoalkylphenol 2-((R)-1-((S)-1–2-methoxy-5-methylphenyl-2-phenylethylamino)butyl)-4- methylphenol. As well as the known S configuration of C8, the structure reveals an R configuration for the strereogenic centre at C17. The asymmetric unit of the title compound (Fig. 1) consists of a C27H34NO2+ cation and a Cl- anion. The dihedral angles between the benzene rings A (C1—C6), B (C9—C15) and C (C21—C27) are 54.51 ° for A/B, 56.51 ° for A/C and 21.17 ° for B/C respectively.

The conformation of the molecule is influenced by two intramolecular N—H···O hydrogen bonds. In the crystal structure, the Cl- anion forms O—H···Cl and N—H···Cl hydrogen bonds to give a continuous two-dimensional framework structure Table 1, Fig. 2.

For general background, see: Cimarelli et al. (2002); Guangyou et al. (2003); Joshi & Malhotra (2003); Li et al. (2004); Puigjaner et al. (1999); Soai & Niwa (1992); Tseng & Yang (2004); Watts et al. (2005). For related structures, see: Yang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms represented as spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of (I); dashed lines indicate hydrogen bonds.
(R)-1-(2-Hydroxy-5-methylphenyl)-N-[(S)-1-(2-methoxy-5-methylphenyl)-2- phenylethyl]butan-1-aminium chloride top
Crystal data top
C27H34NO2+·ClF(000) = 944
Mr = 440.00Dx = 1.194 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4734 reflections
a = 9.8553 (14) Åθ = 2.3–26.9°
b = 13.1962 (19) ŵ = 0.18 mm1
c = 18.825 (3) ÅT = 298 K
V = 2448.2 (6) Å3Block, colourless
Z = 40.48 × 0.40 × 0.32 mm
Data collection top
Bruker SMART CCD area-detecter
diffractometer
4534 independent reflections
Radiation source: fine-focus sealed tube3992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997a)
h = 1111
Tmin = 0.919, Tmax = 0.945k = 1515
12855 measured reflectionsl = 2215
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.1969P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4534 reflectionsΔρmax = 0.16 e Å3
285 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), 1957 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C27H34NO2+·ClV = 2448.2 (6) Å3
Mr = 440.00Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.8553 (14) ŵ = 0.18 mm1
b = 13.1962 (19) ÅT = 298 K
c = 18.825 (3) Å0.48 × 0.40 × 0.32 mm
Data collection top
Bruker SMART CCD area-detecter
diffractometer
4534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997a)
3992 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.945Rint = 0.026
12855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.15 e Å3
4534 reflectionsAbsolute structure: Flack (1983), 1957 Friedel pairs
285 parametersAbsolute structure parameter: 0.05 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5112 (3)0.44927 (19)0.38399 (13)0.0624 (6)
H10.52570.51050.36080.075*
C20.4101 (3)0.3849 (2)0.36021 (17)0.0802 (9)
H20.35910.40240.32050.096*
C30.3847 (3)0.2961 (2)0.39456 (19)0.0798 (9)
H30.31590.25340.37900.096*
C40.4607 (3)0.2709 (2)0.45149 (17)0.0766 (8)
H40.44370.21030.47510.092*
C50.5633 (3)0.33371 (18)0.47519 (14)0.0608 (6)
H50.61470.31480.51440.073*
C60.5905 (2)0.42420 (15)0.44130 (11)0.0465 (5)
C70.6996 (2)0.49521 (16)0.46668 (12)0.0500 (5)
H7A0.73910.53020.42640.060*
H7B0.77090.45680.48990.060*
C80.6407 (2)0.57302 (14)0.51898 (11)0.0408 (4)
H80.55270.59430.49990.049*
C90.6151 (2)0.53212 (14)0.59232 (10)0.0388 (4)
C100.4840 (2)0.52856 (15)0.61839 (12)0.0443 (5)
H100.41320.55020.58950.053*
C110.4545 (2)0.49376 (16)0.68641 (13)0.0530 (5)
C120.5602 (2)0.45930 (17)0.72691 (13)0.0573 (6)
H120.54240.43400.77210.069*
C130.6923 (2)0.46093 (17)0.70283 (12)0.0535 (5)
H130.76210.43640.73130.064*
C140.72006 (19)0.49929 (14)0.63609 (11)0.0444 (5)
C150.3097 (3)0.4976 (2)0.71320 (18)0.0828 (9)
H15A0.25490.45120.68640.124*
H15B0.27480.56510.70770.124*
H15C0.30760.47900.76250.124*
C160.9601 (2)0.4959 (2)0.65607 (15)0.0716 (7)
H16A0.94580.53510.69840.107*
H16B1.04240.51750.63340.107*
H16C0.96710.42540.66830.107*
C170.6689 (2)0.75214 (14)0.56655 (10)0.0426 (5)
H170.57060.74150.56810.051*
C180.6927 (3)0.85349 (15)0.53024 (12)0.0524 (5)
H18A0.78930.86740.52900.063*
H18B0.66060.84970.48160.063*
C190.6206 (3)0.93971 (18)0.56818 (15)0.0762 (8)
H19A0.52630.92120.57540.091*
H19B0.66140.94910.61460.091*
C200.6263 (4)1.0368 (2)0.52876 (17)0.0946 (10)
H20A0.71881.05170.51660.142*
H20B0.59061.09010.55790.142*
H20C0.57331.03130.48610.142*
C210.71962 (19)0.74655 (13)0.64187 (10)0.0413 (4)
C220.6296 (2)0.73690 (15)0.69791 (11)0.0465 (5)
H220.53710.73430.68820.056*
C230.6720 (3)0.73095 (17)0.76779 (12)0.0554 (6)
C240.5724 (3)0.7149 (2)0.82768 (14)0.0807 (8)
H24A0.48180.72610.81060.121*
H24B0.59170.76170.86540.121*
H24C0.58030.64680.84510.121*
C250.8098 (3)0.73871 (18)0.78093 (12)0.0581 (6)
H250.84080.73640.82760.070*
C260.9023 (2)0.74980 (17)0.72650 (12)0.0542 (5)
H260.99430.75560.73670.065*
C270.85830 (19)0.75234 (15)0.65706 (10)0.0437 (5)
N10.72890 (17)0.66615 (12)0.52202 (8)0.0419 (4)
H1A0.74270.68880.47750.050*
H1B0.81020.64900.54020.050*
O10.94600 (13)0.75705 (13)0.60056 (7)0.0544 (4)
H1C1.02420.76090.61520.082*
O20.84902 (14)0.51013 (12)0.60891 (8)0.0544 (4)
Cl10.24550 (5)0.77487 (5)0.63820 (3)0.05994 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0754 (16)0.0561 (13)0.0558 (14)0.0171 (13)0.0103 (13)0.0065 (11)
C20.0720 (17)0.094 (2)0.0746 (18)0.0262 (16)0.0246 (16)0.0237 (18)
C30.0617 (16)0.078 (2)0.100 (2)0.0006 (14)0.0007 (17)0.0346 (18)
C40.0858 (18)0.0517 (14)0.092 (2)0.0097 (14)0.0121 (17)0.0063 (14)
C50.0716 (16)0.0556 (14)0.0553 (14)0.0041 (12)0.0036 (13)0.0042 (11)
C60.0585 (12)0.0420 (11)0.0389 (11)0.0080 (9)0.0027 (10)0.0065 (9)
C70.0540 (12)0.0513 (12)0.0449 (11)0.0008 (10)0.0058 (10)0.0046 (10)
C80.0398 (10)0.0410 (10)0.0416 (11)0.0006 (8)0.0037 (9)0.0001 (8)
C90.0425 (10)0.0347 (9)0.0392 (11)0.0006 (8)0.0011 (9)0.0001 (8)
C100.0395 (10)0.0404 (10)0.0530 (12)0.0027 (8)0.0014 (9)0.0048 (9)
C110.0526 (12)0.0468 (12)0.0595 (13)0.0027 (10)0.0099 (11)0.0079 (11)
C120.0689 (15)0.0530 (12)0.0501 (13)0.0002 (11)0.0064 (12)0.0147 (11)
C130.0575 (13)0.0509 (12)0.0522 (13)0.0078 (10)0.0092 (11)0.0112 (10)
C140.0437 (11)0.0409 (10)0.0487 (11)0.0042 (9)0.0026 (9)0.0009 (9)
C150.0637 (15)0.0852 (19)0.099 (2)0.0069 (15)0.0311 (16)0.0299 (17)
C160.0501 (12)0.0897 (18)0.0751 (17)0.0157 (13)0.0160 (13)0.0003 (15)
C170.0427 (10)0.0412 (11)0.0438 (11)0.0015 (9)0.0007 (9)0.0031 (9)
C180.0666 (14)0.0466 (12)0.0440 (11)0.0007 (10)0.0109 (11)0.0021 (9)
C190.112 (2)0.0498 (14)0.0672 (17)0.0066 (14)0.0046 (17)0.0053 (12)
C200.141 (3)0.0593 (15)0.084 (2)0.0184 (18)0.030 (2)0.0071 (15)
C210.0461 (10)0.0360 (9)0.0417 (10)0.0006 (8)0.0008 (9)0.0002 (8)
C220.0512 (11)0.0395 (10)0.0489 (12)0.0003 (9)0.0073 (10)0.0019 (9)
C230.0738 (15)0.0475 (12)0.0449 (12)0.0054 (11)0.0129 (11)0.0023 (10)
C240.101 (2)0.0830 (18)0.0579 (16)0.0039 (16)0.0287 (16)0.0080 (14)
C250.0784 (16)0.0618 (14)0.0340 (10)0.0073 (13)0.0051 (11)0.0002 (10)
C260.0569 (12)0.0582 (13)0.0474 (12)0.0036 (11)0.0074 (10)0.0000 (11)
C270.0476 (11)0.0459 (11)0.0376 (10)0.0008 (9)0.0009 (9)0.0011 (9)
N10.0431 (9)0.0456 (9)0.0369 (8)0.0009 (7)0.0019 (8)0.0018 (7)
O10.0426 (7)0.0778 (11)0.0429 (8)0.0060 (8)0.0001 (7)0.0022 (8)
O20.0373 (7)0.0730 (10)0.0529 (9)0.0089 (7)0.0032 (7)0.0043 (8)
Cl10.0536 (3)0.0789 (4)0.0473 (3)0.0029 (3)0.0117 (3)0.0066 (3)
Geometric parameters (Å, º) top
C1—C61.372 (3)C16—H16A0.9600
C1—C21.384 (4)C16—H16B0.9600
C1—H10.9300C16—H16C0.9600
C2—C31.361 (4)C17—C211.505 (3)
C2—H20.9300C17—C181.520 (3)
C3—C41.349 (4)C17—N11.530 (2)
C3—H30.9300C17—H170.9800
C4—C51.382 (4)C18—C191.520 (3)
C4—H40.9300C18—H18A0.9700
C5—C61.380 (3)C18—H18B0.9700
C5—H50.9300C19—C201.481 (4)
C6—C71.504 (3)C19—H19A0.9700
C7—C81.536 (3)C19—H19B0.9700
C7—H7A0.9700C20—H20A0.9600
C7—H7B0.9700C20—H20B0.9600
C8—C91.504 (3)C20—H20C0.9600
C8—N11.506 (2)C21—C221.385 (3)
C8—H80.9800C21—C271.398 (3)
C9—C101.383 (3)C22—C231.383 (3)
C9—C141.391 (3)C22—H220.9300
C10—C111.391 (3)C23—C251.384 (3)
C10—H100.9300C23—C241.510 (3)
C11—C121.368 (3)C24—H24A0.9600
C11—C151.515 (3)C24—H24B0.9600
C12—C131.379 (3)C24—H24C0.9600
C12—H120.9300C25—C261.379 (3)
C13—C141.382 (3)C25—H250.9300
C13—H130.9300C26—C271.378 (3)
C14—O21.378 (2)C26—H260.9300
C15—H15A0.9600C27—O11.372 (2)
C15—H15B0.9600N1—H1A0.9000
C15—H15C0.9600N1—H1B0.9000
C16—O21.422 (3)O1—H1C0.8200
C6—C1—C2121.1 (3)H16A—C16—H16C109.5
C6—C1—H1119.5H16B—C16—H16C109.5
C2—C1—H1119.5C21—C17—C18114.55 (17)
C3—C2—C1120.5 (3)C21—C17—N1110.58 (15)
C3—C2—H2119.8C18—C17—N1110.28 (16)
C1—C2—H2119.8C21—C17—H17107.0
C4—C3—C2119.2 (3)C18—C17—H17107.0
C4—C3—H3120.4N1—C17—H17107.0
C2—C3—H3120.4C19—C18—C17112.03 (19)
C3—C4—C5121.0 (3)C19—C18—H18A109.2
C3—C4—H4119.5C17—C18—H18A109.2
C5—C4—H4119.5C19—C18—H18B109.2
C6—C5—C4120.8 (3)C17—C18—H18B109.2
C6—C5—H5119.6H18A—C18—H18B107.9
C4—C5—H5119.6C20—C19—C18113.2 (2)
C1—C6—C5117.5 (2)C20—C19—H19A108.9
C1—C6—C7120.4 (2)C18—C19—H19A108.9
C5—C6—C7122.1 (2)C20—C19—H19B108.9
C6—C7—C8110.46 (17)C18—C19—H19B108.9
C6—C7—H7A109.6H19A—C19—H19B107.8
C8—C7—H7A109.6C19—C20—H20A109.5
C6—C7—H7B109.6C19—C20—H20B109.5
C8—C7—H7B109.6H20A—C20—H20B109.5
H7A—C7—H7B108.1C19—C20—H20C109.5
C9—C8—N1110.78 (15)H20A—C20—H20C109.5
C9—C8—C7114.31 (16)H20B—C20—H20C109.5
N1—C8—C7110.58 (16)C22—C21—C27118.40 (18)
C9—C8—H8106.9C22—C21—C17120.64 (17)
N1—C8—H8106.9C27—C21—C17120.96 (17)
C7—C8—H8106.9C23—C22—C21122.4 (2)
C10—C9—C14118.27 (18)C23—C22—H22118.8
C10—C9—C8119.65 (18)C21—C22—H22118.8
C14—C9—C8122.07 (18)C22—C23—C25117.6 (2)
C9—C10—C11122.22 (19)C22—C23—C24121.4 (2)
C9—C10—H10118.9C25—C23—C24121.0 (2)
C11—C10—H10118.9C23—C24—H24A109.5
C12—C11—C10117.6 (2)C23—C24—H24B109.5
C12—C11—C15122.9 (2)H24A—C24—H24B109.5
C10—C11—C15119.5 (2)C23—C24—H24C109.5
C11—C12—C13122.0 (2)H24A—C24—H24C109.5
C11—C12—H12119.0H24B—C24—H24C109.5
C13—C12—H12119.0C26—C25—C23121.6 (2)
C12—C13—C14119.4 (2)C26—C25—H25119.2
C12—C13—H13120.3C23—C25—H25119.2
C14—C13—H13120.3C27—C26—C25120.0 (2)
O2—C14—C13123.95 (19)C27—C26—H26120.0
O2—C14—C9115.68 (18)C25—C26—H26120.0
C13—C14—C9120.36 (19)O1—C27—C26122.58 (18)
C11—C15—H15A109.5O1—C27—C21117.36 (17)
C11—C15—H15B109.5C26—C27—C21120.02 (19)
H15A—C15—H15B109.5C8—N1—C17113.77 (14)
C11—C15—H15C109.5C8—N1—H1A108.8
H15A—C15—H15C109.5C17—N1—H1A108.8
H15B—C15—H15C109.5C8—N1—H1B108.8
O2—C16—H16A109.5C17—N1—H1B108.8
O2—C16—H16B109.5H1A—N1—H1B107.7
H16A—C16—H16B109.5C27—O1—H1C109.5
O2—C16—H16C109.5C14—O2—C16117.69 (17)
C6—C1—C2—C31.8 (4)C8—C9—C14—C13179.15 (19)
C1—C2—C3—C41.0 (4)C21—C17—C18—C1961.2 (3)
C2—C3—C4—C50.0 (4)N1—C17—C18—C19173.31 (19)
C3—C4—C5—C60.2 (4)C17—C18—C19—C20172.2 (2)
C2—C1—C6—C51.5 (3)C18—C17—C21—C22113.4 (2)
C2—C1—C6—C7179.8 (2)N1—C17—C21—C22121.26 (19)
C4—C5—C6—C10.5 (3)C18—C17—C21—C2765.7 (2)
C4—C5—C6—C7178.7 (2)N1—C17—C21—C2759.6 (2)
C1—C6—C7—C886.5 (2)C27—C21—C22—C231.2 (3)
C5—C6—C7—C891.7 (2)C17—C21—C22—C23179.64 (19)
C6—C7—C8—C976.7 (2)C21—C22—C23—C252.3 (3)
C6—C7—C8—N1157.42 (17)C21—C22—C23—C24176.7 (2)
N1—C8—C9—C10117.71 (19)C22—C23—C25—C261.4 (4)
C7—C8—C9—C10116.6 (2)C24—C23—C25—C26177.7 (2)
N1—C8—C9—C1460.9 (2)C23—C25—C26—C270.7 (4)
C7—C8—C9—C1464.9 (2)C25—C26—C27—O1176.0 (2)
C14—C9—C10—C110.2 (3)C25—C26—C27—C211.8 (3)
C8—C9—C10—C11178.45 (19)C22—C21—C27—O1177.00 (17)
C9—C10—C11—C122.1 (3)C17—C21—C27—O13.9 (3)
C9—C10—C11—C15176.4 (2)C22—C21—C27—C260.9 (3)
C10—C11—C12—C131.7 (4)C17—C21—C27—C26178.25 (18)
C15—C11—C12—C13176.8 (2)C9—C8—N1—C1758.7 (2)
C11—C12—C13—C140.6 (4)C7—C8—N1—C17173.50 (16)
C12—C13—C14—O2175.8 (2)C21—C17—N1—C893.05 (18)
C12—C13—C14—C92.7 (3)C18—C17—N1—C8139.22 (17)
C10—C9—C14—O2176.33 (17)C13—C14—O2—C1610.1 (3)
C8—C9—C14—O22.3 (3)C9—C14—O2—C16168.4 (2)
C10—C9—C14—C132.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···Cl1i0.822.233.0446 (15)171
N1—H1A···Cl1ii0.902.233.1193 (18)169
N1—H1B···O20.902.282.884 (2)125
N1—H1B···O10.902.262.864 (2)124
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC27H34NO2+·Cl
Mr440.00
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.8553 (14), 13.1962 (19), 18.825 (3)
V3)2448.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.48 × 0.40 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detecter
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997a)
Tmin, Tmax0.919, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
12855, 4534, 3992
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.03
No. of reflections4534
No. of parameters285
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15
Absolute structureFlack (1983), 1957 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997b), PLATON (Spek, 2003), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···Cl1i0.822.233.0446 (15)171.4
N1—H1A···Cl1ii0.902.233.1193 (18)169.3
N1—H1B···O20.902.282.884 (2)124.7
N1—H1B···O10.902.262.864 (2)124.0
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds