Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C26H24N2S, the six- and seven-membered heterocyclic rings adopt half-chair and near-boat conformations, respectively. The mol­ecular conformation is influenced by two weak intra­molecular C—H...N inter­actions. The crystal structure is stablized by inter­molecular C—H...N and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049598/sj2372sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049598/sj2372Isup2.hkl
Contains datablock I

CCDC reference: 667387

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.037
  • wR factor = 0.100
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

[1,5]-Benzothiazepines display diverse biological activities such as antibacterial (Jadhav & Ingle, 1983), antifeedant (Reddy et al., 1993), analgesic (Satyanarayanan & Rao, 1993), and anticonvulsant (DeSarro et al., 1995) and hence find a unique place in drug discovery. They also function as calcium antagonists (Chaffman & Brogden, 1985), enzyme inhibitors (Slade et al., 1985), tranquilizers (Bock et al., 1989) and as endogenous natriuretic factors (Kantoci et al., 1996). The [1,5]-benzothiazepine scaffold has been used as a constrained dipeptide mimic in protease inhibitors (Skiles et al., 1993). The piperidine sub-structure is also widely prevalent in many biologically important systems (O'Hagan, 2000; Kikuchi et al., 2005; Kitbunnadaj et al., 2005; Christodoulopoulou et al., 2005). The bio-importance of benzothiazepines and piperidine sub-structures prompted us to report the synthesis and X-ray crystallographic studies of the title compound, (I).

In the crystal structure, the average C—N, C—S and C—C bond distances in the piperidine and the seven membered rings, are in good agreement with the literature values (Allen, 2002). The half-chair conformation of the piperidine ring is confirmed by the puckering analysis [q2 = 0.2830 (16) Å, φ2 = 330.1 (3)°, q3 = 0.4437 (16) Å; Cremer & Pople, 1975]. Further, the seven membered heterocyclic ring is in a near-boat conformation [q2 = 1.1402 (13) Å, φ2 = 190.00 (8)°, q3 = 0.2060 (15) Å, φ3 = 231.2 (4)°; Cremer & Pople, 1975] (Fig. 1). The phenyl rings C13/C18 and C20/C25 are oriented with a dihedral angle of 71.07 (5)° to each other. The molecular conformation is further stabilized by two intramolecular C—H···N interactions (Table 2). The crystal packing is stablized by intermolecular C—H···N and two C—H···π interactions, with no evidence of significant π···π stacking interactions (Fig. 2).

Related literature top

For puckering analysis, see: Cremer & Pople (1975). For background, uses and biological activity of benzothiazepines, see: Jadhav & Ingle (1983); Reddy et al. (1993); Satyanarayanan & Rao (1993); DeSarro et al. (1995); Chaffman & Brogden (1985); Slade et al. (1985); Bock et al. (1989); Kantoci et al. (1996); Skiles et al. (1993). For background, uses and biological activity of piperidines, see: O'Hagan (2000); Kikuchi et al. (2005); Kitbunnadaj et al. (2005); Christodoulopoulou et al. (2005). For reference structural data, see: Allen (2002).

Experimental top

A mixture of o-aminothiophenol (1 mmol), (E)-1-methyl-3,5-bis-(phenylmethylidene)-4-piperidone (1 mmol) and a catalytic amount of acetic acid (30 mol %) was thoroughly mixed in an open glass tube. The tube containing the mixture was placed over a silica bath in a microwave oven irradiated for 6 min at 600 W. The progress of the reaction was monitored after every minute of irradiation by TLC with petroleum ether:ethyl acetate (4:1 v/v mixture) as eluent. After each irradiation, the reaction mixture was cooled to room temperature and mixed well. After completion of the reaction (TLC), the yellow solid was recrystallized from ethanol to obtain pure 2-methyl-11-phenyl-4-(phenylmethylidene)-1,2,3,4,11,11a-hexahydropyrido [3,4-c][1,5]benzothiazepine.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Structure description top

[1,5]-Benzothiazepines display diverse biological activities such as antibacterial (Jadhav & Ingle, 1983), antifeedant (Reddy et al., 1993), analgesic (Satyanarayanan & Rao, 1993), and anticonvulsant (DeSarro et al., 1995) and hence find a unique place in drug discovery. They also function as calcium antagonists (Chaffman & Brogden, 1985), enzyme inhibitors (Slade et al., 1985), tranquilizers (Bock et al., 1989) and as endogenous natriuretic factors (Kantoci et al., 1996). The [1,5]-benzothiazepine scaffold has been used as a constrained dipeptide mimic in protease inhibitors (Skiles et al., 1993). The piperidine sub-structure is also widely prevalent in many biologically important systems (O'Hagan, 2000; Kikuchi et al., 2005; Kitbunnadaj et al., 2005; Christodoulopoulou et al., 2005). The bio-importance of benzothiazepines and piperidine sub-structures prompted us to report the synthesis and X-ray crystallographic studies of the title compound, (I).

In the crystal structure, the average C—N, C—S and C—C bond distances in the piperidine and the seven membered rings, are in good agreement with the literature values (Allen, 2002). The half-chair conformation of the piperidine ring is confirmed by the puckering analysis [q2 = 0.2830 (16) Å, φ2 = 330.1 (3)°, q3 = 0.4437 (16) Å; Cremer & Pople, 1975]. Further, the seven membered heterocyclic ring is in a near-boat conformation [q2 = 1.1402 (13) Å, φ2 = 190.00 (8)°, q3 = 0.2060 (15) Å, φ3 = 231.2 (4)°; Cremer & Pople, 1975] (Fig. 1). The phenyl rings C13/C18 and C20/C25 are oriented with a dihedral angle of 71.07 (5)° to each other. The molecular conformation is further stabilized by two intramolecular C—H···N interactions (Table 2). The crystal packing is stablized by intermolecular C—H···N and two C—H···π interactions, with no evidence of significant π···π stacking interactions (Fig. 2).

For puckering analysis, see: Cremer & Pople (1975). For background, uses and biological activity of benzothiazepines, see: Jadhav & Ingle (1983); Reddy et al. (1993); Satyanarayanan & Rao (1993); DeSarro et al. (1995); Chaffman & Brogden (1985); Slade et al. (1985); Bock et al. (1989); Kantoci et al. (1996); Skiles et al. (1993). For background, uses and biological activity of piperidines, see: O'Hagan (2000); Kikuchi et al. (2005); Kitbunnadaj et al. (2005); Christodoulopoulou et al. (2005). For reference structural data, see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC (Bruker, 2000); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b-axis.
4-Benzylidene-2-methyl-11-phenyl-1,2,3,4,11,11a- hexahydropyrido[3,4-c][1,5]benzothiazepine top
Crystal data top
C26H24N2SF(000) = 840
Mr = 396.53Dx = 1.234 Mg m3
Monoclinic, P21/cMelting point: 200 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.7545 (6) ÅCell parameters from 3953 reflections
b = 15.5571 (7) Åθ = 2.4–24.7°
c = 12.1496 (6) ŵ = 0.17 mm1
β = 106.114 (1)°T = 273 K
V = 2134.46 (18) Å3Block, colourless
Z = 40.24 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3313 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω scansh = 1313
20269 measured reflectionsk = 1818
3763 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.5835P]
where P = (Fo2 + 2Fc2)/3
3763 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H24N2SV = 2134.46 (18) Å3
Mr = 396.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7545 (6) ŵ = 0.17 mm1
b = 15.5571 (7) ÅT = 273 K
c = 12.1496 (6) Å0.24 × 0.21 × 0.19 mm
β = 106.114 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3313 reflections with I > 2σ(I)
20269 measured reflectionsRint = 0.023
3763 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3763 reflectionsΔρmin = 0.15 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29637 (14)0.06177 (9)0.18099 (12)0.0432 (3)
C20.37430 (16)0.09676 (11)0.12553 (13)0.0527 (4)
H20.45530.08890.15650.063*
C30.33360 (19)0.14289 (12)0.02532 (15)0.0635 (5)
H30.38710.16760.00910.076*
C40.2142 (2)0.15224 (12)0.02348 (15)0.0667 (5)
H40.18670.18210.09210.080*
C50.13503 (17)0.11747 (11)0.02894 (14)0.0589 (5)
H50.05420.12420.00470.071*
C60.17397 (14)0.07245 (9)0.13153 (13)0.0466 (4)
C70.09214 (13)0.06832 (9)0.32994 (13)0.0437 (3)
H70.07170.02390.37840.052*
C80.22410 (12)0.08956 (9)0.38307 (12)0.0398 (3)
H80.24320.14040.34410.048*
C90.30253 (12)0.01647 (9)0.36584 (12)0.0391 (3)
C100.33643 (12)0.05010 (9)0.45629 (12)0.0405 (3)
C110.33162 (14)0.02641 (10)0.57538 (13)0.0467 (4)
H11A0.32070.07810.61590.056*
H11B0.40630.00060.61690.056*
C120.24955 (14)0.11058 (10)0.51039 (13)0.0463 (4)
H12A0.32970.13220.53920.056*
H12B0.19550.15480.52120.056*
C130.01197 (13)0.14416 (10)0.33121 (13)0.0447 (4)
C140.00314 (15)0.21251 (10)0.25636 (15)0.0532 (4)
H140.04500.21130.20170.064*
C150.06740 (17)0.28267 (11)0.26193 (17)0.0641 (5)
H150.07220.32820.21130.077*
C160.13015 (16)0.28550 (13)0.34154 (19)0.0675 (5)
H160.17700.33290.34550.081*
C170.12324 (16)0.21824 (14)0.4148 (2)0.0727 (6)
H170.16620.21970.46860.087*
C180.05269 (15)0.14734 (12)0.41019 (17)0.0617 (5)
H180.04900.10180.46060.074*
C190.36293 (13)0.12880 (9)0.42549 (13)0.0427 (3)
H190.36070.13510.34880.051*
C200.39499 (13)0.20618 (9)0.49633 (13)0.0431 (3)
C210.46410 (14)0.20436 (10)0.60939 (14)0.0488 (4)
H210.49670.15260.64170.059*
C220.48494 (17)0.27838 (12)0.67437 (15)0.0598 (5)
H220.53110.27600.75010.072*
C230.43823 (18)0.35534 (12)0.62834 (17)0.0644 (5)
H230.45080.40480.67310.077*
C240.37244 (17)0.35901 (11)0.51521 (18)0.0650 (5)
H240.34140.41120.48330.078*
C250.35245 (15)0.28542 (10)0.44919 (15)0.0537 (4)
H250.31010.28880.37230.064*
C260.23128 (18)0.05341 (13)0.68957 (15)0.0645 (5)
H26A0.30360.08120.73050.097*
H26B0.22200.00110.72810.097*
H26C0.16560.09090.68660.097*
N10.34257 (11)0.00985 (8)0.27801 (10)0.0434 (3)
N20.23539 (11)0.03366 (8)0.57301 (11)0.0460 (3)
S10.06776 (4)0.02108 (3)0.18734 (4)0.05483 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0541 (9)0.0349 (7)0.0391 (8)0.0064 (6)0.0107 (7)0.0005 (6)
C20.0592 (10)0.0541 (10)0.0462 (9)0.0038 (8)0.0169 (8)0.0035 (7)
C30.0853 (14)0.0591 (11)0.0500 (10)0.0038 (10)0.0253 (9)0.0089 (8)
C40.0968 (15)0.0574 (11)0.0424 (9)0.0151 (10)0.0133 (10)0.0093 (8)
C50.0670 (11)0.0531 (10)0.0460 (9)0.0134 (9)0.0020 (8)0.0053 (8)
C60.0558 (9)0.0369 (8)0.0428 (8)0.0051 (7)0.0065 (7)0.0071 (6)
C70.0422 (8)0.0352 (8)0.0535 (9)0.0026 (6)0.0128 (7)0.0018 (6)
C80.0414 (8)0.0315 (7)0.0460 (8)0.0002 (6)0.0113 (6)0.0005 (6)
C90.0378 (7)0.0357 (7)0.0421 (8)0.0002 (6)0.0083 (6)0.0002 (6)
C100.0394 (8)0.0407 (8)0.0413 (8)0.0026 (6)0.0110 (6)0.0022 (6)
C110.0515 (9)0.0442 (8)0.0439 (8)0.0041 (7)0.0124 (7)0.0022 (7)
C120.0477 (9)0.0391 (8)0.0518 (9)0.0004 (7)0.0133 (7)0.0070 (7)
C130.0346 (7)0.0426 (8)0.0550 (9)0.0025 (6)0.0091 (7)0.0035 (7)
C140.0541 (9)0.0494 (9)0.0548 (9)0.0074 (7)0.0129 (8)0.0009 (7)
C150.0654 (11)0.0494 (10)0.0674 (11)0.0139 (8)0.0018 (9)0.0020 (9)
C160.0439 (10)0.0619 (12)0.0889 (14)0.0109 (8)0.0055 (9)0.0193 (11)
C170.0495 (10)0.0807 (14)0.0966 (15)0.0021 (10)0.0346 (10)0.0204 (12)
C180.0512 (10)0.0609 (11)0.0793 (12)0.0030 (8)0.0283 (9)0.0022 (9)
C190.0456 (8)0.0427 (8)0.0406 (8)0.0045 (6)0.0131 (6)0.0030 (6)
C200.0431 (8)0.0410 (8)0.0488 (8)0.0060 (6)0.0186 (7)0.0035 (7)
C210.0533 (9)0.0441 (9)0.0499 (9)0.0065 (7)0.0157 (7)0.0040 (7)
C220.0705 (12)0.0605 (11)0.0513 (10)0.0143 (9)0.0218 (8)0.0140 (8)
C230.0758 (12)0.0501 (10)0.0765 (13)0.0116 (9)0.0366 (10)0.0235 (9)
C240.0674 (12)0.0410 (9)0.0892 (14)0.0002 (8)0.0262 (10)0.0033 (9)
C250.0536 (10)0.0454 (9)0.0605 (10)0.0060 (7)0.0134 (8)0.0008 (8)
C260.0765 (12)0.0706 (12)0.0510 (10)0.0053 (10)0.0254 (9)0.0085 (9)
N10.0465 (7)0.0415 (7)0.0422 (7)0.0067 (5)0.0122 (6)0.0047 (5)
N20.0510 (7)0.0451 (7)0.0439 (7)0.0029 (6)0.0166 (6)0.0030 (6)
S10.0492 (3)0.0455 (2)0.0643 (3)0.00796 (17)0.0067 (2)0.01459 (19)
Geometric parameters (Å, º) top
C1—C21.390 (2)C13—C181.381 (2)
C1—C61.407 (2)C13—C141.384 (2)
C1—N11.4076 (19)C14—C151.384 (2)
C2—C31.379 (2)C14—H140.9300
C2—H20.9300C15—C161.370 (3)
C3—C41.371 (3)C15—H150.9300
C3—H30.9300C16—C171.362 (3)
C4—C51.376 (3)C16—H160.9300
C4—H40.9300C17—C181.390 (3)
C5—C61.392 (2)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—S11.7684 (17)C19—C201.467 (2)
C7—C131.513 (2)C19—H190.9300
C7—C81.541 (2)C20—C211.388 (2)
C7—S11.8298 (16)C20—C251.392 (2)
C7—H70.9800C21—C221.379 (2)
C8—C91.5145 (19)C21—H210.9300
C8—C121.527 (2)C22—C231.370 (3)
C8—H80.9800C22—H220.9300
C9—N11.2844 (18)C23—C241.378 (3)
C9—C101.482 (2)C23—H230.9300
C10—C191.342 (2)C24—C251.380 (2)
C10—C111.509 (2)C24—H240.9300
C11—N21.461 (2)C25—H250.9300
C11—H11A0.9700C26—N21.463 (2)
C11—H11B0.9700C26—H26A0.9600
C12—N21.452 (2)C26—H26B0.9600
C12—H12A0.9700C26—H26C0.9600
C12—H12B0.9700
C2—C1—C6118.69 (14)C18—C13—C7119.99 (15)
C2—C1—N1118.53 (14)C14—C13—C7121.72 (14)
C6—C1—N1122.46 (14)C15—C14—C13120.71 (17)
C3—C2—C1121.18 (17)C15—C14—H14119.6
C3—C2—H2119.4C13—C14—H14119.6
C1—C2—H2119.4C16—C15—C14120.48 (18)
C4—C3—C2119.96 (18)C16—C15—H15119.8
C4—C3—H3120.0C14—C15—H15119.8
C2—C3—H3120.0C17—C16—C15119.39 (17)
C3—C4—C5120.05 (16)C17—C16—H16120.3
C3—C4—H4120.0C15—C16—H16120.3
C5—C4—H4120.0C16—C17—C18120.72 (18)
C4—C5—C6121.04 (17)C16—C17—H17119.6
C4—C5—H5119.5C18—C17—H17119.6
C6—C5—H5119.5C13—C18—C17120.43 (18)
C5—C6—C1119.03 (16)C13—C18—H18119.8
C5—C6—S1118.63 (13)C17—C18—H18119.8
C1—C6—S1122.01 (12)C10—C19—C20128.81 (14)
C13—C7—C8112.69 (12)C10—C19—H19115.6
C13—C7—S1112.87 (11)C20—C19—H19115.6
C8—C7—S1110.95 (10)C21—C20—C25118.01 (14)
C13—C7—H7106.6C21—C20—C19123.24 (14)
C8—C7—H7106.6C25—C20—C19118.73 (14)
S1—C7—H7106.6C22—C21—C20120.76 (16)
C9—C8—C12110.19 (12)C22—C21—H21119.6
C9—C8—C7111.20 (11)C20—C21—H21119.6
C12—C8—C7111.20 (12)C23—C22—C21120.57 (17)
C9—C8—H8108.0C23—C22—H22119.7
C12—C8—H8108.0C21—C22—H22119.7
C7—C8—H8108.0C22—C23—C24119.57 (16)
N1—C9—C10118.36 (13)C22—C23—H23120.2
N1—C9—C8123.54 (13)C24—C23—H23120.2
C10—C9—C8118.10 (12)C23—C24—C25120.20 (17)
C19—C10—C9117.79 (13)C23—C24—H24119.9
C19—C10—C11124.30 (13)C25—C24—H24119.9
C9—C10—C11117.80 (12)C24—C25—C20120.77 (17)
N2—C11—C10111.84 (12)C24—C25—H25119.6
N2—C11—H11A109.2C20—C25—H25119.6
C10—C11—H11A109.2N2—C26—H26A109.5
N2—C11—H11B109.2N2—C26—H26B109.5
C10—C11—H11B109.2H26A—C26—H26B109.5
H11A—C11—H11B107.9N2—C26—H26C109.5
N2—C12—C8109.61 (12)H26A—C26—H26C109.5
N2—C12—H12A109.7H26B—C26—H26C109.5
C8—C12—H12A109.7C9—N1—C1120.30 (13)
N2—C12—H12B109.7C12—N2—C11109.67 (12)
C8—C12—H12B109.7C12—N2—C26111.93 (13)
H12A—C12—H12B108.2C11—N2—C26110.40 (13)
C18—C13—C14118.27 (15)C6—S1—C7103.88 (7)
C6—C1—C2—C31.5 (2)C7—C13—C14—C15177.57 (15)
N1—C1—C2—C3175.19 (15)C13—C14—C15—C160.3 (3)
C1—C2—C3—C42.4 (3)C14—C15—C16—C170.5 (3)
C2—C3—C4—C51.6 (3)C15—C16—C17—C180.5 (3)
C3—C4—C5—C60.1 (3)C14—C13—C18—C170.9 (3)
C4—C5—C6—C10.8 (2)C7—C13—C18—C17177.61 (16)
C4—C5—C6—S1174.25 (13)C16—C17—C18—C130.2 (3)
C2—C1—C6—C50.1 (2)C9—C10—C19—C20177.79 (14)
N1—C1—C6—C5173.37 (14)C11—C10—C19—C201.7 (3)
C2—C1—C6—S1173.30 (12)C10—C19—C20—C2137.0 (2)
N1—C1—C6—S10.1 (2)C10—C19—C20—C25141.75 (17)
C13—C7—C8—C9172.25 (12)C25—C20—C21—C223.1 (2)
S1—C7—C8—C944.57 (14)C19—C20—C21—C22175.63 (15)
C13—C7—C8—C1264.57 (16)C20—C21—C22—C230.3 (3)
S1—C7—C8—C12167.75 (10)C21—C22—C23—C241.7 (3)
C12—C8—C9—N1146.74 (14)C22—C23—C24—C250.9 (3)
C7—C8—C9—N189.50 (17)C23—C24—C25—C202.0 (3)
C12—C8—C9—C1032.18 (17)C21—C20—C25—C243.9 (2)
C7—C8—C9—C1091.58 (15)C19—C20—C25—C24174.85 (15)
N1—C9—C10—C1927.1 (2)C10—C9—N1—C1168.39 (13)
C8—C9—C10—C19153.97 (13)C8—C9—N1—C112.7 (2)
N1—C9—C10—C11156.60 (14)C2—C1—N1—C9139.08 (15)
C8—C9—C10—C1122.37 (19)C6—C1—N1—C947.5 (2)
C19—C10—C11—N2142.28 (15)C8—C12—N2—C1170.45 (15)
C9—C10—C11—N233.80 (19)C8—C12—N2—C26166.67 (13)
C9—C8—C12—N255.62 (16)C10—C11—N2—C1257.75 (16)
C7—C8—C12—N268.15 (15)C10—C11—N2—C26178.47 (14)
C8—C7—C13—C18103.94 (17)C5—C6—S1—C7122.43 (13)
S1—C7—C13—C18129.40 (14)C1—C6—S1—C764.30 (13)
C8—C7—C13—C1474.55 (19)C13—C7—S1—C694.25 (11)
S1—C7—C13—C1452.11 (17)C8—C7—S1—C633.33 (12)
C18—C13—C14—C150.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N10.932.402.7718 (19)104
C7—H7···N20.982.613.015 (2)105
C23—H23···N1i0.932.613.389 (2)142
C3—H3···Cgii0.932.673.574 (2)165
C17—H17···Cgiii0.933.033.685 (2)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H24N2S
Mr396.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.7545 (6), 15.5571 (7), 12.1496 (6)
β (°) 106.114 (1)
V3)2134.46 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20269, 3763, 3313
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections3763
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Bruker, 2000), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N10.932.402.7718 (19)104
C7—H7···N20.982.613.015 (2)105
C23—H23···N1i0.932.613.389 (2)142
C3—H3···Cgii0.932.673.574 (2)165
C17—H17···Cgiii0.933.033.685 (2)129
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds